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Abstract—In this paper, a novel scheme for Cognitive Radio (CR) spectrum sensing in Medium Access Control (MAC) layer, called as

Extended Knowledge-Based Reasoning (EKBR), is proposed. The target of EKBR is to improve the fine sensing efficiency by jointly

considering a number of network states and environmental statistics, including fast sensing results, short-term statistical information,

channel quality, data transmission rate, and channel contention characteristics. This is for a better estimation on the optimal range of

spectrum for fine sensing so as to adaptively reduce the overall channel sensing time. Performance analysis is conducted on the

proposed EKBR scheme using a multidimensional absorbing Markov chain to evaluate various performance metrics of interest, such

as average sensing delay (or referred to as sensing overhead in the study), average data transmission rate, and percentage of missed

spectrum opportunities. Numerical results show that the proposed EKBR scheme achieves better performance than that by the state-

or-the-art techniques while yielding less computation complexity and sensing overhead.

Index Terms—Cognitive radio, dynamic spectrum access, spectrum sensing.
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1 INTRODUCTION

THE surging popularity of ubiquitous wireless devices in
recent years has led to a significant strain on certain

portions of the radio spectrum, particularly for the radio
spectrum bands standardized for legacy voice and data
transmission. This results in the situation where voice and
data transmissions fail due to unavailability of spectrum
resources for the devices to operate, despite the availability of
strong wireless signals. In stark contrast, there is a large
portion of licensed radio spectrum that is significantly
underutilized, leading to used spectrum holes. For example,
according to the statistics provided by Federal Communica-
tion Commission (FCC), up to 15 percent of the licensed
spectrum is underutilized in highly populated regions and
up to 85 percent is unused in thinly populated regions. To
improve spectrum utilization, FCC has decided to deregulate
these licensed spectrums for unlicensed use by ubiquitous
wireless devices. This has brought up a significant interest in
devising solutions to utilizing temporarily available portions
of the licensed spectrum in an opportunistic fashion.

Cognitive Radio (CR) [1] is one of the most promising
technologies that has been investigated for an efficient
spectrum utilization. CR is an intelligent radio system that
is capable of dynamically accessing various radio spectrum
resources based on the knowledge of surrounding environ-
ment to allow user-centric communications [2]. For example,

communication devices with CR capabilities are able to
access spectrum bands licensed for other wireless services
(e.g., television bands within 30 MHz-3 GHz) in an
opportunistic fashion to meet the service requirement of
the user. As such, such devices can be viewed as the
“secondary” users to the “primary” licensed users of the
licensed spectrum bands. Given its ability to greatly improve
spectrum utilization, the CR technology has garnered a lot of
interest as the solution to spectrum shortage problems
experienced by users in highly utilized spectrum bands.

There are many challenges associated to the design of CR
due to the wide range of available licensed spectrum. Many
previous studies [3], [4], [5] assumed the existence of an
ideal physical layer (PHY), which is capable of perfect
detection and utilization of free spectrum. However, such
an assumption is seldom true due to physical constraints.
For example, a CR system should be equipped with radio
frequency (RF) components capable of utilizing any portion
of the multigigahertz wide radio spectrum. This requires
the CR device to be equipped with extremely high-speed
analog-to-digital converters (ADCs), which may not be
feasible in many situations [6]. Furthermore, it is necessary
that a CR is capable of detecting the presence of licensed
primary users. This is very challenging particularly in a
fading environment, where differentiating between a free
channel and a deep fading channel is difficult. Commonly
used energy detection methods are often insufficient for
identifying the presence of primary users. More advanced
feature detection methods provide improved primary user
detection through better distinction between noise energy
and modulated signal energy. However, this is at the
expense of significantly increased computational complex-
ity and longer spectrum sensing periods [7].

By observing the unsolved challenges associated with
PHY design for CR in terms of primary user detection and
spectrum sensing, we are motivated to investigate this topic
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and develop efficient and reliable spectrum sensing algo-
rithms on the Medium Access Control (MAC) layer that can
provide better control over the detection process based on
the possible PHY constraints. Important design issues
associated with spectrum sensing on the MAC layer are
listed as follows:

1. Efficiency: It is necessary for a spectrum sensing
algorithm to be able to sense an appropriate number
of channels such that high sensing efficiency can be
achieved. Since spectrum opportunities may occur
across the entire spectrum, the CR is more likely to
obtain the desired spectrum access by sensing more
channels. However, provided with a time constraint
for each data transmission, a lengthy sensing process
results in reduced transmission time, and thus,
increases the energy consumption and the chances
of data transmission failure.

2. Timing: To allow reliable and efficient spectrum
sensing, it is necessary for a spectrum sensing
algorithm to elaborate the timing of spectrum
sensing. On-demand sensing is efficient since CR only
senses the spectrum upon arrival of a data transmis-
sion request. However, on-demand sensing intro-
duces sensing latency to the end-to-end transmission
delay because the data transmission cannot occur
until the necessary available channels are found.
Proactive sensing yields reduced sensing latency by
providing spectrum availability information prior to
transmission request. However, this comes at a cost
of increased overall overhead [8].

3. Reliability: To enable unlicensed utilization of
licensed spectrum resources, it is necessary that CR
is capable of minimizing the possible interferences
on any primary user. Therefore, a spectrum sensing
algorithm should provide reliable channel availabil-
ity information, given that reliable spectrum detec-
tion remains an issue in the PHY design.

4. Computational complexity: To achieve efficient
spectrum access, a spectrum sensing algorithm
should be as little computational complexity as
possible. A complex algorithm leading to high energy
consumption and computation latency is not desired.

Based on the aforementioned observations and design
premises, we introduce a novel MAC layer spectrum
sensing scheme, called Extended Knowledge-Based Reason-
ing (EKBR), in the application scenario of information
exchange among distributed CR nodes across fully utilized
licensed spectrum bands standardized for data and voice
transmissions. In this scenario, the CR nodes are allowed to
opportunistically access any available licensed band for
peer-to-peer communications. It is assumed that there is no
central controller, and thus, the CR nodes simply form an
ad hoc network. The underlying goal of the proposed EKBR
scheme is to perform stand-alone CR spectrum sensing at
each CR node that intends to initiate a peer-to-peer
communication session with another in a dynamic manner.
The proposed EKBR algorithm is characterized by the
ability of adapting to the ever-changing channel conditions
and access opportunities in the radio spectrum, by assum-
ing imperfect PHY that is capable of detecting the presence
of free spectrum only within a certain probability. As a solid
extension of the Knowledge-Based Reasoning (KBR)

scheme in our previous work [9], the EKBR scheme takes
advantage of both intrinsic and extrinsic knowledge about
network states and environments to both prioritize channels
and estimate the optimal range of radio spectrum to finely
sense as well as dynamically refine the amount of fine
sensing to achieve the desired performance requirements of
the users while minimizing service processing time.

The new features of the proposed EKBR scheme are
summarized as follows: First, the EKBR scheme jointly
considers short-term statistical information, data transmis-
sion rate information, and contention characteristics as
priors to facilitate the estimation of optimal range of
channels for fine sensing. Second, the EKBR scheme takes
advantages of a knowledge-based channel prioritization
strategy based on short-term statistical information and fast
sensing results to further enhance spectrum sensing
efficiency. Simulation results show that the proposed EKBR
scheme is capable of improved efficiency and performance
over existing methods. The proposed EKBR scheme is
designed to perform noncooperative, stand-alone MAC
spectrum sensing for many application scenarios where the
heterogeneous underlying technologies make it difficult for
CRs to cooperate with each other.

The rest of this paper is organized as follows: The related
work is presented in Section 2. The system model is
described in Section 3. The proposed spectrum sensing
scheme, EKBR, is introduced in Section 4. Performance
analysis based on the developed multidimensional absorb-
ing Markov chain model is presented in Section 5.
Numerical results are provided in Section 6. Finally,
conclusions are drawn in Section 7.

2 RELATED WORK

Though the research initiatives on noncooperative MAC-
layer spectrum sensing for CR just emerged in the past two
years, a number of algorithms have been reported. Kim and
Shin [8] proposed the use of two modes of MAC-layer
spectrum sensing, reactive and proactive, as well as the
associated trade-off between the two modes. They also
introduced an energy-efficient approach for determining
the appropriate mode of sensing, as well as a sensing-period
adaptation technique for finding the optimal sensing period.
More recently, Kim and Shin [12] proposed a spectrum
sensing algorithm that attempts to determine a sensing
sequence that minimizes the average delay of discovering
idle channels based on channel capacity and probability of
channel availability. Datla et al. [13] took a more heuristic
approach to the problem of spectrum sensing, where a linear
backoff scheme is employed to reduce the preference of
sensing a channel whenever the channel is identified as being
occupied. Jia et al. [14] introduced a spectrum sensing
algorithm that takes some constraints on sensing and
transmission into account. By considering the limitations
associated with bandwidth and fragmentation (transmission
constraints) and the limitations with sensing capacity (sen-
sing constraints), Jia et al. formulate the trade-off between
spectrum opportunities and sensing overhead as a stopping
problem to determine whether the sensing process should
proceed. More recently, Huang et al. [15] formulated the
spectrum sensing and transmission problems together as an
optimal stopping algorithm that aims to maximize the
average reward per unit time, where an award is received
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by a secondary user for each successful transmission. Chang
and Liu [16] also employed a joint channel sensing and
transmission strategy that aims to maximize reward using a
threshold-based structure.

This work differs from previous spectrum sensing
approaches in that it takes advantage of both intrinsic and
extrinsic knowledge about network states and environ-
mental statistics, including fast sensing results, short-term
statistical information, channel quality, data transmission
rate, and channel contention characteristics in the channel
prioritization, optimal channel range estimation, and fine
sensing processes. Furthermore, the proposed EKBR system
combines an optimal channel range estimation process with
a channel prioritization strategy, which allows the system to
provide an improved ordered list of channels for enhancing
spectrum sensing efficiency. This integrated knowledge-
based approach allows the system to achieve the desired
performance requirements of the user in a dynamical
manner while minimizing overall channel sensing time.

3 SYSTEM MODEL

Before presenting the proposed EKBR scheme, it is
important to provide an overview of the network archi-
tecture, the channel model, spectrum sensing model, access
model, as well as assumptions made in the design of the
proposed spectrum sensing scheme. The notation used in
the remainder of this paper is listed in the Appendix.

3.1 Network Architecture

The architecture for a typical heterogeneous wireless
network is illustrated in Fig. 1a. In such a heterogeneous
network, many different devices operating under various
wireless access technologies (e.g., IEEE 802.11, GSM, TV
broadcast, etc.) may coexist within the same environment.
These devices form a number of primary user networks,
and the underlying infrastructure of each primary user
network is not required to allow for spectrum sharing with
other networks. However, a CR device may access network
resources in other networks (as secondary users to the
licensed users of the primary user networks) when unable

to allocate resources within its own network to maintain
services, hence forming a wireless ad hoc network.

Let us describe a practical scenario in which CR
technology can be utilized to improve spectrum utilization
in such a heterogeneous network. Due to the large number
of devices utilizing IEEE 802.11 and GSM technology, the
spectrum resources associated with these technologies can
become saturated. This leaves such devices depraved of
spectrum resources for transmission purposes. However,
IEEE 802.11 and GSM devices with CR technology gain the
capability of utilizing free spectrum on 400-800 MHz Ultra
High-Frequency (UHF) TV bands, which will be available
in the near future for use by CRs [6]. As such, the devices
with CR technology act as the secondary users to the
primary users on the TV band. This utilization of free
spectrum resources on the TV bands has been demon-
strated to be practically viable by many researchers [4], [6],
[7], as well as promoted by the FCC and has led to the
deregulation of spectrum resources on the TV bands.

In the CR network architecture upon which EKBR is
built, the aforementioned wireless ad hoc network is
denoted as the secondary user network, as shown in Fig. 1b.

3.2 Channel Model

In this study, we assume that there are M nonoverlapping

channel fCH j CHi; i ¼ 1; 2; . . . ;Mg centered at fficg
M
i¼1 over

a license spectrum assigned to a primary user network. Users

equipped with CR are considered as the secondary users to

the primary networks, and form a network in an ad hoc

manner. The secondary users with CR capability can

opportunistically access channels that are not occupied by

primary users. Without the loss of generality, it can be

assumed that the channel usage model of the primary users

follows an ON/OFF traffic model, where the secondary users

are restricted to channel access only during OFF periods,

while no primary users are using the channels.

3.3 Spectrum Sensing Model

In the spectrum sensing model used by the proposed EKBR
scheme, it is assumed that the sensing process and the data
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transmission process cannot be processed in a simultaneous
manner. As such, each secondary user detects the presence
of primary users independently of other secondary users
through spectrum sensing. The first stage of spectrum
sensing involves performing a fast but relatively inaccurate
sensing process using energy detection over the entire radio
spectrum. The instantaneous statistics is obtained based on
a fast sensing process. In a Rayleigh fading channel model,
at the time instance �, the detection probability, i.e., the
aforementioned instantaneous statistics PinstðCHi; �Þ is
given in [17] as

PinstðCHi; �Þ ¼
1

��

Z 1
0

Z 1
�

fðuiÞ exp ��
��

� �
duid�; ð1Þ

where �� is the average Signal to Interference plus Noise
Ratio (SINR), � is the instantaneous SINR, � is the decision
threshold, and fðuiÞ is the probability density function
(PDF) of the test statistics ui of observed signals.

The second stage of sensing, known as fine sensing, is
performed using a feature detection process, which is more
accurate but requires a longer observation time. In a typical
system, the CR performs fine sensing on each channel
within the range of channels determined based on the
knowledge obtained during fast sensing to identify channel
conditions and appropriate modulation schemes. As such, it
is necessary to not only determine when to initiate and
terminate the fine sensing process, but also determine how
the data transmission rate is selected. All of these issues are
addressed in the proposed EKBR scheme in Section 4.

3.4 Access Model

An Orthogonal Frequency Division Multiple Access (OFD-
MA) system is utilized as the underlying multiple access
technique for data transmission across multiple free chan-
nels in the spectrum, as shown in Fig. 2. This access model is
well suited for time-slotted primary user systems, such as
IEEE 802.11, slotted GSM system, and digital TV system.
Thus, channels that are successfully identified as available
will be used by the secondary users in the remaining time of
the primary time slot. Furthermore, the state of channel
availability is assumed to be constant within each time slot.
This assumption is practical since most digital systems such
as GSM, IEEE 802.11, and digital TV system are time-slotted
systems and are widely used in sensing-based MAC

protocols such as those presented in [5], [14], [18]. Moreover,
in the access model used by the EKBR scheme, a channel is a
subcarrier in the OFDMA system and is categorized into �
different modulation schemes with corresponding data
transmission rates based on the perceived SINR of the
channel obtained through fine sensing process.

4 PROPOSED SPECTRUM SENSING SCHEME

The proposed spectrum sensing scheme can be described as
follows: When a secondary user @� initially enters a primary
user network, it possesses no statistical information about the
primary user network upon which it can rely on for spectrum
sensing. Therefore, it performs fine sensing in a proactive
manner to determine an initial set of probabilities regarding
channel availability P̂sðCH1Þ; P̂sðCH2Þ; . . . ; P̂sðCHMÞ in a
short time scale � prior to the current time. Upon the request
of data transmission, @� retrieves its short-term statistics, i.e.,
P̂sðCH1Þ; P̂sðCH2Þ; . . . ; P̂sðCHMÞ, and initiates fast sensing
immediately on entire channels CH1; CH2; . . . ; CHM to
obtain the instantaneous statistical information PinstðCH1Þ;
PinstðCH2Þ; . . . ; PinstðCHMÞ, both of which can be used to
obtain the sensing priority � ¼ fCHs1

; CHs2
; . . . ; CHsMg. The

sensing prioritization process is performed for fine sensing
based on the statistical likelihood of channel availability by
jointly exploiting short-term statistics and instantaneous
statistical information. The details of the sensing prioritiza-
tion process can be found in [10], [11]. Based on results of the
sensing prioritization process, @� estimates the number of
prioritized channels for fine sensing by comprehensively
considering the short-term statistics, data transmission rate
information, and contention characteristics, which is then
used as the upper bound of the fine sensing process in order to
secure at minimum the slowest required data transmission.
Finally, fine sensing is performed according to the prioritized
sensing results in a dynamic manner, where the fine sensing
process is adaptively terminated based on additional prior
knowledge, such as instantaneous channel quality informa-
tion determined by actual fine sensing process, to satisfy the
necessary performance requirements while minimizing
sensing overhead. The short-term statistics used in the
system, knowledge-based estimation process, as well as the
reasoning approach of the proposed EKBR spectrum sensing
scheme are further elaborated in the following sections.

4.1 Short-Term Statistics

The short-term statistics are used to estimate the like-
lihood of channel availability at time instance � based on
a short observation window of previous � seconds. The
use of short-term statistics of channel behavior is
motivated by previous work demonstrating that channel
availability demonstrates patterns can be modeled using a
statistical approach [19], [20]. In the proposed EKBR
scheme, each CR node maintains the observations for a
channel CHi ��

i ¼ f!ið�1Þ; !ið�2Þ; . . . ; !ið�nÞg, which repre-
sents the observations of primary user channel occupancy
as successfully identified by the node. Based on ��

i ,
assuming that the observations are independent and
identically distributed (i.i.d.) with a Poisson distribution
during � as not to lose generality, the arrival rate of
primary users �̂i on CHi can be estimated as
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�̂i ¼
X�n
t¼�1

!iðtÞ=�: ð2Þ

Therefore, based on �̂i, the likelihood of channel availability

P̂sðCHiÞ based on the observations over � can be estimated as

P̂sðCHiÞ ¼ 1�
Z �

0

�̂ie
��̂itdt: ð3Þ

4.2 Knowledge-Based Estimation

During the fine sensing process, @� senses a set of prioritized
channels � ¼ fCHs1

; CHs2
; . . . ; CHsMg to identify the avail-

ability of a channel as well as the underlying channel
conditions. @� continues to perform the fine sensing process
from one channel to another until sufficient channels for data
transmission are found. It is observed that as the number of
channels sensed is increased, the likelihood of obtaining
channels with better quantity and quality is increased. This
results in an improved data transmission rate, and thus,
higher data throughput. Unfortunately, sensing too many
channels during the fine sensing process results in signifi-
cantly increased overall processing time T�, and conse-
quently, decreased throughput �, which is defined as
� ¼ L=T�, where L is the length of the data packet (frame).
Furthermore, a long fine sensing process increases the
likelihood of unsuccessful transmissions within the primary
time slot T and lost opportunities due to the time-sensitive
nature of spectrum sensing. Hence, the optimal number of
channels to be finely sensed should be determined in such a
way that the total processing time T� is minimized.
Furthermore, by minimizing T�, the throughput � is
effectively maximized. The knowledge-based estimation on
n for determining the number of channels to be finely sensed
can be formulated as

n ¼ arg min
n

T� j T� ¼ nts þ
L
�R
þ�tþ Tb

� �
; ð4Þ

where ts is the time consumed by each fine sensing
iteration, �t is the processing time of the proposed scheme
and other time consumed by the system, Tb is the backoff
time determined by backoff mechanism during channel
access, and �R is the expected basic data transmission rate
obtained in n iterations fine sensing. The basic data
transmission rate Rk can be determined based on the
information rate of modulation symbols N	, number of
available channels k obtained by @� after performing the
fine sensing process for n iterations, and sample time %. We
note that N	 is dependent on the channel quality, i.e., a
bigger SINR suggests a better quality channel so that a
faster modulation scheme can be used. However, at this
estimation stage, no fine sensing process is involved so that
@� is not able to determine the modulation schemes. If
taking Binary Phase Shift Keying (BPSK) as the slowest
modulation scheme at the estimation stage in the OFDMA
system, it can be expressed as [21]

Rk ¼
N1k

%
; ð5Þ

where N1 is the information rate of BPSK. @� will refine

the decision on modulation schemes on the fly at the

reasoning stage.

It can be observed that the number of identified available
channels k is highly dependent on the channel availability
and the estimated n iterations of fine sensing. The channel
availability of a channel, which is prioritized as CHsi , at
time instance � is estimated by using (3) during the short-
term observation as P̂sðCHsiÞ. By using this prior informa-
tion, the probability representing the likelihood of CHsi

being available with respect to the other channels at time
instance � is normalized as

�PsðCHsiÞ ¼ P̂sðCHsiÞ=n ð6Þ

and the aggregate probability that the channel fCHsi ; 8sig is
not available is normalized as

�P 0s ¼
1

n

Xn
i¼1

½1� P̂sðCHsiÞ�: ð7Þ

With probability �PsðCHs1
Þ; �PsðCHs2

Þ; . . . ; �PsðCHsnÞ and �P 0s so

that
Pn

i¼1
�PsðCHsiÞ þ �P 0s ¼ 1, the fine sensing of n channels

(where each iteration of sensing involves the sensing of a

single channel) resulting in k identified available channels

follows a multinomial distribution. Since the number of times

outcome CHsi ; i ¼ 1; 2; . . . ; n can be observed at most once

over n fine sensing iterations, for the purpose of notation

simplification, let the random variable xi represent the

ith identified available channel found over the n iterations

based on the channel prioritization results. The probability

mass function of i ¼ k with parameters n and �P, where �P ¼
ð �PsðCHs1

Þ; . . . ; �PsðCHsnÞ; �P 0sÞ, is, therefore, given by

fðk;n; �PsðCHs1
Þ; . . . ; �PsðCHsiÞ; �P 0sÞ

¼ n!

ðn� kÞ!
Yn
i¼1

�PsðCHsiÞ
IðiÞ �P

0ðn�kÞ
s ;

ð8Þ

where indication function is defined as

IðiÞ ¼ 1; CHsi ¼ xi;
0; CHsi 6¼ xi:

�
ð9Þ

By averaging k, the expected basic data transmission rate is
given by

�R ¼
Z n

0

fðk;n; �PsðCHs1
Þ; . . . ; �PsðCHsiÞ; �P 0sÞRkdk

¼
Xn
k¼0

N1k

%
� n!

ðn� kÞ!
Yn
i¼1

�PsðCHsiÞ
IðiÞ �P

0ðn�kÞ
s

" #
:

ð10Þ

Substituting (10) into (4), @� can then estimate the
number of channels that should be finely sensed.

4.3 Fine Sensing under Reasoning

Although the estimated number of channels n to be finely
sensed is estimated, simply performing fine sensing
n iterations on the channels given by the channel prioritiza-
tion process could still be an expensive process. Note that a
lengthy sensing process could lead to unsuccessful channel
access due to the dynamic nature of channel conditions. To
improve sensing efficiency while maintaining the desired
transmission rate, the EKBR scheme introduces an extended
knowledge-based reasoning approach that takes advantage
of additional prior knowledge such as instantaneous channel
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quality information to dynamically terminate the fine sensing
process. With the proposed reasoning approach, the @� has
the intelligence and knowledge necessary to determine
whether the fine sensing process should be terminated.

The proposed reasoning approach under EKBR can be
explained using a “seashell collection” analogy described as
follows: Suppose that a person walks along a beach, looking
for seashells to collect. When the person comes upon a
seashell, he or she can either collect the seashell or not. For
any seashell that is not collected, it will never be considered
again. Further, the person knows little about the type of
seashell he or she will come upon next nor does he or she
knows how far to walk to come upon the next seashell as
the tide may either wash a seashell ashore or away at any
time. Hence, the person needs to decide whether to pick up
and collect an encountered seashell based on limited
observations and knowledge after each step.

In the case of EKBR, the person is analogous to @�, the
seashells are taken as spectrum resources, and the tide is
analogous to the dynamic nature of channel availability. To
decide whether the next channel is finely sensed, @�
evaluates the possible outcomes prior to the next fine
sensing iteration. Each spectrum fine sensing iteration will
either find an available channel or not. Either of the
outcomes imposes a profound influence on the subsequent
fine sensing iterations. If @� decides to sense the next channel
and find an available channel, the aggregate data transmis-
sion rate is increased based on (5), which may increase the
success probability in data transmission within the remain-
ing time in the primary time slot. However, if the CR decides
to proceed the next iteration, and unfortunately, fails in
finding any available channel, the time spent in the iteration
is totally wasted, which decreases the success probability in
data transmission within the remaining time. Therefore, the
reasoning approach should be designed at each iteration of
fine sensing based on whether or not @� can gain better
success probability of data transmission by continuing finely
sensing the next channel. If there is no any marginal return
by performing the next iteration of fine sensing, the fine
sensing process should be terminated, and @� should
immediately start the channel access and subsequent data
transmission by using the currently collected channels.

Mathematically, Xi is denoted as a spectrum offer at the
ith fine sensing, which is a set of identical and independent
random variables with a cumulative distribution function F ,
which is known as the profile function of the spectrum. The
net spectrum offer return YðiÞ at the ith fine sensing step is
given by

YðiÞ ¼
Xi
i¼1

Xi � iC 0 < i < n; ð11Þ

where C is the cost associated with each fine sensing.
Therefore, the expected return of the next move Yðiþ1Þ is
given by

E½Yðiþ1Þ� ¼ P̂sðCHsiÞ
Xiþ1

i¼1

Xi � ðiþ 1ÞC
" #

þ ð1� P̂sðCHsiÞÞ
Xi
i¼1

Xi � ðiþ 1ÞC
" #

0 < i < n:

ð12Þ

@� continues finely sensing the next channel as long as the
following condition is satisfied:

E½Yðiþ1Þ� > YðiÞ 0 < i < n: ð13Þ

Equation (13) is equivalent to

P̂sðCHsiÞXiþ1 � C > 0 0 < i < n: ð14Þ

What (14) means is that any additional fine sensing should
provide a certain desired marginal return. If the required
return cannot be obtained, the reasoning process of EKBR
terminates the fine sensing process. One possible definition
of the cost is the time consumed on each fine sensing iteration,
i.e., ts, and the spectrum offer Xi is the saved time through
increased data transmission rate, i.e., ðL=RðiÞ � tsÞN1=%=RðiÞ.
Therefore, (14) can be rewritten with respect to time as

L

RðiÞ
>

L

RðiÞ þ N1

% P̂sðCHsiÞ
þ ts 0 < i < n; ð15Þ

where RðiÞ is the aggregate data transmission rate after ith
fine sensing, and it is determined adaptively on channel
quality by @� based on SINR level through fine sensing.
This channel quality information is taken into account by
classifying the individual channels into � classes with
corresponding spectrum sensing thresholds to further aid
in the decision-making process. This prior knowledge of
network states can further aid @� determine whether to
continue fine sensing on the next channel by comparing
the expected throughput gained in the next move with
present throughput; therefore, RðiÞ can be rewritten as
RðiÞ ¼

P
i N
ðiÞ
	 =%, where N

ðiÞ
	 is the ith N	. Equation (15) can

be interpreted as that any additional fine sensing should
only be performed if it can compensate for the additional
fine sensing time cost ts through increased data transmis-
sion rates by taking the slowest modulation. Equation (15)
serves as the “reasoning” process, by which @� determines
whether to proceed with additional fine sensing efforts in
an attempt to achieve the desired throughput.

5 PERFORMANCE ANALYSIS

For the purpose of performance analysis, the proposed
EKBR scheme is modeled as a multidimensional absorbing
finite Markov chain [22] process, where the average
transmission delay and resultant average data transmission
rate are evaluated by solving the formulated Markov chain.
Because each fine sensing iteration only scans one channel,
there is at most one channel that could possibly be
identified as available and labeled with a certain class 	
among � classes according to SINR level when @� decides to
proceed to the next fine sensing iteration. Once a channel is
labeled, the channel state will not be changed during the
remaining time in the primary user time slot. This
assumption is practical since most digital systems such as
GSM, IEEE 802.11, and digital TV system are time-slotted
systems. In such primary systems, the secondary users can
either detect, and then, use the time slots that are not
assigned to the primary users or use up the remaining time
in the time slot that have already been assigned to the
primary users but is not being used up by the primary
users. We denote 
	; ðs ¼ 1; 2; . . . ; �Þ as the number of
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available channels of class 	 collected at the ith fine sensing.
Hence, the transition state space S consists of a set of
integers 
1; 
2; . . . ; 
� :

P�
	¼1 
	 ¼ k, and the number of

mutually exclusive states is denoted as

� ¼
Xk
k¼0

kþ � � 1
k

� �
:

Furthermore, there are � absorbing states < associated with
all the transition states. This is due to the fact that the fine
sensing process could terminate at any state, and then, enter
the corresponding absorbing state if @� decides not to
proceed. Hence, both transition state space S and absorbing
state space < form a �-dimensional absorbing Markov chain
with a finite set of 2� mutually exclusive states. The
probability that a process moves from state Si to Sj is only
determined by state Si.

Based on the above descriptions, the objectives of the
performance analysis are formulated as follows:

1. To evaluate the conditional probability that the fine
sensing process enters state Sj, given that it is
leaving state Si.

2. To evaluate the average number of transitions that
remain in a particular active state before absorption.
Using this information, the average number of
reasoning iterations required by the fine sensing
process before terminated as well as the average
overall delay due to the fine sensing process and
data transmission can be evaluated, respectively.

3. To estimate the probability that the process is
stopped at an absorbing state, which can facilitate
the evaluation of average data transmission rate.

A cross section of the �-dimensional Markov chain is
shown in Fig. 3. For ease of presentation, we will first describe
a one-dimensional Markov chain case. Each reasoning
iteration of fine sensing will result in either: 1) an increment
on 
	 or 2) no available channel. We have the transition
probabilities Pð
1;
2;...;
	;...;
�Þð
1;
2;...;
	þ1;...;
�Þ that represent
the cases of gaining channel Pð
1;
2;...;
	;...;
�Þð
1;
2;...;
	;...;
�Þ
that represent the cases of getting no channel, and
Pð
1;
2;...;
	;...;
�Þð$ð�ÞÞ that represent the cases of stopping fine
sensing to enter the corresponding absorbing state
$ð�Þ ¼ $ð
1; 
2; . . . ; 
	; . . . ; 
�Þ. Upon each reasoning itera-
tion, the CR decides whether or not to continue the fine
sensing toward the next iteration. If it decides to continue,
there is a probability that an available channel of certain
quality is obtained. Therefore, the transition probability
Pð
1;
2;...;
	;...;
�Þð
1;
2;...;
	þ1;...;
�Þ and Pð
1;
2;...;
	;...;
�Þð
1;
2;...;
	;...;
�Þ

are determined by two factors: 1) the probability  
	 that
the CR decides to continue the fine sensing process based on
the proposed reasoning approach and 2) the probability P	 of
getting channels of class 	. Therefore, we have the following
expression:

Pð
1;...;
	 ;...;
�Þð
1;...;
	þ1;...;
�Þ ¼  
	P	; ð16Þ

where  
	 is determined by how likely the inequality (15)
holds, which can be expressed as

 
	 ¼ P
L

RðiÞ
>

L

RðiÞ þ N1

% P̂sðCHsiÞ
þ ts

 !

¼ P
 
RðiÞ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1L

%ts
P̂sðCHsiÞ �

N1

2%
P̂sðCHsiÞ

� �2
s

�N1

%
P̂sðCHsiÞ

!
:

ð17Þ

Then, the probability of entering the absorbing state is

Pð
1;...;
	;...;
�Þð$ð�ÞÞ ¼ 1�  
	 : ð18Þ

The probability P	 of getting channels of class 	 is
determined by SINR level. The probability that the CR
decides to continue for the next reasoning iteration but
eventually gets no available channel is formulated as

Pð
1;...;
	;...;
�Þð
1;...;
	;...;
�Þ ¼  
	P�	; ð19Þ

where P�	 is the probability of the noise that is not in any
range of class 	, which means that the channel is not available.

While the description of the one-dimensional Markov
chain case is useful for illustrative purposes, it is insufficient
for modeling the proposed scheme because there are �

possible classes for channel quality. Therefore, to consider
all the � classes of channel qualities in the performance
analysis, a �-dimensional Markov chain is developed as
follows: The transition probabilities as listed in objective (1)
are as follows:

Pð
1;
2;...;
	;...;
�Þð
1þ1;
2;...;
	;...;
�Þ ¼  
1;
2;...;
	;...;
�P1;

Pð
1;
2;...;
	;...;
�Þð
1;
2þ1;...;
	;...;
�Þ ¼  
1;
2;...;
	;...;
�P2;

. . .
Pð
1;
2;...;
	;...;
�Þð
1;
2;...;
	þ1;...;
�Þ ¼  
1;
2;...;
	;...;
�P	;

. . .
Pð
1;
2;...;
	;...;
�Þð
1;
2;...;
	;...;
�þ1Þ ¼  
1;
2;...;
	;...;
�P�;

Pð
1;
2;...;
	;...;
�Þð
1;
2;...;
	;...;
�Þ ¼  
1;
2;...;
	;...;
�P�	;

Pð
1;
2;...;
	;...;
�Þð$ð�ÞÞ ¼ 1�  
1;
2;...;
	;...;
� ;

WANG ET AL.: EXTENDED KNOWLEDGE-BASED REASONING APPROACH TO SPECTRUM SENSING FOR COGNITIVE RADIO 471

Fig. 3. A cross section of multidimensional absorbing Markov chain.



where

 
1;
2;...;
	;...;
� ¼

P

 
RðiÞ<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1L

%ts
P̂sðCHsiÞ�

N1

2%
P̂sðCHsiÞ

� �2
s

�N1

%
P̂sðCHsiÞ

!
:

ð20Þ

One possible approach in solving the �-dimensional
Markov chain is to project it into two-dimensional space so
as to allow the problem to be solved using a wider range of
approaches. In this study, we put all possible �-dimensional
states into a canonical form, and the resultant transition
probability P can be arranged as follows:

P ¼
TR: ABS:

TR:
ABS:

Q R
0 I

� �
;

ð21Þ

where

1. Q is a �� � matrix, whose elements are the transi-
tional probabilities between nonabsorbing states,

2. R is a �� � matrix, whose elements are the
probabilities from transient state Si to the absorbing
states,

3. 0 is a �� � zero matrix, and
4. I is a �� � identity matrix.

The fundamental matrix N for P can be defined as follows:

N ¼ ðI�QÞ�1: ð22Þ

The entry nij of N gives the expected number of times that
the process enters the transient state Sj if it starts in the
transient state Si. The fundamental matrix N possesses
many interesting properties, with which we can obtain the
results listed in the objectives. The following theoretical
results are thus obtained to fulfill the objectives of the
performance analysis:

1. The conditional probabilities of objective (1) are
given by (20).

2. The average number of iterations that the sensing
process is in state Sj given that it starts in state Si is
given by the elements of the fundamental matrix N.
The expected step to absorption given that the chain
starts in state Si is given by

�
*

¼ N c
*
; ð23Þ

where c
*

is an all “1” column vector. Here, the first
element �0 is of particular interest since it represents
the average number of steps taken before the fine
sensing being terminated. Using this information,
we can estimate the average sensing delay as

�Ts ¼ t�0: ð24Þ

3. Let B be the absorption probabilities with entries bij,
which states that an absorbing chain will be
absorbed if it starts in the transient state Si. Then,
the �� � matrix can be defined as

B ¼ NR: ð25Þ

The probabilities b0j of absorption in state Sj, starting
from the initial state, can be obtained from the first
row of matrix B. The average data transmission rate
is then determined as

	 ¼
X

ð
1;
2;...;
�Þ2S
bð0Þð
1;
2;...;
�Þ

X�
	¼�


	N	

%

" #
: ð26Þ

6 NUMERICAL RESULTS

A series of simulations were conducted to evaluate the
efficiency of the proposed EKBR scheme, where the perfor-
mance of the proposed scheme was compared with a number
of previously reported schemes, such as the spectrum sensing
approach without the use of reasoning, as well as the state-of-
the-art stopping algorithm proposed in [14].

The simulations of the proposed EKBR scheme, along
with the other sensing schemes under consideration, were
evaluated via an event-driven simulation program written
in C++. The Distributed Coordination Function (DCF) was
used as the underlying MAC protocol in a multichannel
environment to achieve channel access. The channel usage
of primary users follows the channel model we discussed in
Section 3.2. Each spectrum sensing event is triggered by the
arrival of a secondary user data transmission request.
Observations are made at randomly selected secondary
users placed over the network. The analytical results were
calculated using MATLAB. The parameters adopted in the
simulation are summarized as follows: The symbol size % of
the OFDMA system is set as 0.31 ms [18], and the fine
sensing time for each channel is set as 92.5 ms [23]. The time
window for obtaining the short-term statistics was set to
� ¼ 1;000 ms. The data length is assumed to be uniformly
distributed from 0 to 2,048 bytes based on IEEE 802.16-2001
and IEEE 802.11 specifications. The individual channels are
classified into � channel quality classes along with the
corresponding spectrum sensing thresholds. Each of the �
SINR levels is obtained by assuming the maximum
transmitting power for each transmission, where a CR node
can select an appropriate modulation scheme correspond-
ing to the SINR level. The transmission rates in terms of bits
per symbols and the corresponding SINR taken in the
numerical analysis are summarized in Table 1 [21], [24]. The
relationship may vary according to the underlying specifi-
cation or modulation technology.
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TABLE 1
Relationship between SINR and Information

Rate of Different Modulation Schemes



The performance measurements are defined as follows:

. Data transmission rate RðjÞ: the aggregate data
transmission rate when fine sensing process termi-
nated at jth iteration.

. Percentage of missed spectrum opportunities �m: the
ratio between the number of missed available
channels and the number of actual available chan-
nels to be finely sense.

. Sensing overhead o: the ratio of total time consumed
on spectrum sensing to the data transmission time.

. Throughput �: the ratio of data packet (frame) length
to the overall process time, i.e., the amount of data
bits transmitted every second.

6.1 Data Transmission Rate

In this set of simulations, we compare the performance of the
proposed EKBR scheme with the other schemes under
consideration in the study using the data transmission rate
RðjÞ. The statistical results pertaining to the simulated data
transmission rate with the proposed EKBR scheme, where
(15) is used, and the nonreasoning approach, where the fine
sensing process is statically performed for all n channels, as
well as the stopping algorithm are shown in Fig. 4. The
statistical results consist of the minimum (min), mean,
median, maximum (max), and standard deviation (std) of
the data transmission rate. It can be observed that the
nonreasoning approach is able to achieve higher overall data
transmission rates than that achieved by both the EKBR
scheme and the stopping algorithm. This is due to the fact
that the CR performs lengthy sensing so that it has higher
probability of getting more available channels. It can also be
observed that the overall data transmission rate RðjÞ
achieved using EKBR is comparable to that obtained by
using the stopping algorithm. The data transmission rate is
an important measurement for evaluating the performance
of EKBR; however, it is important not to jump to a conclusion
based on a single measurement of the performance.

6.2 Percentage of Missed Spectrum Opportunities

To provide a good indication of spectrum sensing efficiency,
we evaluate the percentage of missed spectrum opportu-
nities �m associated with the proposed EKBR scheme in this
set of simulations. Comparison is made with the nonreason-
ing approach and the stopping algorithm in Fig. 5. It can be
observed that the EKBR scheme is, in general, subject to the

lowest missed spectrum opportunities when compared to
the other tested spectrum sensing schemes. In Fig. 6, the
statistics pertaining to the percentage of missed spectrum
opportunities show that the proposed EKBR scheme
showed improvements of 42 and 34 percent in terms of the
missed spectrum opportunity reduction when compared to
the nonreasoning approach and the stopping algorithm,
respectively. This reduction in the missed spectrum oppor-
tunities can be contributed to the fact that the EKBR scheme
jointly considers fast sensing results and short-term statis-
tical information to further enhance the selection of optimal
range of channels for fine sensing. These experimental
results demonstrate the effectiveness of the proposed EKBR
scheme in providing improved spectrum sensing accuracy
and efficiency.

6.3 Sensing Overhead

To investigate the trade-off between the projected data
transmission rate and sensing time, we compare the
sensing overhead of the proposed EKBR scheme with the
sensing overhead of the nonreasoning approach. The
reason for not comparing the stopping algorithm is that
EKBR has a fundamental difference with the stopping
algorithm, where fine sensing process is artificially and
statically truncating to K stages. Therefore, it is difficult to
compare the sensing overhead between these schemes in
this set of simulations.

In Fig. 7, the statistics pertaining to the sensing overhead
o for both the EKBR scheme and the nonreasoning
approach are plotted. It can be observed that EKBR has
significantly reduced overall sensing overhead when
compared with the nonreasoning approach. Furthermore,
Fig. 8 shows the simulation results on the estimated
iterations of fine sensing under different channel conditions
as determined by short-term statistics in (3). It can be
observed that the estimated iterations of fine sensing are
significantly reduced as the channel condition improves.
This is because the CR only needs to finely sense a small
number of channels until the transmission requirement is
satisfied. Therefore, by intelligently reducing the number of
channels for being finely sensed, the proposed EKBR
scheme can achieve lower overhead by better saving
sensing time and consumed energy. In addition, as the
data length for transmission is increased, the CR has to
finely sense more channels so as to improve the likelihood
of getting better channels in terms of quantity and quality,
and, in turn, to ensure successful data transmission.

6.4 Throughput

In this set of simulations, we further compare the

performance of the proposed scheme with other sensing

approaches under consideration in the study using

throughput �, as shown in Fig. 9. It can be observed that

while the data transmission rate RðjÞ of the nonreasoning

approach is higher than EKBR, the overall throughput is

significantly higher for EKBR than the nonreasoning

approach, as demonstrated in Fig. 9a. This is because finely

sensing all the n channels take more than twice as much

time in fine sensing as that by EKBR. The much longer fine

sensing time for each data transmission dramatically
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Fig. 4. Statistics pertaining to data transmission rate comparison
between EKBR, nonreasoning approach, and the stopping algorithm.



impairs the throughput although the data transmission rate

of identified channels could be higher. In Fig. 9b, it can be

observed that the data transmission rate of EKBR is also

noticeably improved when compared to that obtained by

using the stopping algorithm, while performing fine

sensing on much fewer channels. This is because EKBR

takes advantage of prior knowledge of network states to

intelligently prioritize channels and locate a spectrum range

for fine sensing that can help the CR capture the pattern of

channel variation. Therefore, in spite of comparable data

transmission rates, the proposed EKBR scheme has

achieved better throughput than the stopping algorithm,

as shown in Fig. 9. Without using any prior knowledge of

channel states, on the other hand, the stopping algorithm

can less likely ensure that the qualities of channels

identified in the fine sensing process will stay static and

realizable in the subsequent data transmission stage.

To further compare EKBR with the other sensing

approach, Fig. 10 shows the simulation results on the

average throughput of these schemes with respect to the

increasing traffic volume � in the whole network (measured

in packet arrival rate). First of all, we found that the sensing
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Fig. 6. Statistics pertaining to percentage of missed spectrum
opportunities between EKBR, nonreasoning approach, and the stopping
algorithm.

Fig. 7. Statistics pertaining to sensing overhead comparison between

EKBR and the nonreasoning approach.

Fig. 5. Simulation results of percentage of missed spectrum opportunities in comparison. (a) EKBR versus no reasoning. (b) EKBR versus stopping
algorithm.



efficiency of each scheme in terms of average throughput is

sensitive to the network load. It can be observed that the

average throughput of EKBR decreases much slower than

that by the stopping algorithm of K ¼ 5; 10, and by the

nonreasoning approach, when the traffic volume � of the

network increases.
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Fig. 9. Simulation results of throughput in comparison. (a) EKBR versus no reasoning. (b) EKBR versus stopping algorithm.

Fig. 10. Simulation results of average throughput in comparison.

Fig. 8. Relationship between estimated fine sensing number and the

channel condition.



6.5 Average Data Transmission Rate and Average
Sensing Delay

In this set of simulations, we validate the developed
analytical model in Section 5 by making a comparison
between the simulation and analytical results in terms of
the average data transmission rate 	 and the average
sensing delay �Ts. The analytical and simulation results on
the average data transmission rate in the case where the
EKBR operates in a low traffic volume scenario at � ¼ 10�1

packet/sec and high traffic volume scenario at � ¼ 103

packet/sec are shown in Fig. 11 with the 93 percent
confidence interval. A number of observations can be made
as follows: First, the simulation and analytical results
closely match with each other in both of the traffic volume
scenarios, which validated the proposed analytical model.
Second, in the scenario of a higher traffic volume scenario,
the average data transmission rate increases until the
estimated number of fine sensing (i.e., n) reaches a certain
threshold (in this case, n ¼ 4). The data transmission rate
nonetheless stabilizes and decreases slightly as n continues
to increase. The reason for this decrease is that the number
of anticipated fine sensing is directly correlated with
network traffic volume, which is, in turn, determined by
the number of nodes in the network and their traffic loads.
As such, the increase of n potentially increases the number
of fine sensing iterations, and thus, damages the data
transmission rate due to the interference of other nodes.

Fig. 12 shows the average sensing delay with different
numbers of channels being finely sensed with the 93 percent
confidence interval. We observed that in the case of a low
traffic volume in the network, the average sensing delay
increases very slowly when using EKBR. On the other hand,
when a higher traffic volume in the network, the average
sensing delay increases noticeably. This is due to the fact
that as the number of anticipated fine sensing increases, the
effect of interference increases, and as a result, the number
of available channels decreases. Therefore, more fine
sensing iterations are required by the CR under such a
scenario in order to satisfy the data transmission quality
requirements of the system.

7 CONCLUSIONS

In this paper, an EKBR scheme is introduced for efficient

MAC layer spectrum sensing for CRs. By additionally

employing prior knowledge of network sates such as fast

sensing results, short-term statistics of channel availability/

quality, and channel access, the proposed EKBR scheme can

achieve efficient spectrum sensing by initiating a graceful

trade-off between data transmission rate and sensing

overhead. Our scheme is considered particularly effective

when a rigid upper bound is imposed on the total

processing time for each packet (frame). Performance

analysis was conducted on EKBR by way of a multi-

dimensional absorbing Markov chain. Simulations were

conducted to validate the proposed analytical model and

compare the proposed scheme with existing state-of-the-art

spectrum sensing methods. The simulation results demon-

strated that the proposed scheme noticeably outperforms

the existing methods in terms of throughput due to the

adoption of prior knowledge of network states. Abundant

discussions were provided on the observations we made

from the simulation results. Our future work will focus on

the exploration of some other practical scenarios, such as

when cooperative sensing is in place. We also plan to

launch a CR testbed that can precisely and practically

implement the proposed scheme.

APPENDIX

TABLE OF NOTATION

See Tables 2 and 3.
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Fig. 11. Simulation and analytical results for average data transmission

rate.

Fig. 12. Simulation and analytical results for spectrum sensing delay.



REFERENCES

[1] J. Miltola, “Cognitive Radio: Making Software Radios More
Personal,” IEEE Personal Comm., vol. 6, no. 4, pp. 13-18, Aug. 1999.

[2] FCC, ET Docket No. 03-222, “A Cognitive Radio Is a Radio That
Can Change Its Transmitter Parameters Based on Interaction with
the Environment in Which It Operates,” Dec. 2003.

[3] L. Ma, X. Han, and C. Shen, “Dynamic Open Spectrum
Sharing MAC Protocol for Wireless Ad Hoc Networks,” Proc.
IEEE Int’l Symp. Dynamic Spectrum Access Networks (DySPAN),
Nov. 2005.

[4] P. Pawelczak, R.V. Prasad, L. Xia, and I.G.M.N. Niemegeers,
“Cognitive Radio Emergency Networks—Requirements and De-
sign,” Proc. IEEE Int’l Symp. Dynamic Spectrum Access Networks
(DySPAN), Nov. 2005.

[5] L.-C. Wang, A. Chen, and D.S.L. Wei, “A Cognitive MAC
Protocol for QoS Provisioning in Over Laying Ad Hoc
Networks,” Proc. IEEE Consumer Comm. and Networking Conf.
(CCNC), Jan. 2007.

[6] R.W. Brodersen, A. Wolisz, D. Cabric, S.M. Mishra, and D.
Willkomm, “Corvus: A Cognitive Radio Approach for Usage of
Virtual Unlicensed Spectrum,” White paper, Berkeley Wireless
Research Center, 2004.

[7] I.F. Akyildiz, W. Lee, M.C. Vuran, and S. Mohanty, “Next
Generation/Dynamic Spectrum Access/Cognitive Radio Wireless
Networks: A Survey,” Computer Networks J., vol. 50, pp. 2127-2159,
Sept. 2006.

[8] H. Kim and K.G. Shin, “Adaptive MAC-Layer Sensing of
Spectrum Availability in Cognitive Radio Networks,” Technical
Report CSE-TR-518-06, Univ. of Michigan, May 2006.

WANG ET AL.: EXTENDED KNOWLEDGE-BASED REASONING APPROACH TO SPECTRUM SENSING FOR COGNITIVE RADIO 477

TABLE 2
Table of Notation I

TABLE 3
Table of Notation II



[9] X.Y. Wang, P. Ho, and A. Wong, “Towards Efficient Spectrum
Sensing for Cognitive Radio through Knowledge-Based Reason-
ing,” Proc. IEEE Int’l Symp. Dynamic Spectrum Access Networks
(DySPAN ’08), 2008.

[10] X.Y. Wang, A. Wong, and P. Ho, “Stochastic Channel Prioritiza-
tion for Spectrum Sensing in Cooperative Cognitive Radio,” Proc.
IEEE Consumer Comm. and Networking Conf. (CCNC ’09), 2009.

[11] X.Y. Wang, A. Wong, and P. Ho, “Prioritized Spectrum Sensing in
Cognitive Radio Based on Spatiotemporal Statistical Fusion,” Proc.
IEEE Wireless Comm. and Networking Conf. (WCNC ’09), 2009.

[12] H. Kim and K.G. Shin, “Fast Discovery of Spectrum Opportunities
in Cognitive Radio Networks,” Proc. IEEE Int’l Symp. Dynamic
Spectrum Access Networks (DySPAN ’08), 2008.

[13] D. Datla, R. Rajbanshi, A. Wyglinski, and G. Minden, “Parametric
Adaptive Spectrum Sensing Framework for Dynamic Spectrum
Access Networks,” Proc. IEEE Int’l Symp. Dynamic Spectrum Access
Networks (DySPAN ’07), pp. 482-485, 2007.

[14] J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A Hardware-
Constrained Cognitive MAC for Efficient Spectrum Manage-
ment,” IEEE J. Selected Areas in Comm., vol. 26, no. 1, pp. 106-117,
Jan. 2008.

[15] S. Huang, X. Liu, and Z. Ding, “On Optimal Sensing and
Transmission Strategies for Dynamic Spectrum Access,” Proc. IEEE
Int’l Symp. Dynamic Spectrum Access Networks (DySPAN ’08), 2008.

[16] N.B. Chang and M. Liu, “Optimal Channel Probing and
Transmission Scheduling for Opportunistic Spectrum Access,”
Proc. 13th Ann. ACM Int’l Conf. Mobile Computing and Networking,
pp. 27-38, 2007.

[17] F.F. Digham, M.-S. Alouini, and M.K. Simon, “On the Energy
Detection of Unknown Signals over Fading Channels,” IEEE
Trans. Comm., vol. 55, no. 1, pp. 21-24, Jan. 2007.

[18] C. Cordeiro, M. Ghosh, D. Cavalcanti, and K. Challapali,
“Spectrum Sensing for Dynamic Spectrum Access of TV Bands,”
Proc. IEEE Int’l Conf. Cognitive Radio Oriented Wireless Networks and
Comm. (CrownCom), Aug. 2007.

[19] S. Geirhofer, L. Tong, and B. Sadler, “Cognitive Radios for
Dynamic Spectrum Access—Dynamic Spectrum Access in the
Time Domain: Modeling and Exploiting White Space,” IEEE
Comm. Magazine, vol. 45, no. 5, pp. 66-72, May 2007.

[20] S. Mangold, Z. Zhong, K. Challapali, and C. Chou, “Spectrum
Agile Radio: Radio Resource Measurements for Opportunistic
Spectrum Usage,” Proc. Global Telecomm. Conf. (GLOBECOM),
vol. 6, pp. 3467-3471, 2004.

[21] F. Hou, J. She, P.-H. Ho, and X. Shen, “A Cross-Layer Design
Framework for Non-Real-Time Polling Service in IEEE 802.16
Networks,” ACM Wireless Networks, June 2007.

[22] J.G. Kemeny and J.L. Snell, Denumerable Markov Chains. Springer-
Verlag, 1976.

[23] H.-S. Chen, W. Gao, and D.G. Daut, “Signature Based Spectrum
Sensing Algorithms for IEEE 802.22 WRAN,” Proc. IEEE Int’l Conf.
Comm. (ICC), June 2007.

[24] M. Shen, G. Li, and H. Liu, “Design Tradeoff in OFDMA Traffic
Channels,” Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal
Processing (ICASSP), vol. 4, pp. 757-760, May 2004.

Xiao Yu Wang received the MASc degree in
electrical engineering from Concordia University,
Montreal, Canada, in 2006. Since 2006, she has
been working toward the PhD degree in the
Department of Electrical and Computer Engi-
neering, University of Waterloo, Canada. Her
research interests include cognitive radio sys-
tems, spectrum sensing, and protocol design for
mobile ad hoc networks.

Alexander Wong received the BASc degree in
computer engineering and the MASc degree in
electrical and computer engineering from the
University of Waterloo, Ontario, Canada, in 2005
and 2007, respectively. Since 2007, he has been
working toward the PhD degree at the Depart-
ment of Systems Design Engineering, University
of Waterloo. He has published refereed journal
and conference papers, as well as patents, in
various fields such as computer vision, graphics,

image processing, multimedia systems, and wireless communications.
His research interests revolve around cognitive radio networks, image
processing, computer vision, and pattern recognition. He has worked on
projects in image registration, image denoising, image superresolution,
image segmentation, biomedical tracking, and image and video coding
and transmission.

Pin-Han Ho received the BSc and MSc degrees
from the Electrical Engineering Department,
National Taiwan University, in 1993 and 1995,
respectively, and the PhD degree from Queen
University at Kingston in 2002. He is now an
associate professor in the Department of Elec-
trical and Computer Engineering, University of
Waterloo, Canada. He is the author or coauthor
of more than 150 refereed technical papers,
several book chapters, and the coauthor of a

book on optical networking and survivability. His current research
interests cover a wide range of topics in broadband wired and wireless
communication networks, including survivable network design, wireless
Metropolitan Area Networks such as IEEE 802.16 networks, Fiber
Wireless (FIWI) network integration, and network security. He is the
recipient of Distinguished Research Excellent Award in the ECE
Department of University of Waterloo, Early Researcher Award (Premier
Research Excellence Award) in 2005, the Best Paper Award in SPECTS
’02, ICC ’05 Optical Networking Symposium, and ICC ’07 Security and
Wireless Communications Symposium, and the Outstanding Paper
Award in HPSR ’02.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

478 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 4, APRIL 2010


