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Single-Frame Stem Cell Tracking
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Abstract—The fields of bioinformatics and biotechnology rely
on the collection, processing and analysis of huge numbers of bio-
cellular images, including cell features such as cell size, shape, and
motility. Thus, cell tracking is of crucial importance in the study
of cell behaviour and in drug and disease research. Such a mul-
titarget tracking is essentially an assignment problem, NP-hard,
with the solution normally found in practice in a reduced hypoth-
esis space. In this paper we introduce a novel approach to find the
exact association solution over time for single-frame scan-back
stem cell tracking. Our proposed method employs a class of linear
programming optimization methods known as the Hungarian
method to find the optimal joint probabilistic data association
for nonlinear dynamics and non-Gaussian measurements. The
proposed method, an optimal joint probabilistic data association
approach, has been successfully applied to track hematopoietic
stem cells.

Index Terms—Cancer research, data association, Hungarian,
linear programming, optimization, primal dual, segmentation,
stem cell, tracking.

I. INTRODUCTION

MULTITARGET tracking, the association of detected
points into sequences over time, is an important NP-hard

problem. Considerable efforts have been conducted to design
tractable methods by reducing its complexity. These methods
include nearest neighbor [1], joint probabilistic data association
(JPDA) [2], [3] and multihypotheses data association [2], [4].
The common task among all tracking methods is to reduce the
hypothesis space, the set of plausible association solutions, and
to solve the association problem by selecting the most likely
hypothesis, normally yielding a suboptimal solution. Solving
the association problem in a reduced hypothesis space raises
some important questions, such as the likelihood of finding the
optimal solution in the reduced space, and the closeness of the
optimal solution to the reduced space.

Multitarget tracking has a broad range of applications in-
cluding some well-known applications such as air traffic control
[5], robot control [6], [7], ocean surveillance [8], and some re-
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cent applications such as automated vehicle control [9] and, of
particular interest to this paper, cell tracking [10], [11].

Recent advances in cell culturing and imaging allows the au-
tomated acquisition of huge sets of images, however methods
of image analysis have not kept pace. Manual methods for ana-
lyzing such huge numbers of images to infer cell features such as
size, shape, and motility are so onerous that automated methods
of cell tracking and segmentation are in high demand. Applying
advanced segmentation and tracking techniques to localize and
track cells in long digital image sequences can improve our un-
derstanding of cellular behaviour. As a result, automated anal-
ysis methods would address fundamentally new questions in
proteomics, genomics and stem-cell research [12]–[17].

A key development of the method proposed in this paper is to
find an exact solution for the one scan-back tracking problem,
applied to track living stem cells in multicellular phase contrast
image sequences taken from blood stem cells [18]. The object of
this particular project [18] is the analysis of stem-cell behaviour
and differentiation, the process by which stem cells specialize
to different cell types, a process which is crucial to understand if
stem cells are to be used in cell and tissue regeneration. Specifi-
cally, given a culture of cells, observed over time, we need some
way of determining whether a given cell is likely to die, to cause
cancer, to specialize into an incorrect tissue type or, desirably, to
specialize into the correct cell type, a determination which might
be inferred from the statistics of many, many tracked cells.

II. MEASUREMENTS

Our research interest in multitarget tracking stems from our
goal toward developing a fully automatic cell tracking system.
Two fundamental tasks are needed to accomplish this goal: the
detection/recognition of cells in each frame, and the subsequent
association of the detected cells over time.

The first task is essentially one of anomaly detection: the lo-
calization of groups of pixels inconsistent with the random be-
haviour of the image background. The blood stem cells in our
study have a fairly regular shape and brightness pattern, thus
in our previous work [19], [20] we exploited this useful in-
formation to design an effective cell localization/segmentation
method to take an image from a given sequence

and to infer measurements of cell loca-
tions . The measurement , which
encodes cell location and radius is discriminated
by three criteria

(1)

where , , and assess the presence of a cell in at a
size and location specified by on the basis of testing the cell
boundary, the cell interior, and the cell uniformity, respectively.
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III. PROBLEM STATEMENT

Aside from the cell radius, the blood stem cells which are of
interest here all have the same visual appearance and cannot be
discriminated visually. Therefore, to track a particular cell over
time, the association task becomes crucial.

We denote by a possible hypothesis of the -frame
association problem

(2)

where is a parametric representation of frame

(3)

where indexes the cells present in frame , is the label
of the associated parent cell in frame ,
specifies the cell radius and location , and is the
cell age, updated as

if such that (i.e. cell split)

otherwise.

(4)
The cell dynamics, affecting the relationship of with

will, in general, be cell-type specific and may fur-
ther be influenced by environmental factors, chemical gradients
etc. In our context there are no deliberate experimental biases,
and successive image frames are spaced so far apart in time (sev-
eral minutes), therefore, inter-frame cell motion is independent
over time, and a Gaussian random walk was found to well-ap-
proximate hand-tracked cell motion.

Note that because of the possibility of spurious or missed de-
tections, it is not required that equal .

A. Solution of NP-Hard Problems

The optimum answer to the association problem is the max-
imum a posteriori estimation of

(5)

which is NP-hard, with a complexity exponential in , so to
find the optimal solution is essentially impossible. Instead, to
solve the association problem, different methods have been in-
troduced to solve the problem suboptimally either by finding the
most likely hypothesis from a limited hypothesis set over mul-
tiple frames

(6)

thus finding the best member

where (7)

as the solution such as the multihypothesis tracking (MHT) al-
gorithm [4], or a frame by frame solution based on single-frame
associations over time such as JPDA [2].

The single-frame association method is a feasible approach
which has been widely used. However even in the single-frame

case, virtually all approaches propose to find solutions over a
reduced hypothesis space for frame

(8)

and searching for the best member

where (9)

as the solution. The optimal single-frame solution is found if it
is included among the hypotheses of that frame, i.e., if

(10)

The key, here, to efficiency is to minimize the number of hy-
potheses; the key to the quality of estimation to include many
likely hypotheses in the hypothesis set. As these goals are in
opposition, we are left with a complexity/quality trade off. One
of the widely used and well known single-frame algorithms to
solve the multitarget tracking problem in a reduced hypothesis
space is JPDA [2], discussed next.

B. Joint Probabilistic Data Association

To solve (5), JPDA has been widely applied for multitarget
tracking [2], [3], [21], [22]. Assuming linear dynamics and
Gaussian measurements, standard JPDA employs a Kalman
filter to model the association uncertainties [1]–[3], [22]. There
have been considerable efforts to generalize JPDA and over-
come its shortcomings by using the extended Kalman filter
(EKF) to linearize modest nonlinear systems [21], [23]–[26].
JPDA assumes the number of targets to be known with the
following constraints: 1) each measurement originates from
only target or clutter; 2) a measurement can be associated at
most to one target; and 3) at most one measurement can be
associated to a target.

To make the association problem tractable, JPDA reduces
the number of possible association hypotheses and keeps a rea-
sonable subset of them as valid association hypotheses using a
gating strategy which JPDA employs to validate the measure-
ments and to generate a subset of association hypotheses, valid
associations, based on validated measurements. Gating keeps
the measurements which fall inside the validation gate of each
target as valid measurements, hence the measurements that fall
outside of the target’s validation gate are not considered as as-
sociation candidates and are thrown away.

Moreover to manage the dimensionality and so the com-
plexity of the problem, JPDA employs a recursive strategy
and updates the filter distribution for each target, i.e., JPDA
sequentially estimates the marginal distribution
given the measurements . From Bayes’ rule

(11)

The information of the measurements has already
been used to generate hypotheses , thus all of the in-
formation of is implicitly embedded in so that
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can be simplified to . Moreover
is a fixed constant so we can write

(12)

where is a normalization constant. The first term of (12),
, is a prediction step. Because of the linear dy-

namics and Gaussian measurement assumption, the Kalman
filter is considered for the prediction step in standard JPDA.

The second term of (12), , is the likelihood of
measurement given hypothesis and is computed in stan-
dard JPDA as

(13)

where is the marginal posterior probability of associating
measurement to target so that is the probability of no
measurement to be associated to target .

IV. PROPOSED METHOD

As was mentioned in the previous section, JPDA has been ex-
tensively used as a single-frame solution for multitarget tracking
problem. Most of the single-frame tracking methods, including
JPDA, reduce the number of possible association hypotheses to
make the association problem tractable. The major shortcoming
of these methods is finding the suboptimal single-frame solu-
tion over a reduced hypothesis space. The other disadvantages
of JPDA are the assumptions of linear dynamics and Gaussian
measurements.

An optimal general-purpose single-frame approach must
solve the association problem over the entire single-frame
hypothesis space and assume no restrictions on dynamics and
measurements. To achieve this goal and to derive an algorithm
to be applicable to the stem-cell problem at hand in which dy-
namics and measurements are, respectively, assumed nonlinear
and non-Gaussian, a nonlinear, non-Gaussian method is pro-
posed to solve the tracking problem. A feasible optimal method
is proposed to evaluate all possible hypotheses, by representing
the tracking problem in the form of an assignment problem and
then by extending a linear programming optimization method
known as the Hungarian method [27] to apply to the problem
at hand.

Network programming and optimization, as a branch of op-
erations research, has seen considerable research attraction. A
special case of this class of problems is the assignment problem,
which has been solved using a class of linear programming
methods known as primal-dual algorithms [28], of which the
Hungarian method is an example. An assignment problem of
order is the one-to-one connection or assignment of sources
to sinks. The solution can be represented by a binary matrix
of order , as illustrated in Fig. 1 for .

In this section, we will represent the tracking problem in the
form of an assignment matrix by considering the cells (pre-
vious frame) and measurements (current frame) as the row and
column indexes, respectively. First the proposed nonlinear, non-
Gaussian method follows, then we discuss how the proposed

Fig. 1. Example assignment matrix: three sources 1, 2, 3 need to be assigned
to three sinks A, B, C . Clearly each row and column of the matrix must sum
to one.

formula can be represented and solved as a generalized assign-
ment problem.

A. Nonlinear Non-Gaussian JPDA (NNJPDA)

In standard JPDA new tracks can not be initiated, the number
of targets is known, dynamics are linear, measurements are
Gaussian and the Kalman filter is used to predict the new state.
In contrast, in blood stem cell tracking new tracks for divided
cells must be initiated, the number of cells is unknown, the
dynamics are a constrained random walk (nonlinear due to mo-
tion constraints imposed by nearby cells), and due to clutter the
measurements are non-Gaussian. The nonlinear, non-Gaussian
nature of problem makes the Kalman filter an inappropriate
choice to predict the new state.

The basic measurement constraints are as follows: 1) each
measurement originates from only target (cell) or clutter; 2) each
measurement can be associated to one cell; and 3) up to two
measurements in frame can be associated to the same cell in
frame , where this last constraint differs from standard
JPDA.

Each cell in the state must belong to one of the following
sets:

Unassociated

Split for

Regular

To evaluate the association solution , a measurement set
is obtained to update the previous state estimate by se-

lecting the hypothesis with the maximum joint association prob-
ability among all possible hypotheses for that frame. From the
derivation of in (12), conditioning on both sides we
have

(14)

where the first term explicitly examines the likelihood of
given , which involves a dependence on cell dynamics,
splitting, and separation probabilities:

(Dynamics) (Splitting) (Separation) (15)

The second term of (14) assesses the likelihood of the mea-
surement given the cell state . Because, in our proposed
method, any hypothesis for is directly derived from , every
measured point, whether correctly or falsely detected, corre-
sponds to a cell in hypothesis . Therefore, the computation
of simplifies to counting the number of cells in
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which are associated (thus correctly detected) or un-associated
(thus a false alarm)

(Detect) ( Alarm) (16)

with the details of (15) and (16) in place, (14) becomes

(17)

where indexes the cells in one of the , , and sets con-
taining mature cells, divided cells and false alarms, respectively.

is the probability of cell detection which is a constant,
set to 0.9 empirically based on the performance of the cell model
[19], [20]. represents the cell motion dynamics to assess a
hypothetical cell in frame based on its location at time

. Based on hand-tracked cell motion, a constrained Gaussian
random walk well approximates the observed cell dynamics.
Because there is no explicit prediction of the statistics from
to , rather an assessment of a given set of hypotheses at frame

relative to , therefore, nonlinear dynamics can readily be
accommodated.

Stem cells can split and bear new cells. A typical stem cell
must be mature before it can split, i.e., there is an age con-
straint based on which the likelihood of cell division can be es-
timated. Cell divisions associated to young stem cells, below
some minimum age, are considered unlikely and will be penal-
ized by . After the cell’s age passes the minimum age con-
straint, the probability of cell-split will increase with increasing
cell age. Thus, predicts the cell division in frame based
on the cell age in frame .

is a penalty for the association of false alarms: Any
hypothesis containing extra measurements which are not associ-
ated to a cell is unlikely and so should be penalized accordingly.
Finally stem cells in our experiments can not overlap, hence the
centres of two nearby cells cannot be closer than the sum of their
radii. is the cell-distance penalty based on the cell center
separation, and sets to zero the likelihood of any hypothesis con-
taining inadmissibly close cell centers. As was discussed after
(15), because any hypothesis for is directly derived from ,
and because the inference of [19], [20] does not allow the
creation of measurements closer than a specified minimum sep-
aration, therefore, the term is, in practice, only a formality.

Having the association problem specified by (17), the opti-
mization problem is to find the best estimate among all possible
hypotheses evaluated. We propose to use an extended version of
the Hungarian method (E-Hungarian), discussed next.

B. The Hungarian Method

The Hungarian method as a primal-dual algorithm belongs to
the class of linear programming methods which have been used
for the assignment problem [28]. The basis of the Hungarian
method was introduced by Egervary and Konig and it has been
completed later by Kuhn [27]. Primal-dual algorithms are char-
acterized by

• A primal vector and a dual feasible solution is maintained
by the algorithm.

• One of the following tasks is performed by the algorithm
in each iteration.
1) The primal vector is kept fixed and the dual feasible

solution is changed.
2) The dual solution is kept fixed and the primal vector is

changed toward primal feasibility while satisfying the
present dual solution.

• By iterating the algorithm, the primal vector progresses
toward primal feasibility.

We wish to solve the tracking problem represented by matrix
given the cost matrix . Each element of the

cost matrix represents the cost of associating measurement to
cell . To solve the assignment problem we need to minimize

(18)

subject to
1) . Each row of sums to one.
2) . Each column of sums to

one.
3) is nonnegative.
4) . Each element

of is 0 or 1.
Each feasible solution of (18) is an assignment problem of order

. The dual of (18) is to find and
such that

(19)

is maximized, subject to

(20)

The constraint in (20) can be rewritten as

(21)

which is called the dual feasibility condition for , where
is the reduced cost matrix and its elements are

the reduced cost coefficients. As a result the vectors are
dual feasible if and only if the reduced cost matrix [28].
An assignment problem and a dual feasible solution are
optimal if

(22)
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which is called the complementary slackness optimality condi-
tion for the assignment problem and its dual. These are the basic
assumptions in the Hungarian method such that it begins with a
dual feasible solution and tries to find an assignment with allo-
cations among the cost matrix elements which satisfy

(23)

These elements of are known as admissible elements. To up-
date the cost matrix after each dual solution change in each
stage, reduced cost coefficients are computed once, thus com-
putational complexity per stage is at most . As a result
the overall computational complexity of the Hungarian method
with consideration of stages will be [28].

C. Extended Hungarian JPDA

The tracking problem can be represented in the form of an as-
signment problem so that a primal-dual algorithm can be applied
to solve it. To represent the tracking problem in the form of an
assignment matrix, the measurements of frame (hypothe-
sized cell locations) are assigned to the estimated cells of
frame , giving rise to an assignment matrix (see Fig. 1)
which represents the association of measurement
to cell .

Although the Hungarian method efficiently and optimally
solves single-frame assignment problems, it is insufficiently
general to solve the cell tracking problem of interest because
the one-to-one assignment precludes cell division and false
alarms. In particular, recall the simple example of Fig. 1 in
which the measurements , and in the current frame are
assigned, respectively, to the cells 1, 3, and 2 in the previous
frame. To allow one of the cells (1, 2, 3) to split or one of the
measurements to be false requires a different ap-
proach. The key concept of this paper is that cell splits and false
alarms can still be accommodated in a one-to-one assignment
problem by enlarging the assignment matrix.

In our proposed E-Hungarian method, we double the number
of rows to allow cell splitting and then add extra rows with
the same number of measurements to allow false alarms. To
allow mis-detection and to make the tracking matrix square, new
columns are added. In this way the copied rows (1, 2 and 3 in
the example in Fig. 2) allow cell splitting so that by duplicating
each row up to two measurements in the current frame can be as-
sociated to the same cell in the previous frame (represented by
the rows) while each measurement assigned to the extra rows
(dummy cells) will be interpreted as false alarms. Similarly the
extra columns represent dummy measurements; any assignment
from cell rows to these columns will be considered mis-detec-
tion, implying that one of the cells in frame is not associ-
ated to frame .

To solve the cell association problem by the proposed
method, we embed the proposed NNJPDA (17) as cost function

in the E-Hungarian method, so that each element of which
represents the cost of assigning the measurement in

time to the target from time . The goal is minimizing
the cost of joint association of targets to measurements. To
derive the cost matrix from (17) we compute the following.

Fig. 2. Tracking matrix illustrating splitting and unassociation. In this example,
measurements A and C are both assigned to cell 2 (showed by rows 2 and �2),
measurementB is assigned to a dummy cell. The conclusions are that cell 2 has
split, cells 1 and 3 are undetected, and measurement B is a false alarm.

Fig. 3. Tracking performance. E-Hungarian-JPDA(o) versus NN(�) as a func-
tion of the probability of detection (P ). For each value of probability of
detection, 200 video clips each of 50 frames have been used.

1)
2)
3)
4)

Then each element of the cost function is obtained by

(24)
where we note that the term of (17) does not appear,
having been satisfied inherently by the measuring process.
Finally having as the cost function, the proposed E-Hun-
garian-JPDA finds the optimal assignment by satisfying (22).

By minimizing the cost function we are maximizing the
NNJPDA in (17). Therefore, the optimal association among
all possible hypotheses is found by employing E-Hungarian
method to solve (17) and the exact solution for frame given

is obtained.
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Fig. 4. Tracking performance of E-Hungarian-JPDA(o) versus NN(�). Top:
perfect detection (P = 100%). Middle: (P = 95%). Bottom:
(P = 90%). The average probabilities over 200 video clips are
superimposed.

V. RESULTS

We have measured the performance of the proposed method
and compared it with nearest neighbour (NN) [1] and standard
JPDA [2]. Because of the difficulty in obtaining association
ground truth for laboratory videos and because we wish to dis-
tinguish between errors in cell detection (addressed in [19] and

Fig. 5. Probability of perfect tracking in which a typical cell is tracked over all
frames from the first to the last frame. E-Hungarian-JPDA(o) versus NN(�) as a
function of the probability of detection (P ). In each case 200 video clips
each of 50 frames are used.

Fig. 6. Performance of the proposed E-Hungarian-JPDA (solid line) in com-
parison with standard JPDA (dashed line) as a function of gating factor (G ).

[20], and not the focus of this paper) and cell association, there-
fore, synthetic video clips simulating the random behaviour of
stem cells were generated, in which nonoverlapping cell dy-
namics were applied. We generated 1400 video clips, each video
clip composed of 50 frames and 5 cells. The cells do not split to
allow methods such as NN and standard JPDA, which do not
support splitting, to be tested. We propose to assess the per-
formance of the algorithm based on the average percentage of
frames in which a cell has been correctly associated in compar-
ison with ground truth.

The performance of the proposed method in comparison with
NN is depicted in Fig. 3. The two methods are compared for dif-
ferent values of the probability of detection . For each
value of , 200 video clips, each composed of 50 frames,
are generated and the synthetic cell centres are tracked over
time applying the proposed method and NN. As we can ob-
serve, the proposed method has outperformed NN for all values
of . A comparison of the two algorithms for

, and is depicted in
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Fig. 7. Example illustrating the detection and association by applying the proposed cell model in [19] and [20] and the proposed E-Hungarian-JPDA, respectively.
The detection results are superimposed on the original HSCs as black dots locating the detected cell centres. The association results are also superimposed on the
original HSCs such that each letter shows a different cell track/split over time.

greater detail, sequence by sequence, in Fig. 4—top, middle,
and bottom, respectively.

Fig. 5 plots the probability of perfect tracking of a cell over all
50 frames. The average tracking probability is computed over
200 video clips for each value of (overall 1400 video
clips composed of 50 frames). As can be seen the proposed
method performs much better than NN, especially for

.
Fig. 6 shows the performance of the proposed method in com-

parison with the standard JPDA for . To com-
pare the results, the performance of JPDA is measured as a func-
tion of gate area , where is the
gate radius, set to be a multiple of the standard deviation of
the constrained Gaussian random walk. Fig. 6 clearly shows that
increasing improves the performance of JPDA towards that
of the E-Hungarian-JPDA, which is expected since for a suffi-
ciently large JPDA is testing all hypotheses. For ,
where the performance of the two methods is almost equal, the
gating area is a circle with diameter of pixels.
Considering that each well is about 70 50 pixels, such a cir-
cular gate covers a significant fraction of the well’s area around
each cell centre. As the circular gate completely covers the field

of measurements, standard JPDA evaluates all possible hy-
potheses to find the best association to assign sources to
sinks, much more expensive than E-Hungarian-JPDA.

To generate results using real data, we have applied the
proposed method to long streams of microscopic phase contrast
HSC video. First, the cell center candidates are located by
applying the probabilistic cell model in [19] and [20] in which
the cell candidates are found by locating and thresholding the
local maxima in a cell probability map. Then, to track the
cells over time, our proposed E-Hungarian-JPDA method has
been applied to the localized cell centers as potential HSC
candidates.

Fig. 7(top left) shows the detected nondividing cell centers in
15 frames of a HSC video clip spanning 45 min of time (suc-
cessive frames 3 min apart). The proposed E-Hungarian-JPDA
method is applied to the detected cell centres, with the tracking
results depicted in Fig. 7(top right). As can be observed in Fig. 7,
the proposed E-Hungarian-JPDA method is able to associate the
nondividing HSCs correctly.

The proposed method is also capable of tracking more chal-
lenging dividing HSCs, which is not the case for standard JPDA.
Fig. 7(bottom-left) again shows the detected dividing cell cen-
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Fig. 8. Blood stem cell tracks over time. (a) Tracks of four mature cells from
Fig. 7(bottom); the large circle at the end of each track highlights the division
point over time when a mature cell divides to produce two new cells. (b) The
triangled line represents the track of the mature cell from (a) before splitting,
then dividing into two new tracks (solid lines). (c) As in (b), but for the starred-
cell from (a), beginning as a mature cell and dividing into two.

ters in 15 frames of HSC video. The association results ob-
tained by applying the proposed tracking method are depicted in
Fig. 7(bottom-right). Again the dividing HSCs are tracked cor-
rectly by the E-Hungarian-JPDA method.

To see the tracking of splitting cells in greater detail, Fig. 8
shows the details of two dividing stem cells over time.

VI. CONCLUSION AND DISCUSSION

As an important application of multitarget tracking in
biomedical research, this paper presents an optimal single-frame
assignment solution for HSC tracking to associate HSCs in
phase contrast microscopic images. Our proposed approach
uses linear programming optimization, based on an extended
Hungarian method. This is a generative algorithm and can be
used with various tracking methods, including nearest-neighbor,
PDA, JPDA, particle filtering, MHT, and deformable models,
by designing the correct cost function.

The contribution of the paper is a generalization of the Hun-
garian method to allow association with track divisions, false
alarms, and missed detections. We are motivated to consider al-
ternative generalizations for other classes of tracking problems.
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