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Abstract—A feature extraction approach for hyperspectral im-
age classification has been developed. Multiple linear manifolds
are learned to characterize the original data based on their lo-
cations in the feature space, and an ensemble of classifier is then
trained using all these manifolds. Such manifolds are localized in
the feature space (which we will refer to as “localized manifolds”)
and can overcome the difficulty of learning a single global manifold
due to the complexity and nonlinearity of hyperspectral data. Two
state-of-the-art feature extraction methods are used to implement
localized manifolds. Experimental results show that classification
accuracy is improved using both localized manifold learning meth-
ods on standard hyperspectral data sets.

Index Terms—Ensemble learning, feature extraction, hyper-
spectral image classification, manifold learning.

I. INTRODUCTION

C LASSIFICATION of hyperspectral imagery data has been
investigated by researchers in both remote sensing and

computer science fields in the last decade. The main difficulty
of processing hyperspectral data is the “Hughes phenomenon”
[1] caused by the high dimensionality of spectral bands, which
tends to decrease the classification performance. To minimize
the impact of this problem, various feature extraction tech-
niques have been developed as a preprocessing step before clas-
sification, so that useful information such as feature structure
and class separability can be maintained in the new feature
space, while the dimensionality of data is significantly reduced.

In remote sensing, principal component analysis (PCA) is
commonly used for feature extraction. PCA determines pro-
jections that can preserve maximum variance without using
any label information, so the extracted features are not directly
related to classification. Linear discriminant analysis (LDA), in
contrast, seeks a transformation matrix to minimize the within-
class scatter and maximize the between-class scatter, both of
which are calculated using label information. In recent years,
new algorithms have been developed to improve the standard
LDA. Typical methods include nonparametric weighted fea-
ture extraction (NWFE) [2] and local Fisher’s discriminant
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analysis (LFDA) [3], which both adopt a locally adaptive scatter
matrix and overcome the rank deficiency problem of LDA.
These methods have been demonstrated to perform very well
for hyperspectral images [2], [4].

The above are linear methods that aim to learn an embedded
subspace by a single linear transformation matrix. However,
the structure of hyperspectral imaging data is typically so
complex that the use of a single linear manifold may result
in the loss of useful information, particularly when we want
the dimensions of extracted features to be low. A traditional
approach to capture nonlinear manifolds of high-dimensional
data is using the “kernel trick,” such as kernel PCA [5] and
generalized discriminant analysis [6].

An alternative method to capture nonlinear manifolds is to
use local manifolds or metrics based on the assumption that
the data structure is locally linear [7]–[10]. An early attempt
is the discriminant adaptive nearest neighbor classification al-
gorithm (DANNC) [7]. This algorithm first uses local LDA
to learn metrics for computing neighborhoods and then adapts
local neighborhoods based on local decision boundaries by
a neighborhood-based classifier. However, the local metrics
are learned independently, and thus, the method is prone to
overfitting. A more recent approach is the multimetric version
of the large-margin nearest neighbor method (LMNN-MM) [8],
which first uses k-means to split training data into disjoint
clusters and then learns a Mahalanobis distance metric for each
cluster. Although the number of local metrics is reduced from
the number of training samples in DANNC to the number of
clusters, overfitting is still unavoidable because the metrics are
learned from separate parts of training samples independently.
Moreover, such local methods will cause a discontinuity of the
metrics near the k-means decision boundary. There are also
approaches where the local manifolds of the training samples
are represented by the weighted linear combination of multiple
manifolds [9], [10], but a large number of parameters need to
be estimated.

In the last decade, ensemble learning has been widely used to
improve the classification performance [11]–[13]. Combining
multiple weak classifiers into a classifier ensemble can reduce
the variance by a single classifier and thus prevent overfitting.
All of the aforementioned issues related to manifold learning,
along with the benefits of ensemble learning, motivate the pro-
posed feature extraction method in this letter. Unlike traditional
approaches that use feature extraction as a preliminary step,
followed by fitting a classifier on the extracted features, here,
we first learn multiple manifolds localized in the feature space,
and then fit multiple classifiers on features projected in differ-
ent localized manifolds, and finally combine the classifiers to
provide the unified classification decision.
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Fig. 1. Simulated example showing why multiple manifolds are better than
a single manifold. The red “o” and blue “x” represent two classes in two-
dimension feature space. It is obvious that no linear dimension reduction
method could project all the samples to one-dimension space and still keep them
separable. However, we can project them to three one-dimension manifolds and
fit three nonlinear classifiers to each set of projected samples. Although, in each
base classifier, some of the o are misclassified as x, these misclassified samples
can be finally corrected by majority voting.

The rest of this letter is organized as follows. Section II
summarizes the proposed algorithm. In Section III, the imple-
mentation details of localized manifolds are covered, and the
localization for two feature extraction methods, i.e., L-NWFE
and L-LFDA, based on a novel weighting scheme is shown. In
Section IV, the performance of the algorithm is evaluated by
comparing with those based on a single global manifold on two
standard hyperspectral data sets. Section V concludes this letter
by summarizing the previous sections.

II. OVERVIEW OF THE ELML ALGORITHM

This section overviews the ensemble localized manifold
learning (ELML), a joint feature extraction and classification
framework that captures the nonlinear structure using multiple
linear manifolds. First, the feature space is partitioned into K
clusters using a data clustering algorithm. Note that such a
cluster is independent of the classes of training samples; thus,
one cluster could have training samples of multiple classes.
Then, localized manifolds are learned, each focused on one
cluster. After K manifolds are learned, K sets of features
are extracted using the manifolds. Afterward, a set of base
classifiers are trained on each set of features. All the classifiers
are finally combined into a final classifier ensemble to improve
generalization performance. Fig. 1 shows a simulated exam-
ple showing why multiple manifolds are better than a single
manifold.

Algorithm 1 The ELML algorithm

Input: training data X , number of clusters K;
Output: A classifier ensemble H(X);
1: Partition X into K clusters Ck (k = 1, . . . ,K);
2: for k = 1 to K: do
3: Learn a manifold Mk that focuses on Ck : Mk ←

{X, Ck} (k = 1, . . . ,K);
4: Learn a classifier hk on data projected in the manifold:

hk ← Mk(X);
5: end for
6: Combine all the classifiers into the final classifier ensemble:
H(X) = ∪{hk(X)} (k = 1, . . . ,K).

The ELML algorithm shown in Algorithm 1 shows in the
high level. The implementation details of Algorithm 1 are as
follows. For Step 1, we use k-means to partition the data into
K clusters due to its simplicity and fast convergence. Step 3,
which implements the localized manifolds, is the most impor-
tant step in the ELML algorithm. We will focus on this step in
Section III and present two approaches to learn the manifolds
for each cluster. In Step 4, the 1-nearest neighbor (1-NN)
classifier is used as the base classifier. 1-NN is a very simple
nonlinear classifier with no tuning parameter. It is guaranteed
to converge to an error rate less than twice the Bayes’ error
when the number of samples approaches infinity. NN-based
classifiers are capable of capturing the variations of features;
thus, they have been widely used to test the performance of fea-
ture extraction methods and achieve comparable performance
to more complicated classifiers such as support vector machines
[14], [15]. In the ELML algorithm, this property can help
generate more diversity between the base classifiers. In Step 6,
standard majority voting is used to aggregate the predictions by
all the base classifiers.

III. LEARNING LOCALIZED MANIFOLDS

From the theory of ensemble learning, the individual learners
should have small bias and be diverse from each other [16].
Different from random sampling methods such as bootstrap
sampling [17] and random subspace [18] commonly used in
ensemble methods, the diversity of base classifiers is achieved
by learning localized features in ELML. The key is thereby to
learn the localized manifolds. If the manifold is learned only on
a local cluster of data, it might be incapable of reflecting global
data structure, and the bias will be thus increased. Moreover,
there might be insufficient training samples to learn a manifold
in the local part. Therefore, in this letter, the localized manifold
is learned from all the training samples using a localization
weighting scheme.

Here, we will present two localized algorithms—NWFE [2]
and LFDA [3], [4]—that are modified to be able to learn
localized manifolds and thus are called localized NWFE
(L-NWFE) and localized LFDA (L-LFDA). Like LDA, both
L-NWFE and L-LFDA aim to find a transformation T to
minimize the within-class scatter matrix and maximize the
between-class scatter matrix, i.e.,

T = arg max
T∈Rd×r

[
tr

{(
T TS(w)T

)−1

T TS(b)T

}]
(1)

where S(w) and S(b) are the within-class scatter and the
between-class scatter in the original feature space, respectively;
and d and r are the number of features in the original space and
the new space, respectively.

This optimization can be solved by eigendecomposition, i.e.,
the extracted r features are the r eigenvectors associated with
the largest r eigenvalues of (S(w))

−1
S(b). Therefore, the key

of this category of algorithms is to define S(w) and S(b). In
both proposed methods, new S(w) and S(b) are defined using
a novel weighting scheme to incorporate localization, where
sample points closer to the local clusters are assigned larger
weights. The details of these two methods are described in the
rest of this section.
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A. L-NWFE

NWFE is a nonparametric feature extraction method based
on scatter matrices. It is modified from the standard LDA by
replacing the class mean with the local mean for each sample
point. Moreover, the scatter matrices are weighted based on the
Euclidean distances from sample points to their local means.
More details of the original NWFE algorithm are provided by
Kuo and Landgrebe [2].

Given L classes, the nonparametric between-class scatter
matrix is defined as [2]

S(b)=

L∑
i=1

Pi

L∑
j=1
j �=i

Ni∑
l=1

λi,j
l

Ni

(
xi
l−Mj

(
xi
l

))
·
(
xi
l −Mj

(
xi
l

))T
(2)

S(w)=
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i=1

Pi

Ni∑
l=1

λi,i
l

Ni

(
xi
l −Mi

(
xi
l

))
·
(
xi
l −Mi

(
xi
l

))T
(3)

where xi
l is a feature vector, Ni is the number of samples in

class i, Pi is the prior probability of class i, and the nonpara-
metric local weight λi,j

l is defined as

λi,j
l =

dist
(
xi
l ,Mj

(
xi
l

))−1

Ni∑
t=1

dist
(
xi
t,Mj

(
xi
t

))−1
(4)

where dist(·, ·) is the Euclidean distance between two points.
The local mean Mj(x

i
l) is the weighted mean of Nj sample

points in class j, i.e.,

Mj

(
xi
l

)
=

Nj∑
m=1

wi,j
lmxj

m (5)

wi,j
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dist
(
xi
l ,x

j
m

)−1

Nj∑
t=1

dist
(
xi
l ,x

j
t

)−1
. (6)

To implement localization, we introduce a localized weight
ηi,kl for the ith sample of the lth class based on cluster Ck, which
is denoted by

ηi,kl = exp

{
−

dist2
(
xi
l , Ck

)
σ2

}
(7)

where σ is a smoothness constant, and dist(xi
l , Ck) denotes the

Euclidean distance from xi
l to cluster Ck. When xi

l is in Ck,
dist(xi

l , Ck) = 0; otherwise, it is the minimum distance from xi
l

to any point in Ck, i.e.,

dist
(
xi
l , Ck

)
= min

j
dist

(
xi
l , ckj

)
, j = 1, . . . , Nk (8)

where ckj is the jth sample point in cluster Ck. Therefore, the
localized within-class and between-class scatter matrices are

formulated as

S
(b)
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(10)

The localized weight σ is used to determine the degree of
localization for learning manifolds. When σ → 0, the manifold
Mk is learned only from samples in Ck, which is the strategy
used in the LMNN-MM method [8]. When σ → +∞, the
method is reduced to a single manifold learning algorithm.

B. L-LFDA

LFDA is another feature extraction and dimension reduc-
tion method based on LDA. It combines LDA with locality-
preserving projection [19], which aims to preserve the local
structure of the data. Similar to LDA and NWFE, LFDA
requires to determine within-class and between-class scatter
matrices, and the feature extraction problem can be solved
by the same generalized eigendecomposition technique. The
difference between LFDA and LDA is that the local weights are
used for calculating the within-class and between-class scatter
matrices [3], i.e.,

S̃(w) =
1

2

N∑
i,j=1

W̃
(w)
i,j (xi − xj)(xi − xj)

T (11)

S̃(b) =
1

2

N∑
i,j=1

W̃
(b)
i,j (xi − xj)(xi − xj)

T (12)

where

W̃
(w)
i,j =

{
Ai,j

Nl
, if yi = yj = l

0, if yi �= yj
(13)

W̃
(b)
i,j =

{
Ai,j (1/N − 1/Nl) , if yi = yj = l

1
N , if yi �= yj

(14)

where Nl is the number of samples in class l, N is the total
number of samples, and A is the a sparse affinity matrix, with
Ai,j representing the similarity between sample points xi and
xj . In this letter, Ai,j is defined using the local scaling method
[20], i.e., Ai,j = exp{−‖xi − xj‖2/(γiγj)}, where γi‖xi −
x
(K′)
i ‖, and x

(K′)
i is the K ′th nearest neighbor of xi and is set

to 7 as suggested by Zelnik-Manor and Perona [20]. The details
of LFDA can be referred to previous publications by Sugiyama
[3] and Li et al. [4].
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Fig. 2. Classification accuracy (vertical axis) using 1-NN on different numbers of extracted features (horizontal axis) on the two data sets. The dotted horizontal
line tagged “RAW” is the classification accuracy using all original features.

TABLE I
HIGHEST CLASSIFICATION ACCURACY ACHIEVED FOR THE TWO DATA SETS (WITH THE CORRESPONDING

NUMBER OF EXTRACTED FEATURE DIMENSIONS)

Similar to L-NWFE, we use a localized weight ηi,jk for both
xi and xj to implement localization

S̃k
(w)

=
1

2

N∑
i,j=1

η
(i,j)
k W̃

(w)
i,j (xi − xj)(xi − xj)

T (15)
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i,j (xi − xj)(xi − xj)

T (16)

where

η
(i,j)
k = exp

{
−dist2(xi, Ck) + dist2(xj , Ck)

2σ2

}
(17)

where dist(xi, Ck) is again calculated using (8).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The classification performances using 1-NN classifiers on the
original features and on the extracted features by eight methods
(PCA, KPCA, LDA, NWFE, LFDA, KLFDA, L-NWFE, and
L-LFDA) are compared. The first six methods are applied to a
single classifier, and the last two methods are applied to multi-
ple classifiers. For KPCA and KLFDA, the Gaussian kernel is
used, with the optimized smoothness parameters by grid search.
For L-NWFE and L-LFDA, the number of clusters in the
k-means algorithm is fixed to 10. The smoothness parameter
σ is selected by grid search (σ = 0, 20/10, 21/10, . . . , 25/10)
and twofold cross validation using training samples.

Two standard hyperspectral data sets are used to evaluate
the performance of the approaches: the University of Pavia
data set and the Indian Pines data set. The University of
Pavia data set acquired from the Reflective Optics System
Imaging Spectrometer (ROSIS) has 103 spectral reflectance
bands. The Indian Pines data set acquired from the Airborne

Visible/Infrared Imaging Spectrometer sensor has 200 bands
after removing the water absorption bands. For the University
of Pavia data set, there are a total of 42 776 pixels with ground
truth. We randomly select 5% of pixels in each class for training
and the rest for testing. For the Indian Pines data set, there are
10 155 samples with labels. We randomly select 20% of pixels
due to the data set’s higher dimensionality and fewer pixels. To
guarantee the training efficiency for all methods, we make sure
there are at least 100 training samples for each class in both data
sets, and we remove the classes that have fewer than 100 pixels
in the Indian Pines data set. The overall classification accuracy
(OA) is used for performance evaluation. All the statistics
are averaged after testing ten times with different randomly
selected training samples.

The result is shown in Fig. 2. The number of extracted
features ranges from 1 to 15. All feature extraction methods,
except PCA and KPCA, improve OA over using the original
features. Among the supervised feature extraction methods,
NWFE and LFDA, which use local information and overcome
rank deficiency, both perform better than LDA. For KLFDA,
it performs worse than LFDA on the University of Pavia
data set, but better when the number of extracted features is
greater than 8 on the Indian Pines data set. From the results
of both data sets in Fig. 2, we can see that both L-LFDA and
L-NWFE improve OA compared with the original LFDA and
NWFE, particularly when the number of extracted features is
low. Moreover, when the single manifold does not perform
very well, the improvement by ELML is more significant. For
example, L-NWFE on the University of Pavia data set and
L-LFDA on the Indian Pines data set improve OA by 5.1%
and 9.4% compared with NWFE and LFDA, respectively, on
average. The highest OA achieved by each feature extraction
methods with number of extracted features (maximum 15) is
shown in Table I. L-NWFE and L-LFDA outperform NWFE
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Fig. 3. Classification accuracy (OA%) as a function of σ for both L-NWFE
and L-LFDA (the numbers of extracted features are both 15) on the two
data sets.

Fig. 4. Classification accuracy (OA%) as a function of the number of clusters
for both L-NWFE and L-LFDA (the numbers of extracted features are both 15)
on the two data sets.

and LFDA by 3.4% and 1.4%, respectively, on the University
of Pavia data set, and by 2.2% and 4.7%, respectively, on the
Indian Pines data set.

There are two parameters in the proposed algorithm, i.e.,
the smoothness constant σ and the number of clusters K . The
relationship between σ and OA is shown in Fig. 3. All the OA
reach the highest when σ is chosen between 0 and 1 and de-
crease slowly when σ increases beyond 1. Specifically, the clas-
sification performance of L-NWFE is relatively robust to the
variation of σ. For L-LFDA, OA reaches a peak around σ = 0.8
for both data sets. When σ becomes smaller, the manifolds are
too focused on local structure, and OA tends to decrease.

The sensitivity of the number of clusters K (base classifiers)
is shown in Fig. 4. We can see that the classification accuracy
improves as the number of clusters increases. Theoretically,
the classification accuracy is better with larger K , but the
computation time will also increase, and the improvement is
marginal when K is larger than 10. Therefore, we set the
parameterK to 10 in our experiment to make a balance between
classification performance and computation time.

V. CONCLUSION

In this letter, we have presented the novel ELML algorithm,
a feature extraction approach for hyperspectral image classifi-
cation. Considering the complexity and nonlinearity of high-
dimensional data structure, multiple linear localized manifolds
are learned from the data. Then, multiple sets of features are
extracted using these manifolds, and a classifier ensemble is

trained on the features to obtain the final result. To implement
ELML, L-NWFE and L-LFDA are modified from NWFE and
LFDA using a localization weighting scheme in order to learn
the localized manifolds, and the 1-NN classifier is used for clas-
sification. Experiments show that both L-NWFE and L-LFDA
compare favorably with respect to the referenced classification
approaches in terms of OA on two hyperspectral data sets. Our
future work is to extend the algorithm to the situation when the
number of labeled training samples is limited.
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