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ABSTRACT 
Ef ic i en t ,  large-scale estimation methods such as nested 
dissection or multiscale estimation rely on a divide- 
and-conquer strategy, in which a statistical problem i s  
conditionally broken in to  smaller pieces. Th i s  condi- 
tional decorrelation i s  no t  possible for arbitrarily large 
problems due to issues of computational complexity 
and numerical stability. Given  the growing interest  
in global-scale remote  sensing problems (or  even three- 
dimensional problems), in this summary  we  develop 
a class of estimators with more  promising asymptotic 
computational properties. 

1. Introduction 

Heightened environmental awareness and concerns have 
led to an explosion in the quantity of remotely-sensed 
data, leading to more ever-larger problems requiring 
statistical estimation (for example, to remove irregu- 
larities in sampling or to detect anomalous behaviour). 

Most efficient, large-scale estimation methods (e.g., 
nested dissection[5, 61 or multiscale estimation[l]) rely 
on some sort of divide-and-conquer strategy: a state 
vector is found which conditionally breaks the prob- 
lem into smaller pieces. As the size of the underlying 
problem grows (Fig. 1) , this first conditional division 
becomes increasingly problematic: 

The overall computationally complexity grows as 
the cube of the length of this first state. 

0 More significantly, the covariance associated with 
the state vector becomes more poorly conditioned 
as the state length grows, such that solutions be- 
come numerically unstable beyond a certain size. 

Given the current interest in global-scale problems, the 
above asymptotic weaknesses motivate alternative meth- 
ods for large-scale estimation; this paper presents one 
such alternative. 

Research of this paper supported in part by the Natural Sci- 
ence & Engineering Research Council of Canada, and by the 
Office of Naval Research under Grant N0014-91-J-1004. 
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Fig. 1. For how large a domain is divide-and-conquer com- 
putationally and numerically feasible . . . ? 
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Fig. 2. How many separate models are desired for a given region? A single model (left), one model per quadrant (middle), 
or a large number of “foveated” models, each capturing only a small subset (right). 

2. Multiple Trees 

As has been discussed in an earlier paper[4], it may be 
possible to solve the estimation problem using m > 1 
models (Fig. 2), where each model is responsible for a 
subset of the overall region; the desired estimates re- 
sult from the collaging of the estimates of the individual 
models. The fundamental motivation behind this idea 
is as follows: a model designed to estimate (say) quad- 
rant 1 does not need to conditionally decorrelate all 
four quadrants, rather only those statistical aspects of 
quadrants 2,3,4 relevant to estimating quadrant 1 need 
to be kept. Since computational effort scales as O(n3),  
only a 37% reduction in state dimension is required 
to compensate for the m = 4 increase in the number 
of models. In addition to the computational reduc- 
tion, the shortened state dimension typically leads to 
reduced numerical instabilities. 

Arguably a local estimation scheme, in which esti- 
mates are based on measurements within some local 
vicinity, could yield similar computational and numeri- 
cal benefits, however continuing to use multiscale mod- 
els and estimation leads to substantial benefits: 

Most significantly, each estimate is based on all 
of the measurements; that is, the approach is not 
local. Furthermore, the global nature of the mod- 
els permits data fusion with non-local measure- 
ments. 

Other advantages of the multiscale model are main- 
tained: efficient likelihood estimation, a stochas- 
tic realization theory, and a base of existing mod- 
els and applications. 

With the above framework in place, three issues 
need to be settled for a preliminary implementation: 

(a) How many models m is desirable (or “optimal”)? 
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Fig. 3. The problem is broken into pieces, each chosen 
to estimate one particular region of interest. Each piece is 
surrounded by two concentric bands of decreasing statistical 
detail, followed by a coarse representation of the remaining 
domain. 

(b) What is the nature of the model (i.e., what sta- 
tistical information is kept)? 

(c) How is the  model made multiscale? 

None of the above is made clear by Fig. 2(right), which 
presents (at best) highly qualitative answers. 

The answer to (a) follows from (b), since the de- 
pendence of computational complexity on m is easily 
computed once the model details are known. 

The answer to (b) follows from Fig. 3 which shows 
a stratified or foveated model, in which the p x p square 
region to be estimated is surrounded by several (here 
three) concentric regions, modeled with progressively 
coarser statistical fidelity. The “thickness” of the in- 
ner two concentric regions is set approximately to the 
correlation length of the underlying statistics. As the 
problem grows asymptotically, only m changes, not p ,  
as opposed to the traditional multiscale approach, in 
which m = 1 and p grows with the problem size. It is 
this distinction which accounts for the promising com- 
putational properties of our revised approach. 

(c) is discussed in the following section. 
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3. Multiscale Implementation 

We can construct each of the m individual models are 
constructed as a standard quadtree, except that the 
statistical fidelity will vary from node to node, depend- 
ing upon its distance from the region of interest. Also 
the tree needs to be modified for the ancestors of the 
region of interest - they have nine child descendents, 
arranged on a three-by-three grid, centered on the re- 
gion of interest. The estimates over the entire domain 
are found by mosaicing the estimates (and error statis- 
tics) corresponding to the regions of interest for the m 
models. 

The most obvious criticism of using m completely 
separate models to estimate a random field is that such 
an approach ignores the fact that the models may in- 
volve a great deal of duplicated effort; in particular, 
the degree of duplication will be m for most tree nodes 
at finer scales. In fact, by detecting and removing 
such duplication, the memory to represent the union 
of all required nodes on all m models is comparable to 
that required for traditional, single-tree, methods: al- 
though we now need to represent some nodes multiple 
times (e.g., at the various qualities of representation 
in Fig. 3),  we have corresponding savings due to the 
absence of coarse-scale nodes with huge state dimen- 
sions (and correspondingly huge covariances). We can 
derive a graphical structure representing the union of 
m tree models (one per small region of interest), which 
removes the duplication present in the models, pro- 
duces exactly the same estimates, and which leads to 
computationally-efficient algorithms, similar to those 
which exist for normal multiscale trees. A single model, 
with m roots, can achieve these goals. 

Let 7; be the tree corresponding to the ith model, 
and let 

be the union of the m models (i.e., keeping only one 
copy of equivalent nodes); two nodes are defined as 
equivalent if they represent the same region of space 
a t  the same scale with the same degree of statistical 
fidelity. 

Under these conditions the estimates computed from 
a single m-root tree are identical to the mosaicing of es- 
timates from m separate quad-trees, but without the 
gross duplication in storage and computational effort. 

4. Results 

Fig. 4 shows one example of applying the multiple- 
tree approach to a remote-sensing problem of current 
interest [3] in climate-modeling and climate-change stud- 
ies - estimating the surface temperature of the ocean 
from infrared measurements (left), which are sparse 
and are taken in bands. The estimates (middle) are 
based on 64 models within an overlapped multiscale 
framework[7]. Overall, 200 x 200 estimates and error 
statistics were computed in about 40 seconds of CPU 
time on a Sun Ultra-1. The prior model is an isotropic 
correlation function, Gaussian in shape, with a corre- 
lation length of five degrees. 

A second application is shown in Fig. 5 ,  which ap- 
plies the multiple-tree approach to a second problem 
in remote-sensing - characterising the surface topog- 
raphy of the ocean from altimetric (height) measure- 
ments [l]. The large gap in the measurements a t  the 
top of the figure is Alaska; the estimates show an over- 
all north-south g r a h n t ,  consistent with the presence of 
the Kuroshio current from Japan. The prior model con- 
sistent with the ocean-height statistics has a short cor- 
relation length (three degrees), which causes the sam- 
pling nature of the Teasurements to appear prevalently 
in the estimation error variances (right panel). The es- 
timates and error $tatistics were computed in about 
one and one half minutes of CPU time. 

Both of the abqve applications illustrate the poten- 
tial of the multiple-tree approach for extremely large es- 
timation proble 4. As mentioned in the Introduction, 
the two aspects which limit problem size for divide-and- 
conquer appro ches are computational complexity and 
numerical stab ity. Both of these aspects are addressed 

region of interest by vary- keep fixed the s’iz k 
ing the number of models m in proportion to the overall 
size of the problem. Consequently numerical problems 
are almost independent of problem size, and computa- 
tional complexity per pixel is nearly constant. 

A number of issues remain for future examination. 
First, in order to produce estimates of a region of in- 
terest, what statistical information really needs to be 
preserved from the rest of the domain? The answer will 
clearly be prior-model dependent, but may be worth 
exploring for some models in widespread use. 

Second, when computing estimates far away from 
measurements (i.e., extrapolating), the values of the 
estimates, although possibly statistically insignificant, 
may be highly sensitive to the choice of prior model. It 
is not clear how to properly mosaic in the face of such 
variations. 

by limiting the,si ( e of the largest state dimension: we 
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Infrared Measurements Temperature Estimates Estimation Error Variances 
Fig. 4. Estimation results (200x200 pixels, isotropic Gaussian prior), given pointwise measurements of ocean surface 
temperature in the equatorial Pacific. The measurements and estimates are mean-removed, and vary over about fl.5Kelvin. 

Altimetry Measurements Surface Height Estimates Estimation Error Variances 
Fig. 5. Estimation results ( 2 0 0 ~  200 pixels, isotropic Gaussian prior), given pointwise measurements of ocean surface height 
in the northern Pacific. The measurements and estimates have a range of about flmetre. 
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