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Abstract

A new design framework is introduced for forest structure optimization based on a genetic algorithm landscape

encoding and landscape ecology metrics. Landscape ecology is an important interface between the forest management

community, which is a traditional user of operations research methods, and the biological conservation community

which is relatively new to OR methods and whose goals are increasingly allied with the spatial ecology concepts

emerging from landscape ecology. Deforestation and forest fragmentation are increasingly recognized as the underlying

drivers of global biodiversity loss, hence forestry management will need to explicitly incorporate spatial ecology

objectives.

A deforestation model is presented which simulates a landscape progressively fragmenting by the incremental re-

moval of forest patches. Principal components analysis (PCA) of multiple deforestation simulations captures the rel-

ative influence of the mean proximity index and the mean nearest neighbour distance, two widely used landscape

ecology metrics. An evolutionary programming method based on a genetic encoding of landscape structure is used to

optimize forest patch selection by maximizing landscape performance with respect to single and multiple landscape

ecology metrics weighted according to the PCA.

This optimization approach is envisioned as a key component of a new forestry OR paradigm for designing multi-

use landscape systems, incorporating both biodiversity and community needs.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The modern consensus between landscape ecol-

ogists, conservation biologists and, increasingly,
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forest managers asserts that habitat loss and forest

fragmentation are the underlying cause of biodi-

versity loss (Forman, 1995; Forman and Collinge,

1995; Collinge, 2001). A major research challenge

linking the forest management and the conservation

biology communities is the development of forest

management strategies compatiblewithbasic spatial
ecology concepts, compatible with remotely sensed
ed.
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Fig. 1. Diamond�s suggested geometric design principles for

nature reserves. Case A: large is better than small habitat of the

same shape; Case B: contiguous is better than dispersed habitat

of the same size; Case C: compact is better than dispersed

habitat of the same size; Case D: compact is better than

unconnected corridor habitat; Case E: connected corridors are

better than unconnected corridors; Case F: compact is better

than linear habitat of the same size.
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data, and relevant to the sustainable development
aspirations of the billions of people world-wide

dependent on local ecosystems for their subsistence

(WRI, 2000). The summary report of The World

Commission on Forests and Sustainable Develop-

ment (IISD, 1999, p. 2) urged forestry managers to

adopt an integrated, landscape perspective, ‘‘to plan

for the use and protection of whole landscapes, not

the forest in isolation’’.
Martell et al. (1998) reviewed conventional for-

estry operation research (OR) practice and con-

cluded that OR methods have proven very

successful where industrial timber production is the

primary concern. However where the protection of

rare ecological niches and ecosystem integrity in

the face of anthropogenic pressure are primary

concerns, the scope for expanding the contribution
of OR methods is large. Martell et al. note, for

example, that the literature is largely devoid of OR

applications to community forestry in the devel-

oping world, where management initiatives will

typically be small, decentralized and where forest-

dependent communities will perceive the forest

from a more holistic, multi-use perspective. As the

forests and landscapes of the tropical developing
world become an increasingly contested resource

for carbon sequestration, for biomass energy, for

timber, for agricultural land, and as repositories of

biodiversity and traditional ecological knowledge

(Pandey, 2002), the need for robust design opti-

mization concepts becomes particularly acute.

This paper presents a new landscape planning

approach for biodiversity conservation integrating
quantitative landscape ecology principles within a

spatial optimization framework. Unlike tradi-

tional forest management, the objective here is not

to identify an economically optimal harvest strat-

egy, but rather to address the essential conserva-

tion issue of identifying, protecting, and

integrating a network of forest features into a

multi-use landscape system. The proposed meth-
odology is compatible with remotely sensed data,

an increasingly ubiquitous data source for analy-

sing forest ecosystem health (Heilman et al., 2002)

and envisioned as an analytic component of a

participatory community forestry planning process

that uses traditional and community ecological

knowledge to select between alternative landscape
configurations (Martell et al., 1998; Gadgil et al.,
1998). The spatial optimization framework is

implemented using a genetic algorithm to select

among alternatives the configuration of forest

features which optimizes the value of a single or

linear combination of landscape ecology metrics.
2. Spatial ecological design and operations research:
A brief review

Diamond (1975) provided the seminal link be-

tween spatial pattern and biodiversity, a concept

now firmly entrenched in species meta-population

dynamics and landscape ecology. Diamond iden-

tified the problem of designing biodiversity con-

servation reserves as one fundamentally governed
by geometric design principles and codified these

principles as shown in Fig. 1. Ecosystems can
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support species populations in either high-density
connected or low-density fragmented states. The

population of a particular habitat element in a

landscape composed of many potential habitats,

depends on its neighbouring sites. Once a popu-

lation at any particular site is extinct, the likeli-

hood of recolonization depends on the aggregate

population and proximity of neighbouring sites,

producing a positive feedback effect between
population density and the resilience of the local

population (Hanski et al., 1995). Diamond�s hier-
archy of principles is not without contention,

however, and the ‘‘single large or several small’’

(SLOSS) nature reserve debate remains current in

contemporary conservation biology (Possingham

et al., 2000). Diamond�s ideas have nonetheless

had a large influence on the evolution on quanti-
tative landscape ecology (Baschak and Brown,

1994) and has motivated increasingly sophisticated

research on landscape fragmentation measurement

methods and meta-population dynamics as a

function of landscape fragmentation (Verboom

et al., 2001).

Despite Diamond�s early recognition of the

biodiversity conservation problem as fundamen-
tally a spatial design problem, the use of opera-

tions research (OR) techniques for optimal

landscape design is still in it infancy (Kurtilla,

2001; Possingham et al., 2000). Robust design

concepts applicable when remotely sensed data

and community participation are the only avail-

able inputs for planning forestry management and

conservation are a particularly pressing need.
Fjelsda (2000) describes conservation biology as a

crisis discipline, where urgency and prohibitive

costs require decision making with incomplete or

proxy data at best. Hof and Bevers (1998) present

elegant and complex habitat optimization models

that require a high level of species-specific

parameterization, and are therefore of limited

practicality in frontier forest regions of the devel-
oping world where deforestation rates and biodi-

versity loss are high but detailed ecological surveys

scarce. Fjelsda also notes that access to the best

possible ecological information will not improve

conservation practice if the livelihood issues of the

traditional rural communities that share the land-

scape are not integrated into the plan.
The advent of the landscape-based biodiversity
conservation paradigm coincides with an increas-

ing, though still limited, integration of spatial

ecology concepts within conventional forestry

operations research. Forestry OR applications

typically maximize net present value of the

harvested timber, without regard to ecological

considerations or their proxy, spatial forest struc-

ture. Biological conservation concerns have been
integrated into these harvest models through

adjacency constraints which restrict the harvest of

any two spatial forest management units that share

a common boundary. Although many variations

of adjacency-constrained forest harvest optimiza-

tion have appeared in the literature, they all share

a similar integer linear programming (ILP) for-

mulation and are based on harvest timing deci-
sions; when to harvest each of many individual

forest stands over a multi-period planning hori-

zon. Practical sized problems generate a large

number of adjacency constraints and limit the

application of conventional ILP solution tech-

niques, which has motivated researchers to explore

alternative solution heuristics, including Tabu

search and simulated annealing (SA) (Kurtilla,
2001). Relegating conservation objectives to a set

of adjacency constraints within such models may

be appropriate in the context of a homogeneous

plantation system of uniform stands with similar

ecological value. Such an approach, is of decidedly

lesser value in the context of a heterogeneous

network of forest patches with varying ecological

value and multiple uses––a situation typical of
developing country regions under anthropogenic

deforestation pressure.

The use of OR methods for capturing spa-

tially-based biodiversity conservation objectives is

somewhat better developed in the conservation

biology literature where a typical management

objective is to identify a network of reserves

containing the largest possible subset of threa-
tened and endangered species and prioritize these

critical sites for protection. Pressey et al. (1997)

present an integer linear programming (ILP)

formulation (the standard set-covering problem)

of the biodiversity reserve selection problem,

minimizing land acquisition costs, while repre-

senting at least one occurrence of the habitat
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range of a set of threatened species. This ap-
proach assumes a priori knowledge of how the

species requiring protection are spatially distrib-

uted (Reid, 1998).

Possingham et al. (2000) introduced fragmen-

tation concepts to the reserve selection problem by

extending the set-covering problem by introducing

a second objective; total boundary length mini-

mization of all reserves selected. This formulation
preferentially selects contiguous candidate re-

serves as opposed to isolated ‘‘island’’ reserves.

Possingham et al. applied an SA algorithm to

solve their multi-objective reserve selection for-

mulation since the boundary length minimization

objective violates the strict integer and linearity

conditions required for standard ILP solution

methods.
The landscape optimization methodology

developed in this paper uses quantitative land-

scape ecology principles. Quantitative landscape

ecology assumes a strong link between spatial

pattern and ecological function and process, but

focuses on measuring forest fragmentation and

inferring from the degree of fragmentation, forest

ecosystem health, and biodiversity state. Spatial
heterogeneity, which represents ecological and

function and process (Gustafson, 1998), is quan-

tified by identifying relatively homogeneous land-

scape patches and examining the statistics of these

patches (Forman, 1986; O�Neill et al., 1988; Gus-

tafson and Parker, 1992; Li and Reynolds, 1993;

Marks and McGarigal, 1994). Landscape ecology

metrics all attempt to capture various aspects of
the geometric design principles proposed by Dia-

mond.

Kurtilla observes that although several simu-

lation studies have examined how the impact of

varied forest harvest strategies as measured by

landscape ecology metrics (Barrett et al., 1998;

Gustafson and Crow, 1996) no optimization

strategy explicitly based directly on landscape
ecology concepts has yet emerged. The optimiza-

tion approach formulated here assumes no a

priori knowledge of species distribution or meta-

population dynamics (as in the reserve selection

problem) but is based strictly on the spatial con-

figuration of a set of habitat elements as quanti-

fied using landscape ecology metrics.
3. Methodology: A deforestation simulation model

3.1. Rationale

Deforestation by incremental degradation is

widely acknowledged as the basic process under-

mining biodiversity. A simulation model of a for-

ested landscape progressively losing structure and
integrity from the incremental removal of forest

patches is therefore developed to gain insight into

the basic dynamics of biodiversity loss in tropical

forests of the developing world. The simulation

model reveals how landscape ecology metrics re-

spond dynamically to the deforestation signal. We

then use the observed metric behavior to develop

optimized mitigative strategies in the second stage
of the methodology. For this illustrative applica-

tion we use a small set of landscape ecology met-

rics, however the methodology is general and can

readily be extended to a larger set of metrics. We

also introduce the use of principal components

analysis (PCA) to analyse the response signal from

the landscape ecology metrics to the deforestation

process.
Liu et al. (1993) and Ramesh et al. (1997)

analysed the deforestation process in the Philip-

pines and the Western Ghats of India. Both studies

describe a basic deforestation process character-

ized by the removal of the smallest and most

accessible forest patches, followed by incremental

extension of access roads, further encroachments

and plantation expansions, generating in turn
more fragmentation and eventual deforestation.

Forest patches with high perimeter to area ratio�s
(P=A) were found in both studies to be extremely

susceptible to degradation and eventual removal.

For comparative purposes we developed two sim-

ple models of the deforestation process with dif-

ferent deforestation dynamics; incremental

fragmentation by random removal of forest pat-
ches, alternatively successive forest patch removal

by highest P=A ratio. Clearly more elaborate

deforestation models could be conceived which,

for example, include the effects of infrastructure

development as observed by Liu et al. However,

for purposes of this paper we deemed the simple

deforestation model described above more intui-

tive and appropriate.
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3.2. Deforestation signal processing with landscape

ecology metrics

A binary forest/non-forest map of Waterloo

County, Ontario, Canada derived from Landsat

Thematic Mapper (TM) imagery at 25 m pixel

resolution served as the base landscape for this

study. The upper left panel in Fig. 2 shows the
original base landscape. The panel dimensions for

all landscape configurations shown in this paper

are 10.475 km (north–south) by 10.225 km (east–

west).

Quattrochi and Pelletier (1991) review ecologi-

cal scale and data resolution issues and recom-

mend TM-scale data for local-scale investigations

of heterogeneous landscapes such as the base
landscape considered here. Although large-scale

landscape fragmentation analyses have typically

used 1-km resolution AVHRR (advanced very

high resolution radiometer) imagery (O�Neil et al.,

1997; Riitters et al., 2000) recent attempts at

comprehensive fragmentation analyses have used

FRAGSTATS metrics and classified Landsat TM

imagery (Heilman et al., 2002). Hargis et al. (1998)
Fig. 2. Largest perimeter/area deforestation mode.
also used TM-scale data for their study of land-
scape ecology metric behavior using simulated

landscapes. This simulation study, however, used a

single base landscape but simulated the defores-

tation process by sequentially removing individual

forest patches. The simulated deforestation signal

thus generated was analysed by calculating four

common landscape ecology metrics as each patch

was removed.
Fig. 2 illustrates three additional stages of the

simulated deforestation process for single simula-

tion sequence of patch removal by highest patch

P=A ratio. One hundred different deforestation

sequences were also simulated for the random

patch removal deforestation mode. The following

metrics were re-calculated on every patch removal

for all simulated deforestation sequences; the mean
nearest neighbour distance (MNN), the mean

proximity index (MPI), the mean shape index

(MSI), and the area weighted mean shape index

(AWMSI). MNN and MPI are key landscape

metrics and estimate the relative isolation of all

patches on the landscape (Hargis et al., 1998, 1999;

Marks and McGarigal, 1994). The other metrics,

MSI and AWMSI, illustrate how measure patch
shape complexity can be included within a plan-

ning and design framework. Patch shape metrics

relate patch area and patch perimeter and have

important implications in terms of the quality of

available habitat. Depending on the species of

concern, it may, for example, be desirable to

maximize the occurrence of irregular or elongated

patches to maximize the available edge habitat
(Sisk and Haddad, 2002).

The definitions and implementation of the four

metrics utilized in this study conform to those used

in FRAGSTATS (Marks and McGarigal, 1994), a

widely used landscape ecology software package.

Suppose we have a landscape comprised of n
patches, with an area ai and perimeter pi, and with

a minimum edge-to-edge distance between patches
i and j given by di;j, we can the define MPI, MNN,

MSI, AWMSI metrics as follows:

The mean proximity index

MPIðdÞ ¼ 1

n

Xn

j¼1

Xi2Mj aij
d2
ij

ð1Þ
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where n is the total number of patches in the

landscape and for each patch j, aij is the area of

the ith patch of the set Mj, where Mj is defined as

the set of patches within the threshold distance, d
of the jth patch (dij 6 d). If all patches have no

neighbours within the threshold distance, d, then
MPI¼ 0. MPI is dimensionless and increases when

nearby patches become larger and less fragmented
in distribution (Marks and McGarigal, 1994).

The mean nearest neighbour distance

MNN ¼ 1

n

Xn

j¼1

min di;j; i 6¼ j: ð2Þ

The MNN has dimensions of length, a lower

bound of zero and increases without bound as

nearest patches become increasingly isolated.

The mean shape index (raster version)

MSI ¼ 1

n

Xn

j¼1

0:25 � pjffiffiffiffi
aj

p : ð3Þ

MSI (dimensionless) is minimized if all patches are

the simplest possible shape (squares) and increases

without bound as patches become more irregularly
shaped.

The area weighted mean shape index (raster ver-

sion)

AWMSI ¼
Xn

j¼1

0:25 � pjffiffiffiffi
aj

p
aj

atotal
ð4Þ

where pj and aj are the perimeter and area of the

jth patch, respectively, and atotal is the summed

area of all patches (
Pn

j¼1 aj). The AWMSI

(dimensionless) is also minimized if all patches are

the simplest possible shape (squares in the raster

data case) and also increases without bound as
patches become more irregularly shaped.

3.3. Simulation results and principle components

analysis

The random patch removal deforestation model

used a Monte Carlo simulation approach with

patches randomly removed from the base land-
scape until no patches remained. The process was
repeated 100 times. Fig. 3 illustrates the individual
traces for each of the 100 deforestation sequences

using random patch removal for the MNN (upper

panel), and the MPI (lower panel). The four met-

rics calculated at each patch removal (MNN, MPI,

MSI, and AWMSI) were then normalized by their

means. Figs. 4 and 5 show simultaneous plots of

the normalized metrics for the random patch re-

moval (averaged over all 100 scenarios), and the
largest P=A patch removal deforestation modes,

respectively. Although both the MPI and MNN

show a jagged, erratic behavior over any particular

deforestation sequence, a smooth trace emerges

when averaged over 100 different deforestation

simulations (Fig. 4). This result has not yet been

reported in the landscape ecology literature and

certainly suggests that such Monte Carlo-based
methods in landscape ecology research may be

warranted.

Fig. 5 shows the same normalized metrics as in

Fig. 4 for the single deforestation sequence defined

by the largest P=A patch removal. The MNN and

MPI show a jagged behavior in this simulations

similar to that observed in any individual random

patch removal simulation (Fig. 3). Although the
shape-based metrics, MSI and AWMSI also show

some slight variability across an individual trace

(Fig. 5), where multiple simulations are available

(Fig. 4), the mean MSI and AWMSI traces are

essentially flat. The patch shape distribution of

the original landscape determines the behavior of

the MSI and AWMSI and is not influenced by the

deforestation dynamic.
Landscape ecology studies using dozens of

metrics have employed principle components

analysis (PCA) to reduce data dimensionality

(Griffith et al., 2000). Typically PCA is used to

simplify comparisons of static landscapes. This

study, however, demonstrates the use of PCA to

reduce the dimensionality of the deforestation

signal measured dynamically using landscape
ecology metrics. In general, PCA transforms a set

of correlated variables to an uncorrelated set. PCA

is essentially eigen analysis of the covariance

structure of the original data (Jackson, 1991;

Richards and Jia, 1999). The n eigenvectors of the

n by n covariance matrix define n principle com-

ponents. The first principle component explains
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by the deforestation process.
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the most variance in the dataset with subsequent

principal components explaining successively less

variance. The principal components are defined by

linear combinations of the original n variables.

The normalized data in Figs. 4 and 5 were
transformed using PCA. Alternative data scaling

methods could have been used in the PCA, how-

ever simple normalization about a unit mean is,

arguably, the least manipulative of the raw simu-

lation data. Fig. 6 illustrates the exceedance

probability of the first component variance for the

100 different random deforestation sequences.

Table 1 shows the variance distribution across
all four principle components for the P=A ratio

deforestation mode. Inspecting Fig. 6 and Table 1

indicates that the overwhelming majority of vari-

ance for both deforestation modes is explained by

the first principle component.

Table 2 lists the linear combination of com-

ponent weights that define the first principal
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Table 1

Variance distribution for deforestation by largest P=A patch

removal

Principle component 1 2 3 4

Variance explained (%) 98.26 1.32 0.41 0.01

Table 2

First principle component weights

MNN MPI MSI AWMSI

Random patch

removal

0.9448 )0.3021 0.0128 )0.0118

Largest P=A
patch removal

0.9889 )0.1383 0.0508 0.0177
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Fig. 5. Normalized metrics for deforestation by P=A ratio. The

single MNN and MPI trace from this deforestation scenario are

similar to those from any individual random patch removal

scenario in Fig. 3. MNN increases fairly smoothly and non-

linearly, while the MPI trace is erratic, reaching zero as all

patches are removed. The MSI and AWMSI traces are essen-

tially flat and influenced only by the patch distribution of the

original landscape and not the deforestation process.
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components for both deforestation modes. The

component weights for the random patch removal

case are the average for the 100 random defores-

tation scenarios. The very high information yield

from the MNN metric is obvious. The first prin-
cipal component is very heavily weighted by the

MNN for both deforestation modes. Fig. 7 illus-

trates the original data projected along the first

principal component compared with the MNN

trace for both deforestation modes. The random

patch removal deforestation mode shows a slight

deviation from the MNN trace––evidence of a

weak influence from the MPI component. For the
P=A ratio deforestation mode, the first principal

component projection and the original MNN trace

are virtually indistinguishable.

The general result of the simulation and PCA

analysis is that, of the four landscape ecology

metrics considered, MNN and MPI metrics pro-

vide a very good estimate of the level of defores-

tation for both deforestation modes. An
intervention design strategy intended to mitigate

deforestation and forest fragmentation can there-

fore utilize this information in formulating objec-

tives as illustrated in the following section.
4. Genetic optimization of forest structure

4.1. Rationale

An important conceptual link between the

simulated deforestation process and the landscape

optimization framework, is that if a set of land-

scape ecology metrics can capture the essential

dynamic of a landscape progressively losing

structure, then optimization with that set of met-
rics can be used to mitigate the deforestation

process by optimally selecting the set of landscape
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features for protection and biodiversity conserva-

tion. Essentially, measuring the deforestation sig-

nal (illustrated in Figs. 3–7) motivates a design

optimization approach to identify critical forest

landscape elements for protection.
Lindenmayer et al. (1999) provide particularly

compelling evidence that retaining remnant forest

fragments in a multi-use landscape is critical be-

cause the proximity and size of forest patches do

reflect actual ecosystem function. Lindenmayer

et al. conducted a large study in a 100,000 ha

region of predominantly softwood lumber plan-

tation in south-eastern Australia. They surveyed
the presence and abundance of 17 different mam-

malian species in three distinct landscapes and

showed that both remnant patch size and relative

proximity (landscape isolation characteristics

captured by the MNN and MPI metrics) were key

determinants of species abundance. Lindenmayer

et al. stress that their work has important impli-

cations for plantation design; any attempt to
expand plantations (a particularly ubiquitous form

of deforestation in developing countries) must not

clear remnant fragments, particularly larger ones

as they are most likely to provide habitat. Chris-

tian et al.�s (1998) studies of species occurrence
around bioenergy plantation systems in the United

States suggest a similar basic dynamic: the exis-

tence and protection of remnant native forest

patches within the plantation system is extremely

important for ensuring habitat maintenance.

The key design implication is that a multi-use

landscape system designed with biodiversity con-

servation objectives should integrate, to the max-
imum extent possible, a network of remnant forest

fragments selected on the basis of their relatively

proximity and size. We formulate the essential

design problem of optimally identifying a set of

existing ecological features for integration within a

multi-use landscape using a class of stochastic

optimization heuristics known as genetic algo-

rithms.
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4.2. Genetic algorithm overview

Evolutionary programming techniques such as

simulated annealing (SA) and genetic algorithms

(GAs) are gaining popularity in a wide range of

operations research and engineering design appli-

cations (Holland, 1992; Reggiani et al., 2001),

primarily because they are well suited to difficult
combinatorial problems (such as the set-covering

problem). GAs are well suited to parallel com-

puting methods, and produce a ranked hierarchy

of feasible solutions as opposed to standard linear

programming (LP) and ILP methods which pro-

duce a single solution. Ensuring global optimality

remains computationally challenging and imprac-

tical for many problems.
GAs manipulate a set of candidate solutions,

referred to as a population of individuals and gen-

erate a new population at each iteration of the

algorithm. Each individual candidate solution is

typically represented as a string of decision vari-

ables. The string encoded scheme is context-specific

and is usually based on discretized representation

of the decision variables as either integers or binary
digits. The values of the decision variables are

manipulated by subjecting the current population

of individual strings or chromosomes to a set of

standard genetic operators that are inspired by

Darwinian evolution theory and are referred to as

reproduction, crossover, and mutation. The opera-

tors involve only random number generation,

preferential selection, string copying, and partial
string exchanging. The repeated application of

these operators, however, evolves an ever improv-

ing population of candidate solutions. When some

optimization criterion is reached (usually based on

the number of algorithm iterations or generations),

the algorithm terminates.

4.2.1. Population encoding and fitness evaluation

The design problem we address in this paper

using several illustrative examples is the optimized

selection of a subset of forest patches from the

base landscape (shown in the upper left panel in

Fig. 2) using landscape ecology metrics and a GA

binary string encoding approach. The initial pop-

ulation was generated with each individual�s string
length equal to the total number of patches in the
original landscape. The position of ith binary digit
(1 or 0) in the string represents the inclusion or

exclusion of the ith patch of the Ith candidate

landscape. In essence, each string represents a

candidate landscape. A string of all 1�s represents
the original full landscape, whereas a string of all

zero�s is a null landscape with all forest patches

removed. The relative performance or ‘‘fitness’’ for

each candidate landscape is then evaluated by a
particular landscape ecology metric or linear

combination of metrics. High performing candi-

date landscapes are preferentially retained and

subjected to the standard GA operators: repro-

duction, crossover, and mutation.

4.2.1.1. Reproduction. The reproduction operator

preferentially selects high performing candidate
strings (in this case landscapes) in any of several

ways. One of the most common reproduction

schemes, and the approach implemented here, is

Monte Carlo-based roulette wheel selection. Indi-

viduals are extracted from the current population

with a probability proportional to the ratio of the

individual�s fitness to the aggregate fitness of the

total population:

pðIÞ ¼ f ðIÞPnpop
I¼1 f ðIÞ ð5Þ

where npop is the population size. Constrained

problems can be handled by assigning a large
negative value to individuals who violate any of

several constraints and then adding the magnitude

of the largest negative fitness value to all individ-

uals of the current population. Feasible candidates

will then have large positive values and infeasible

candidates will have zero or very small fitness

values, thus rendering their selection probability

near zero.

4.2.1.2. Crossover. Crossover is the principal GA

search mechanism and involves exchanging sub-

strings of randomly paired individuals selected in

the previous reproduction stage. Each crossover

operation generates two new individuals that in-

herit information (in this case a substring of

landscape patch indices) from the parenting indi-
viduals. Fig. 8 illustrates a two-point crossover

operation.
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Fig. 8. Two-point GA crossover operation.

Fig. 9. Unconstrained MNN minimization: The solution land-

scape includes large patches because of their proximity to many

small patches resembling Diamond�s case C, where compact

configurations are preferred to dispersed. MNN minimization;

75% maximum area: constraint. The solution landscape con-

tains fewer large patches than the unconstrained case, those

that are retained are more closely associated with clusters of

small patches. The solution landscape still favours compact

configurations over dispersed and corridor features (Cases C

and D). MNN minimization; 50% maximum area: The solution

landscape now contains only a few large patches and with the

total area constraint exhibits more corridor behavior (Cases D

and E).MNN minimization; 25% maximum area: A break into a

distinctly different regime is clearly evident; the solution land-

scape retains none of the largest patches and forces corridor

behavior (Cases D, E, and F).
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4.2.1.3. Mutation. The mutation operator has the

task of maintaining genetic diversity within the

population by ensuring that the entire search space

retains some finite probability of being searched. A

mutation operator is typically implemented by

allowing every design variable to randomly change

value with some low probability. In the context of
the binary encoded landscape GA implemented

here, every candidate landscape could be randomly

mutated by changing the bit value of its compo-

nent patches, essentially randomly turning on or

off the inclusion of the ith patch.

4.3. Optimization results

The genetic algorithm approach is very well

suited to extremely complex, non-linear, combi-

natorial design problems such as landscape ecol-

ogy-based spatial design. The GA approach is

flexible and a wide variety of constraints can be

easily modeled. This new GA framework for

landscape ecology-based forest structure optimi-

zation is illustrated with the following objective
function formulations:

• MNN minimization; unconstrained, and with

area constraints.

• MNN constrained by MSI.

• PImaximizationwith varying thresholddistance.

• Constrained edge habitat maximization.

• PCA-based optimization.

All the solution landscapes are presented in Figs.

9–13 and include interpretation with respect to the

geometric design principles presented in Fig. 1.

4.3.1. MNN minimization with area constraints

Given the preceding PCA analysis, the MNN

metric evidently provides a clear signal of the
deforestation process as modeled by sequential
patch removal (the dominant mode of forest loss

in developing countries). A reasonable objective
would thus be to identify the set of existing forest

patches that produces the lowest possible MNN

and to integrate them into a multi-use landscape.

The upper left panel of Fig. 9 shows the resulting

optimal landscape for the unconstrained MNN

minimization case. An interesting observation here

is that a carefully selected subset of patches can

have a lower MNN distance than the original full
landscape, however the large majority of the ori-

ginal set of patches are still retained.

The unconstrained MNN case, which retains

most of the original patches, may not be a realistic



Fig. 10. MNN minimization; MSI maximum¼ 1.6: Compare

with Fig. 9; the solution landscape rejects some of the larger

complex-shaped patches, favouring more compact patch clus-

ters (Case C). MNN minimization; MSI maximum¼ 1.4: The

solution landscape contains few complex patches, favouring

clusters and corridors of simple patch shapes (Cases C and D).

Fig. 11. MPI maximization; 1000 m focal threshold distance:

The MPI considers both patch size and proximity to other

patches; the solution landscape contains many of the largest

patches and with the 1000 m focal threshold contains relatively

tight clusters (Cases A, B, and C). MPI maximization; 3000 m

focal threshold distance: The solution landscape is very similar

to figure the 100 m case but with more dispersed clusters (Cases

A and C).

Fig. 12. Edge habitat maximization; MNN maximum¼ 120 m,

area maximum¼ 50%: The solution landscape contains very few

large patches and is dominated by clusters and corridors (Cases

C and D). Edge habitat maximization; MNN maximum¼ 120 m,

50 patches maximum: The solution landscape is very different

from previous case. The constraint on the number of patches

favours large patches near clusters of small patches (Cases A

and C).

Fig. 13. Principle component weights minimization: alternative

solution landscapes.
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design condition. The remaining three panels in

Fig. 9 illustrate MNN minimization under the

constraint that the total area selected must be less
than 75%, 50%, and 25% of the original forest

area. The constraints were implemented using a

penalty function approach within the fitness

function calculation of the Ith landscape:

f ðIÞ ¼ �MNNðIÞ þminimum

ðMaxArea�AreaFractionðIÞ; 0Þ � Penalty

ð6Þ
where MaxArea is the imposed maximum area

constraint (a percentage of the original total area),

AreaFractionðIÞ is the area percentage of the Ith
landscape, and penalty is a large positive value

(1e15). If the constraint is violated, the fitness of

the Ith candidate is a large negative value, and the
likelihood of selection in the next generation is

very low.

The three area constrained cases show some

interesting behavior, reminiscent of the SLOSS

(single large or several small) biodiversity reserve

design debate that has permeated conservation
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biology in recent decades (Possingham et al.,
2000). For the 75% and 50% area constrained

cases, the optimal solutions exhibit a tendency to

cluster around larger patches, a ‘‘few large solu-

tion’’. A transition into a different regime is clearly

evident with the 25% maximum area constraint.

The solution that minimizes MNN now displays

linear and curvilinear features made up of rela-

tively small patches: in essence ‘‘corridors’’ have
emerged in this ‘‘many small solution’’.

4.3.2. MNN minimization with shape constraints

The next two figures depict MNN minimization

scenarios subject to constraints on the average

patch complexity as measured by the mean shape

index (MSI). The fitness function calculation for

the Ith landscape is simply:

f ðIÞ ¼ �MNNðIÞ þminimum

ðMaxMSI�MSIðIÞ; 0Þ � Penalty ð7Þ

where MaxMSI is the imposed maximum mean

shape index constraint. The first example, the left

panel in Fig. 10, shows the imposition of a rela-
tively lax constraint in that the MSI cannot exceed

1.6. This solution has much in common with the

unconstrained MNN solution in Fig. 9 except that

some of the more complex-shaped patches in the

unconstrained case are rejected. The right panel in

Fig. 10 shows the solution for a much more

stringent case with a maximum MSI constraint of

1.4. The solution landscape in this case displays a
tendency towards less complex-shaped patches as

well as some curvilinear ‘‘corridor’’ behavior sim-

ilar to the area constrained case in Fig. 9.

4.3.3. MPI maximization with threshold distance

sensitivity

Fig. 11 show optimization scenarios based on

MPI maximization with focal distance thresholds

at 1000 and 3000 m. The 1000 m case shows the

tighter clustering; the MPI value for this scenario

is based on the co-occurrence of patches within a

1000 m threshold. The 3000 m case shows a similar
but more dispersed landscape structure and in-

cludes more distant patches, forming looser clus-

ters, a result consistent with the MPI definition

which allows more distance patches to contribute

to the MPI calculation.
4.3.4. Constrained edge habitat maximization

The next two examples illustrate the flexibility of

the landscape optimization framework. Many

conservation planning exercises are concerned with

edge and interior habitat. Hof and Joyce (1992), for

example, present a mixed integer linear program-

ming model with maximization of edge habitat as

an objective. The left panel of Fig. 12 illustrates an
edge habitat maximization scenario (as measured

by the total perimeter of all patches) subject to a

120 m maximum MNN distance constraint and a

50% maximum total patch area constraint.

The large number of resulting patches (117)

may be logistically infeasible, motivating the sce-

nario shown in the right panel of Fig. 12. This

scenario also illustrates an edge habitat maximi-
zation again subject to a 120 m maximum MNN

distance constraint but now also constrained to a

maximum of 50 patches. Such design flexibility is

particularly important when planning habitat for a

target species whose viability is sensitive to the

availability of forest edge or forest interior habitat.

The design framework could equally accommo-

date a minimization of edge length with MNN (or
MPI) constraints.

4.3.5. PCA-based optimization

The final scenario considered (Fig. 13) illus-

trates how results from the PCA analysis can be

integrated into the optimization framework. In

this case, the component weights forming the first

principle component for the random patch re-
moval deforestation scenario negatively weight the

objective function. The underlying logic advanced

here is that if the PCA analysis captures the

essential dynamics of a landscape progressively

losing structure through incremental patch re-

moval, then optimization should attempt to re-

verse this underlying dynamic.

The fitness function calculation for the Ith
landscape in this case is

Minf ðIÞ ¼ PCAmnn �MNNðIÞ
MNNmean

þ PCAmpi �MPIðIÞ
MPImean

ð8Þ

where the coefficients, PCAmnn and PCAmpi are the

average MNN and MPI first principle component



1 Pre-processing of the original landscape (162 patches)

required 72.7 s with Matlab 5.2 on a G3 233 MHz processor,

a single fitness function evaluation required about 0.025 s.

Typical optimization runs required about 2–3 min and were

insensitive to the particular optimization metric.
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weights from the random patch removal defores-

tation mode as shown in Table 2. For scaling

purposes MNN and MPI are normalized by their

means as in Fig. 4. The fitness function should be

minimized in this case as depicted in Fig. 7, which

shows the behavior of the first principle compo-

nent.

Four alternative solution landscapes are shown
in Fig. 13 and illustrate several features specific to

the optimization scenario and the optimization

framework in general. Fig. 13 shows 1st, 10th,

50th, and 200th ranked solutions out of, in this

case, a database of 1520 landscapes produced

when the genetic algorithm terminated. The simi-

larity between all four landscapes is noteworthy,

particularly the 1st and 10th which also have the
fewest patches. The low patch number can be

interpreted as the influence of the MPI in the fit-

ness function. The unconstrained MNN solution

landscape (Fig. 9) has, in contrast, 102 patches.

The consistency between these alternative config-

urations suggests that the essence of the conser-

vation strategy should be to focus on the network

of small and large patches in the southern third of
the landscape along with a few large patches dis-

persed throughout the landscape.

4.3.6. Future directions

We believe that the ability to probe the land-

scape database and make quick visual compari-

sons between alternative configurations, and the

ease with which alternative objectives and con-
straints can be modeled bode well for the inte-

gration of landscape optimization within spatial

multiple criteria decision models (Malczewski,

1999; Jankowski et al., 2001), particularly in the

context of participatory agro-ecosystem planning

(Goma et al., 2001) where access to a range of

good solutions for further screening is, generally

far more important than the optimality of any
particular solution (Cocklin, 1989; Pressey et al.,

1996). We envision the increased integration of

traditional ecological knowledge within the land-

scape design model for selecting between alterna-

tive landscape configurations. Gadgil et al. (1998)

cite examples from Asia, Africa, and Mexico

where forest-dependent societies traditionally

make explicit decisions to protect particular forests
stands for their biodiversity value. Community-
based natural resource management decisions such

as this will be both ecologically and financially

more complicated in the future as forest-dependent

societies weigh alternative land and carbon man-

agement strategies (Martell et al., 1998; Venema

et al., 2000; Pandey, 2002). We believe that land-

scape-scale forestry OR tools like those introduced

in this paper will have much to offer this emerging
design paradigm.
5. Computational issues

The landscape optimization problem presented

in this study is a new formulation for which no

benchmarks exist. Preliminary experimentation
indicated that the following GA parameters gave

satisfactory performance and were used for all

optimization scenarios.

• Population size per generation¼ 40.

• Reproduction rate (fraction of total population

mated)¼ 0.50.

• Mutation rate (bit level)¼ 0.04.
• Termination criterion: 40 generations without

objective function improvement.

The largest computational expense occurs in a

pre-processing stage that calculates a full sym-

metric matrix of nearest edge-to-edge patch dis-

tances (required for the MNN and MPI metrics),

as well as vectors of patch perimeters and patch
areas for the original landscape. With these patch

attributes pre-calculated, the fitness function cal-

culation is very efficient. 1

Fig. 14 shows a comparison between the GA

and a random search for the landscape configu-

ration that minimizes the MNN. The uncon-

strained MNN minimizing landscape found using

the GA (upper left panel in Fig. 9) contained 102
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Fig. 14. GA heuristic comparison with a random search: MNN minimization.
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of the original 162 patches. The random search

shown here was therefore biased in that every

landscape evaluated had 102 patches; a complete
enumeration would still require 162!

ð162�102Þ! (approxi-

mately 2.42e+205) evaluations, 2 and illustrates
the need for heuristic approaches even for such

very modest problem sizes. The GA heuristic is

proposed here as a flexible, and practical ap-

proach, however we strongly encourage compari-

sons with alternative heuristics. 3
6. Conclusions

Many optimization algorithms have been pro-

posed for forest management and conservation
2 Assuming (optimistically) 1e9 evaluations per second, full

enumeration would take 2.85e192 years.
3 The test problem and Matlab code are available from the

corresponding author.
biology. However as yet, landscape ecology con-

cepts emphasizing the landscape fragmentation

and connectivity issues that underlie modern no-
tions of biodiversity conservation, have been

weakly integrated. The research presented here

introduces landscape ecology design metrics within

a spatial optimization framework. The design

framework is motivated by a simulation analysis of

a deforesting landscape driven by incremental

forest patch removal––the underlying dynamic

attributed to tropical deforestation and subsequent
biodiversity loss. A GA optimization heuristic

provides good quality solutions for a wide range of

constrained and unconstrained design objectives

expressed using landscape ecology metrics. The

reader is reminded that this analysis is illustrative

and based on an informed though arbitrary selec-

tion of metrics. Similar exercises that use larger sets

of landscape ecology metrics and evaluate alter-
native optimization heuristics are encouraged.

This research is not the first to use an explicit

optimization approach to address spatial ecology
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issues, however the high level of species-specific
parameterization required by existing models is

not practical in frontier forest regions of the

developing world. Even if species parameters were

known, conservation outcomes would not improve

if the livelihood issues of the traditional rural

communities that share the landscape were not

integrated into any management plan. The land-

scape design paradigm presented in this paper was
therefore designed to work when only surrogate

remotely sensed data and traditional ecological

knowledge are available, a typical situation where

deforestation and biodiversity loss are most com-

mon, and hence a distinct advantage over more

complex meta-population models that require

extensive field calibration. In summary, we believe

that the landscape design research introduced here
is valuable both in its amenability to multi-criteria

and participatory approaches that will character-

ize future forestry OR, and its consistency with the

spatial ecology concepts and data products that

will form the foundation of biodiversity conser-

vation planning.
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