Feature Fusion for Image Texture Segmentation

David A. Clausi and Huawu Deng
Department of Systems Design Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
{dclausi,h2deng} @engmail.uwaterloo.ca

Abstract

A design-based method to fuse Gabor filter and grey
level co-occurrence probability (GLCP) features for im-
proved texture recognition is presented. Feature space
separability and unsupervised image segmentation are
used for testing. The fused features are robust with re-
spect to the curse of dimensionality and additive noise.
Feature reduction methods are typically detrimental to
the segmentation performance. Overall, the fused fea-
tures are a definite improvement over non-fused features
and are advocated in texture analysis applications.

1 Introduction

Texture segmentation is the task of identifying regions
with similar patterns in an image. A common strategy
is to extract features pixel-by-pixel and then classify
the extracted features. To improve the overall quality
of image texture segmentation, either the quality of the
texture features or the quality of the classification al-
gorithm must be improved. This paper focuses on the
improvement of the quality of the texture features for the
purpose of image segmentation. Many papers analyze
individual texture feature methods, however, few papers
consider the fusion of texture features. Also, published
texture comparison papers tend to use pure texture sam-
ples as opposed to mixed texture samples found in seg-
mentation.

There exists limited research on the topic of fusing
texture features. For a fixed number of samples, increas-
ing the feature space dimension will eventually cause
the classification accuracy to decline (the “curse of di-
mensionality”), [9], [7], [1]. Published demonstration of
the curse of dimensionality in unsupervised texture seg-
mentation is unknown to the authors. Normalization is
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used for scaling so that certain features do not dominate
the distance calculations during classification [5]. Nor-
malization is important, yet the authors are not aware
of any papers that study normalization in the context of
texture segmentation. Also, papers that compare differ-
ent methods for unsupervised texture segmentation are
rare.

This paper uses a novel design-based approach to
fuse Gabor filtered [7] and grey level co-occurrence
probability (GLCP) [6] texture features. Whereas other
research papers generally fuse features blindly, a ratio-
nale is provided here for the fusion of these particular
features. The fused feature set is demonstrated to be an
improvement over using the non-fused feature sets. The
roles of the curse of dimensionality, image noise, fea-
ture space normalization, and feature space reduction
are investigated.

2 Texture Feature Fusion

2.1 Texture Feature Extraction Methods

An experimentally supported preferred Gabor feature
set is used [4]. Four octave-separated frequency bands
and six orientations (30° spacing) are chosen. The fea-
ture set excluding the highest frequency is Fi;15, and the
feature set using all 24 Gabor filter features is Figa4.
The GLCP method [6] is a popular technique. First,
co-occurring probabilities of all pairwise combinations
of quantized grey levels in the fixed-size spatial win-
dow given inter-pixel distance and orientation are deter-
mined. Second, preferred statistics (contrast, entropy,
and correlation) are applied to the co-occurring proba-
bilities [3]. A 9 x 9 window is used. Two inter-pixel
distances (0 = 1,6 = 2) and 4-neighbor orientations
produce eight sets of GLCPs. A quantization level of
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64 is used. Each pixel is represented by a 24-d feature
vector, denoted by Foog.

2.2 Parameter Selection

A tuned Gabor filter applied to a sinusoid will generate
a consistent magnitude response, preferable for pattern
recognition. In the presence of point noise, Gabor fil-
ters are able to generate consistent measurements in low
and medium frequencies but generate inconsistent mea-
surements for higher frequencies. To replace the high-
frequency Gabor filter features with some other more
suitable features is appropriate. The GLCP features are
able to play such a role. If the inter-pixel distance is
set to 1 or 2, the corresponding GLCP features measure
high frequency information.

An example of the impact of noise on the feature ex-
traction ability of Gabor filters and GLCPs as a func-
tion of signal frequency is presented. Long duration
unit sinusoids set to 2.0 to 25.0 pixels per cycle (ppc)
were created and zero mean Gaussian noise (o = 0.2)
was added to each signal. A magnitude response of
each signal to a matched complex Gabor filter was de-
termined. GLCP feature measurements are also applied.
Let o and p denote the standard deviation and mean of
the feature measurement. The ratio % reflects the vari-
ation over the entire signal. The Gabor value of Z was
determined for each frequency and plotted in Fig. 1(a)
and that for entropy is plotted in Fig. 1(b). With higher
local frequencies (corresponding to decreasing ppc), 2
increases. However, Fig. 1(b) indicates that the GLCP
features (with similar figures for constrast and correla-
tion) have consistent measurements across all signal fre-
quencies, which is preferable.

2.3 Feature Fusion

If GLCPs are preferred to Gabor filters for detecting
higher frequency signals, why not use this method ex-
clusively for texture feature extraction? To exhaus-
tively select all GLCP parameters is computationally
prohibitive. There is a high degree of correlation for pre-
ferred GLCP features and matched Gabor filters, negat-
ing the need to calculate low and mid-frequency GLCP
texture features. Finally, larger GLCP window sizes will
capture information with respect to many frequencies.
For Gabor filters, the larger spatial bandwidth is auto-
matically associated only with lower frequency signals.
To substitute for the high frequency band, Fig15 can be
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Figure 1: % ratio for (a) Gabor and (b) GLCP features noisy
and noise-free sinusoids.

combined with Fiooy (Fgfg). To supplement, Fgo4 can

be fused with Fooy (FS21).

3 Discriminant Analysis Testing
and Results

A 256 x 256-size image for each of thirteen Brodatz
textures are used to extract features for discrimina-
tion. These texture samples are: field stone (D002),
wire (D006), canvas (D021), netting (D034), water
(D038), shaw cloth (D052), straw matting (D055), pa-
per (D057), wood grain (D068), fiber cloth (D076), cot-
ton canvas (D077), straw cloth (D078), and loose burlap
(D104).

Hypothesis 1: The fused feature sets ( Fggf, Fgfgl )
will have higher feature space separability between
classes compared to the individual feature sets (Fgoa,
Fa1s, Fooa). The Fisher criterion (7) [5] is used is used
as a non-parametric means of assessing class feature
space separability. The average 7 for each feature set
and its relative value to the feature set with the largest
average 7 (FS2{) are reported (Table 1). The fused
feature sets have considerably stronger separability than
any of the individual feature sets.

Hypothesis 2: Feature reduction is expected to erode
the class feature space separability. Principal compo-
nents analysis (PCA) (98% energy retained) and the fea-
ture contrast (FC) method [8] (a recently defined tech-
nique) are applied to the two fused feature sets. Both
feature reduction methods cause dramatic reductions in
feature space separability. The results for the first two
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Table 1: Class feature space separability average class-
pairwise Fisher linear criterion values.

Feature Set Average (Tavg) | Ratio to FGz¢
FS3 173.09 1
FS3 163.69 0.946
Foo 113.94 0.658
Faig 106.74 0.617
Foo 23.74 0.137
F&3 by PCA 16.99 0.098
FS2 by FC 61.01 0.353
F&2 by PCA 16.64 0.096
FS2 by FC 57.18 0.330

hypotheses suggest that these fused feature sets will pro-
duce higher segmentation accuracies and that feature re-
duction should decrease segmentation performance.

4 Segmentation Testing

The standard K-means method [5] is used for clustering.
Linear normalization is used. Three 256 x 256 Brodatz
mosaic images are used for testing. Fig. 3(a) illustrates
the image originally published by Bigun and Du Buf [2].
The second image (Fig. 3(c), referred to as the “Patch”
image) contains five textures in six patches. The third
image (Fig. 3(e), referred to as the “’Star” image) con-
tains five textures.

Hypothesis 3: The curse of dimensionality should
not be apparent when using the 48-d texture feature set.
Three curves (one for each image) are used to illustrate
that the curse of dimensionality is generally not signif-
icant using the 48-d feature set (Fig. 2). Each curve is
produced by randomly adding features and then report-
ing the maximum accuracy obtained from 25 K-means
runs. The curse of dimensionality is not apparent for
the Patch or Star images, and is barely apparent for the
Bigun image. Note that the Bigun image is an extreme
case, having seven distinct textures with numerous tex-
ture boundaries. Other authors are cautious about the
curse of dimensionality with respect to image segmen-
tation [8], [9], [7], [1], but this caution has been histor-
ically derived from classification problems where indi-
vidual textured samples are selected and must be classi-
fied.

Hypothesis 4: Fused feature sets will achieve higher
segmentation accuracies than non-fused feature sets.
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Figure 2: Randomly selected texture features (from the set
ng%f ) versus segmentation accuracy (%) for all three images.

Table 2: Average segmentation accuracy (%) using K-means
(25 runs). NN - features not normalized, PCA - features re-
duced by PCA, FC - feature contrast [8].

Test Bigun | Patch | Star
Fais 75.8 | 74.1 | 80.2
Fooa 772 | 752 | 823
Fooa 574 | 82.5 | 895
FE% 849 | 89.0 | 935
FS& 839 | 90.0 | 93.6
FaisNN | 797 | 823 | 80.5
FoouNN | 872 | 79.7 | 835
FS%PCA | 835 | 903 | 89.2
FS2PCA | 810 | 88.0 | 88.8
FSHFC | 747 | 623 | 563
FS2iFC | 682 | 563 | 64.7

Table 2 shows that the fused feature sets (FS7s and
F&21) have higher segmentation accuracies (statisti-
cally significant) relative to the non-fused feature sets
(Fgo4,Fc18,Fc24). Each entry represents the average

of 25 K-means runs.

Hypothesis 5: Linear normalization of pure Gabor
filtered texture features will reduce their segmentation
ability. Normalization is not expected to be necessary
when using only Gabor filtered magnitude features since
each Gabor feature dimension has the same unit. As a
result, the relative strength of magnitude responses is
considered important for texture identification. Table 2
includes the segmentation accuracies across all three
images for normalized and non-normalized (indicated
by N N) Gabor features. In every case, the segmenta-
tion accuracies for the non-normalized Gabor features
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Figure 3: (a) Bigun image and (b) its segmentation (c) Patch image and (d) its segmentation (a) Star image and (b) its segmenta-

tion. All results using feature set Fg§4.

are higher than the normalized features. Paradoxically,
linear normalization does not modify the Fisher crite-
rions, however, the same linear normalization is detri-
mental to the segmentation accuracy.

Hypothesis 6: Feature reduction of non-fused and
fused texture feature sets will lead to poorer segmenta-
tion ability. Table 2 indicates the accuracies of the two
fused feature sets and their feature space reduction using
PCA and FC [8]. Overall, the PCA method produces ef-
fective segmentation results. There is an indication that
the PCA transform was inappropriate for feature reduc-
tion prior to clustering due to undesired interaction be-
tween classes [1], however, in contrast, the results here
indicate that the PCA transform is quite adept at this
task. The feature contrast (FC) method consistently re-
duced the segmentation accuracy.

5 Conclusions

The paper produces a number of significant contribu-
tions. A design-based method to fuse Gabor filter tex-
ture features and GLCP features is described and imple-
mented. Discriminant analysis indicates that the fused
texture features are more separable relative to the in-
dividual feature sets and feature reduction dramatically
decreases the separability. The curse of dimensional-
ity does not affect the segmentation performance, given
the proposed feature set. Fused feature sets consistently
outperform independent feature sets in segmentation ac-
curacy. Linear normalization reduces the segmentation
capability of Gabor features. Feature reduction using
PCA slightly reduced the segmentation accuracy and
feature reduction using FC dramatically reduces the seg-
mentation accuracy.
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