COMPARATIVE STUDY OF FEATURE SPACE PROJECTION METHODS FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Fan Li, Alexander Wong, and David A. Clausi

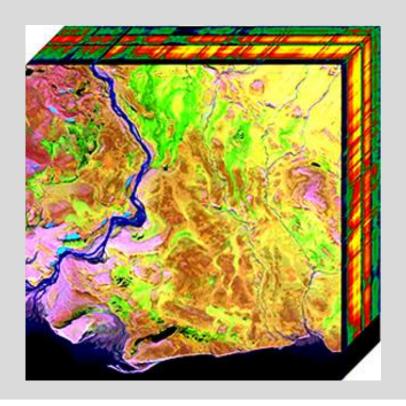
Vision and Image Processing (VIP) Group
University of Waterloo

OUTLINE

- Introduction
- Methodology
- Experiments and Analysis
- Conclusion

INTRODUCTION

Hyperspectral Imagery



METHODOLOGY

- Feature projection
 - » Supervised vs. unsupervised
 - » Linear vs. nonlinear
 - » Global vs. local
- Classifiers
 - » K-nearest neighbors
 - » Support vector machines
 - » Random forests

Supervised vs. unsupervised

- Supervised methods
 - » Use label information
 - » Related to supervised classification
- Unsupervised methods
 - » Use own characteristics of data
 - » Related to clustering

Linear vs. nonlinear

- Linear projection methods
 - » Rotation & scaling
- Nonlinear projection methods

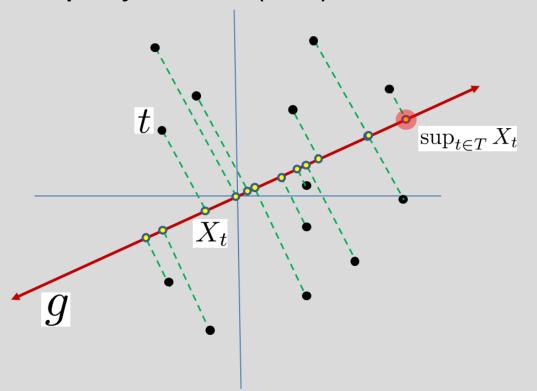
GLOBAL VS. LOCAL

Global methods: based on variance

Local methods: based on local neighborhood

METHODS

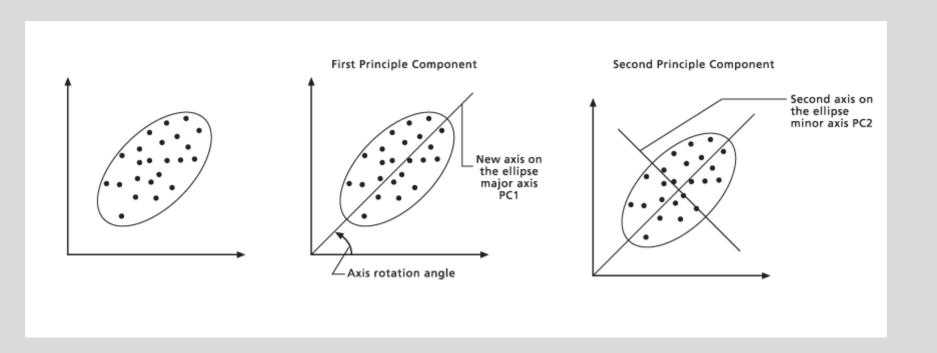
Random projection (RP)



Unsupervised

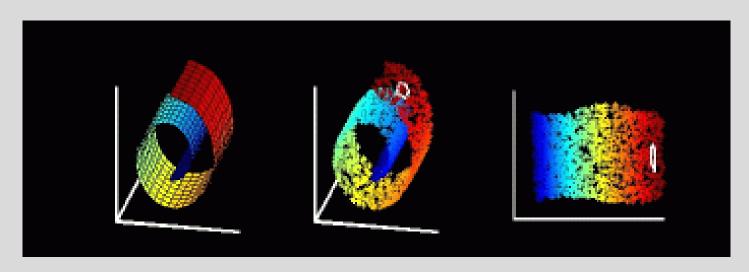
Linear

Principal analysis component (PCA)



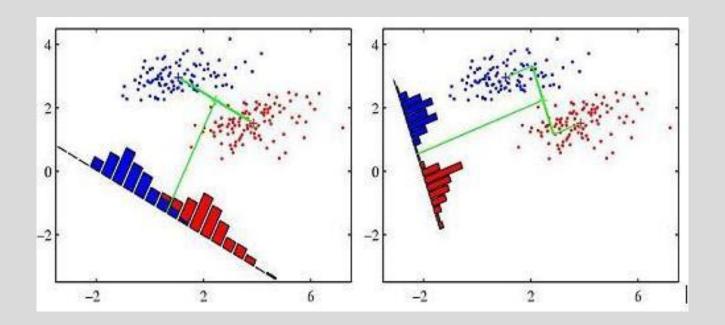
Unsupervised Linear Global

Local linear embedding (LLE)



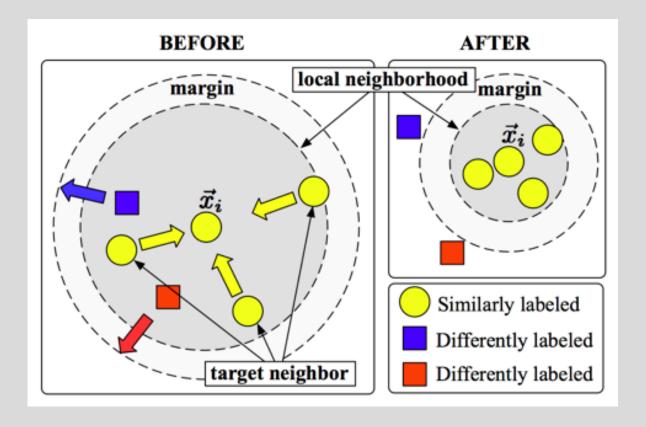
Unsupervised Nonlinear Local

Linear/Fisher discriminant Analysis (LDA/FDA)



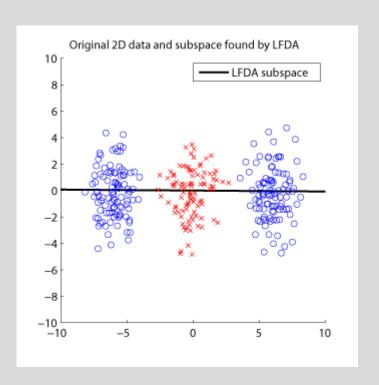
Supervised; Linear; Global

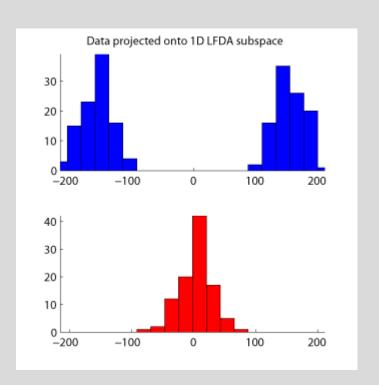
Large Margin Nearest Neighbors (LMNN)



Supervised; linear; local

Local Linear Fisher Discriminant (LFDA)





Linear; Supervised; Global + local

EXPERIMENTS

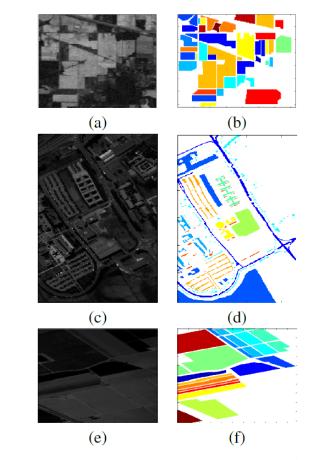


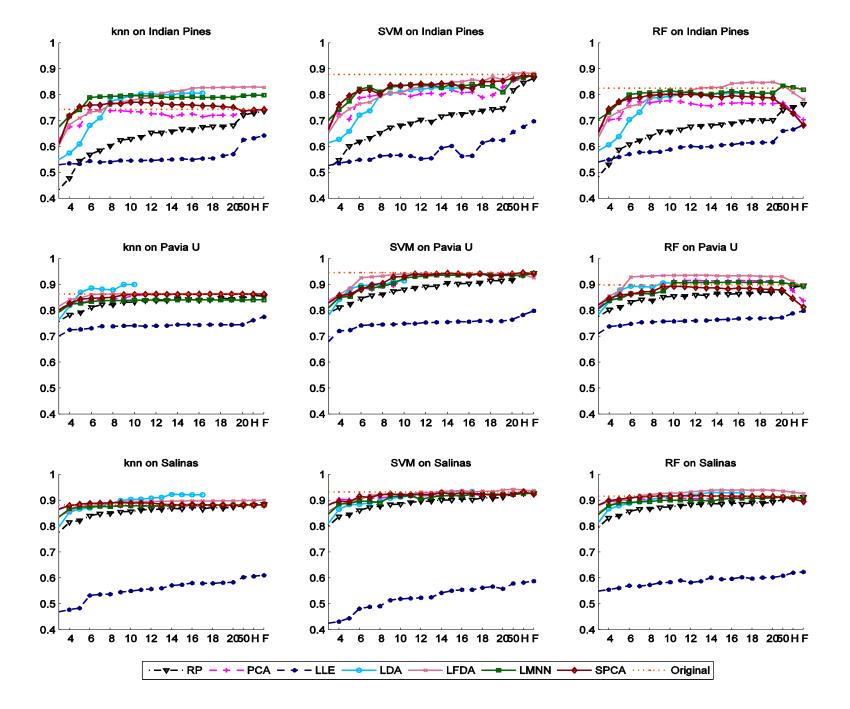
Fig. 1: Hyperspectral data sets (a) Indian pines (c) PaviaU (e) Salinas and their corresponding ground truth

-Indian Pine: 200 bands;

-University of Pavia: 103 bands;

-Salinas: 224 bands.

-10% training samples.



RESULTS

TABLE I: Best overall accuracy and corresponding projection method on reduced dimensions (2 to 20). Bold means highest accuracy among all classifiers.

Data	Indian Pines	PaviaU	Salinas
kNN	82.9%(LFDA)	90.0% (LDA)	92.1% (LDA)
SVM	85.8%(LFDA)	94.4% (PCA)	93.9%(LFDA)
RF	84.9%(LFDA)	93.1%(LFDA)	93.9%(LFDA)

TABLE II: Best accuracy and corresponding method on full-dimension feature space. Bold means accuracy is higher than that using reduced dimensions.

Data	Indian Pines	PaviaU	Salinas
sets			
kNN	82.8%(LFDA)	86.4%(LFDA)	90.0%(LFDA)
SVM	88.3%(LFDA)	94.6% (original)	93.7%(LFDA)
RF	82.5% (original)	89.8% (original)	92.6%(LFDA)

CONCLUSION

- All of the projection methods except LLE can achieve better classification performance than random projection;
- The classification accuracy is close to or even better than using all the original features when dimension is significantly reduced;
- LFDA has the best overall performances when there are sufficient training samples.

Thank you!

