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since both I T L  and ilf - 711 are even. Assume that g ( 7 )  # 0. Then 
one can easily see, from (A.l I), that g ( j )  = 0 for all j # 7 .  In other 
words, the optimum g ( k )  has the form g ( k )  = ab(k  - 7 ) .  Thus, we 
have completed the proof. 
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Fractal Estimation Using Models on Multiscale Trees 

Paul W. Fieguth and Alan S. Willsky 

Abstract-In this correspondence, we estimate the Hurst parameter H 
of fractional Brownian motion (or, by extension, the fractal exponent 9 
of stochastic processes having 1/ f +‘-like spectra) by applying a recently 
introduced multiresolution framework. This framework admits an effi- 
cient likelihood function evaluation, allowing us to compute the maximum 
likelihood estimate of this fractal parameter with relative ease. In addition 
to yielding results that compare well with other proposed methods, and 
in contrast with other approaches, our method is directly applicable with, 
at most, very simple modification in a variety of other contexts including 
fractal estimation given irregularly sampled data or nonstationary mea- 
surement noise and the estimation of fractal parameters for 2-D random 
fields. 

Manuscript received February 3, 1995; rcvised November 28, 1995. This 
work was supported, in part, by the Office of Naval Research under Grant 
N00014-91 -J-1004, the Advanced Research Projects Agency under Grant 
F4962O-93- 1-0604, by the Air Force Office of Scientific Research under 
Grant F49620-95-1-0083, and by an NSERC-67 fellowship of the Natural 
Sciences and Engineering Research Council of Canada. The associate editor 
coordinating the review of this paper and approving it for publication was Dr. 
Petar M. Djuric. 

The authors are with the Laboratory for Information and Decision Systems, 
Department of Electrical Engineering and Computer Science, Massachusetts 
Institute of Technology, Cambridge, MA 02139 USA. 

Publisher Item Identifier S l053-587X(96)03060-7. 

Scale 2 

Scale 1 
Node / 

Bo PI 6, [31 

Fig. 1. Dyadic tree structure used for the estimator of this correspondence 

I. INTRODUCTION 

Many natural and human phenomena have been found to possess 
l/f-like spectral properties, which has led to considerable study of 
l/f processes. One class of such processes that is frequently used 
because of its analytical convenience and tractability is the class of 
fractional Brownian motion (fBm) processes, which were introduced 
by Mandelbrot and Van Ness [8]. For practical computation purposes, 
we consider only sampled versions of continuous time fBm processes 
B ( t ) ,  i.e. 

B [ k ]  = B ( k A t )  k: E 2 (1) 

for which the associated nonstationary covariance is 

E { B [ L ] ;  ~ [ r r i ] )  = - (At)”’(lk12H + l’rrL121’ - IA* - T r i l 2 l r )  (2) 

where a and H are scalar parameters that completely characterize 
the process, and H is the quantity we wish to estimate. Previous 
estimators have been developed addressing this problem, notably 
those of Womell and Oppenheim [ l l ] ,  Kaplan and Kuo [4], Tewfik 
and Deriche [lo], and Flandrin [3]. The exact maximum likelihood 
(ML) calculation for N is computationally difficult (see [lo]); to 
address this difficulty, fractal estimators typically fall into one of the 
two following classes to achieve computational efficiency: 

1) optimal algorithms, admitting efficient solutions, based on l / f -  

2) approximate or suboptimal algorithms developed directly from 

Our approach and that of [ l  11 fall into the former category, whereas 
the methods in 131, 141, and [9] fall into the latter. In particular, the 
approach in 1111 is based on a l/f-like process constructed using 
wavelets in which the wavelet coefficients are independent, with 
variances that vary geometrically with scale with exponent H .  The 
method in [4] determines the exact statistics of the Haar wavelet 
coefficients of the discrete fractional Gaussian noise (DFGN) process 
F [ k ]  = B[k + 11 - B [ k ]  and then develops an estimator by assuming, 
with some approximation, that the coefficients are uncorrelated. 

The goal of our research, on the other hand, is the development 
of a fast estimator for H that functions under a broader variety of 
measurement circumstances, for example, the presence of gaps in 
the measured sequence, measurement noise having a time-varying 
variance, and higher dimensional processes (e.g., 2-D random fields). 
The basis for accomplishing this is the utilization of a recently 

iJ2 

2 

like models other than fBm; 

the fBm model. 
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Variance Rule. 
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H = 0 25 H = 0 50 H = 0.75 H = 0.90 

TABLE I 
SCALE TO SCALE RATIOS OF THE STANDARD DEVIATION OF THE HAAR 

WAVELET DETAIL COEFFICIENTS OF fBm FOR FOUR VALUES OF H : gm 
REPRESENTS THE STANDARD DEVIATION OF THE WAVELET DETAIL COEFFICIENT 

AT SCALE m, WHERE THE FINEST SCALE Is m = 0. THE DEVIATION OF 
THE VARIANCE PROGRESSION FROM AN EXPONENTIAL LAW IS MOST 

PRONOUNCED AT FINE SCALES AND FOR LOW VALUES OF H 

H = 0.25 H = 0.50 H = 0.75 H = 0.9 

0.250 

0.249 

0.247 0.500 

0.242 0.499 0.750 

0.228 0.496 0.749 0.900 

0.188 0.484 0.745 0.898 

0.091 0.437 0.727 0.892 
-0.084 0.292 0.650 0.861 

introduced multiscale framework [l], [5]. The next section gives a 
brief description of this framework, followed by the development of 
the estimator, and finally a description of estimation results. 

11. MULTISCALE FRAMEWORK 
In the framework developed in [I] and [5], stochastic models are 

constructed recursively in scale on multilevel trees. Specifically, let s 
index the nodes of a tree 7 (refer to Fig. l),  which, for the purposes of 
this correspondence, may be considered to be a dyadic tree, although 
the framework permits much greater flexibility. Let so E 7 designate 
the root node of 7;  in addition, let s r  denote the parent node of 
s # so.  Each node s E 7 has associated with it a state vector 
z(s) and, possibly, an observation vector y ( s ) .  Stochastic models 
are written recursively on 7.  

z(s) = A(s)z(sT) + G(s)w(s) Vs E 'T. s # so (3) 

where w ( s )  is a white Gaussian noise process with identity covari- 
ance. Similarly, noisy observations of the process are permitted on 
an arbitrary subset of the tree nodes: 

y ( s )  = C(s)z(s) +U(.) vs E 0 c 7 (4) 

where v ( s )  is white and Gaussian with covariance R ( s ) .  In gen- 
eral, tree variables at all scales may be physically meaningful and 
measurable, or they may be abstract-a by-product of achieving the 
desired statistics on the finest level of the tree. In this correspondence, 
coarse scale nodes are abstract, with a l/f-like process residing on 
the finest scale. 

For those multiscale stochastic models that can be written in the 
form (3) and (4), the following two problems possess extremely 
efficient algorithmic realizations [ 11, [6]: 

1) given observations y o ,  determine the optimum least-square 
estimate for z(). 

2) determine the likelihood Z[A(), GO, CO, E ( ) ,  y()] of a set 
of observations y(). 

The latter algorithm permits the estimation of any parameter 
embedded in the multiscale model, which is the very problem we 
have set out to solve: By formulating an appropriate multiscale model 
A(s,  H ) ,  G(s ,  H ) ,  C ( s ) ,  and R(s) ,  an estimator for H may be 
written abstractly as 

H = argH max I{A(s, H ) ,  G(s ,  H ) ,  C ( s ) :  R(s ) ,  B [ k ] } .  ( 5 )  

As was the case with Womell and Oppenheim [ l l ] ,  we do not 
construct an exact model of fBm, but rather choose an appropriate 

H :  0.05 0.40 0.70 0.91 Variances assumed ex- 
ponential with scale 

approximation-in our cas6 within this multiscale framework. The 
selection of such a multiscale model is achieved in the next section. 

111. FRACTAL ESTIMATOR 

We will now develop a multiscale design model for fBm, i.e., 
a model strictly to be used for designing an estimator for H and 
not for the simulation of fractal processes. The basis for our design 
model is the resolution-to-resolution scaling law of fBm. Similar 
design models were proposed by Kaplan and Kuo [4], who applied 
the Haar wavelet to the incremental process F [ k ] ,  and by Womell 
and Oppenheim [ 111, who applied higher order Daubechies wavelets 
to B[k] .  We will use the multiscale framework of the previous 
section to develop a Haar wavelet multiscale stochastic model that 
applies directly to B [ k ] .  This choice of wavelet is motivated by the 
particularly simple realization of the Haar wavelet in our multiscale 
framework by using a dyadic tree structure (see Fig. 1): 

Coarse Scales: 
f If s is left descendant of its parent 

Finest Scale: 
If s is the left descendant of its parent 

If s is the right descendant of its parent 
.(s) = [l $11 "(ST) + 0 ' w(s )  

z(s) = [l -11 "(ST) + 0 .  w(s )  
Y(S) = z(s) +U(.). 

(7) 

That is, at coarse scales, z(s) consists of two scalars: a coarse 
approximation to the l/f process and a wavelet detail coefficient, 
where this detail coefficient equals the difference in the coarse l / f -  
like representation between node s and its two children. At the finest 
scale z(s) is a single scalar, representing a sample of a l/f-like 
process, and measurements of the actual fl3m sequence appear as 
observations y(s)  at the finest scale. 

Our design model of (6) and (7) does not yield a finest scale 
process having exact fBm statistics. Specifically, the design model 
approximates the wavelet detail coefficients as being uncorrelated. 
Consequently, just as with the technique in [l l] ,  our model does not 
exactly match the statistics of the process to be estimated. 

The elements that remain to be determined in the above multiscale 
model are the g ( s ,  H): the variance of the detail wavelet coefficient 
at each node s. Expressions for the statistics of the wavelet decom- 
position of fBm have been determined by others [3], [9]; however, 
the self statistics for the special case of the Haar wavelet are easily 
computed as follows: 
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TABLE I11 
ESTIMATION RESULTS FOR THREE ESTIMATORS, BASED ON 64 fBm SAMPLE 
PATHS, EACH OF LENGTH 2048 SAMPLES, WITH NO ADD~TIVE NOISE. THE 
EXPERIMENTAL RESULTS FOR THE FIRST T W O  ESTIMATORS ARE FROM [4] 

Estimator 

W . 0  

K.K. 

Multiscale 

Haar 

H = 0.25 H = 0.50 H = 0.75 H = 0.90 

I? 0.082 0.398 0.683 0.846 
0.022 0.021 0.026 0.021 

( H  -ihL,c 0.169 0.109 0.072 0.058 
H 0.252 0.499 0 748 0.899 
U,, 0.017 0.017 0.017 0.017 

( H  - fh-~,~ 0.017 0.017 0.017 0.017 
H 0.249 0.503 0.768 0.919 

0.011 0.019 0.050 0.109 
01, 

( H  - k),,,,, 0.011 0 019 0.054 0.110 

Let B,[k] = B [ k ] ,  which is the fBm process of interest 
Define B,,[k] as the process obtained by coarsening B[k]  m 

(8) 

times 

&,[k] = ( E n - ,  [2k]  + B,,,-1[2k + 1]) /2  

which is a relation that follows from the multiscale model of (6). 
Recall that F denotes the increments process of B. Then, from 
(8), it follows that 

Brn--l [ k ]  

B[2"-lk + i ]  
2 m - l  -1 

= c 2 " L - 1  
2=0 

(9) 

B7,&--I [ k  + 11 - B,,-l[k] 

z=o 

From the stationarity of the increments process F [ k ] ,  and from 
(8), the desired variance expression may be deduced from (1 1): 

E[(B,,[k] - LL-1 [ 2 k ] ) 2 ]  

= + E[(B7,,-1[2k] - B,,-1[2k + 1])2] (12) 

c cjct+j  (13) 
Z ( a m - l - 1 )  2(2m-1 - I )+min(o,  -t) 

- 1  - X,..[i] 

= si (H 1 
i = - Z ( y - l - , )  ,=- r r i i n ( 0 ,  L )  

where XI,. is the covariance function of F [ k ] :  

2 
X , , [ i ]  = : [ / i  + 1l2" + li - llZH - 2li l"](~Yt) '~ .  (14) 

It should be noted that the result in (13) is equal to the variance 
of (SO) and (51) derived in [3].  

By way of comparison, in [l I ]  an exponential variation with scale 
for grrL was proposed to estimate the fractal exponent p of l/f' 
processes. Since a fBm process having parameter H has an associated 
1/ f 2H+1 spectrum, [I 11 leads to 

2 

g:n(H) =/322mH 

i.e., 

TABLE IV 

SAMPLING (UNDER THE ASSUMFTION THAT ALL OF THE INTERSAMPLE SPACINGS 
PERFORMANCE OF THE fBm ESTIMATOR FOR T W O  EXAMPLES: IRREGULAR 

ARE INTEGER MULTIPLES OF SOME PERIOD T ,  i.e., THE MEASURED SEQUENCE 
MAY BE REPRESENTED AS A UNIFORMLY SAMPLED SEQUENCE WITH GAPS) AND 

NONSTATIONARY MEASUREMENT NOISE. THE TOP Row LISTS ESTIMATION 
RESULTS GIVEN THE fBm SAMPLE PATHS OF TABLE 111, WITH 10% OF THE 

MEASUREMENTS DISCARDED AT RANDOM. THE BOTTOM R O W  SHOWS ESTIMATION 
RESULTS GIVEN THE SAMPLE PATHS OF TABLE 111 WITH ADDED GAUSSIAN NOISE 
HAVING A DIAGONAL COVARIANCE WHERE THE DIAGONAL ENTRIES ARE GIVEN 
BY R [ k ]  = i, exp {-2[(k - 1024)/500]2}. IN BOTH CASES, THE RESULTS 

ARE BASED ON 64 fBm SAMPLE PATHS, EACH OF LENGTH 2048 SAMPLES 

I Circumstance I H = 0.25 H = 0.50 H = 0.75 H = 0.90 I 
~ Irregular ~ 0.246 0.507 0.781 0.937 

Sampling 0.033 0.044 0.076 0.124 
( H  - Ih _._- 0.033 0.045 0.082 0.128 

0.268 0.511 0.769 0.918 
0.011 0.019 0.051 0.109 
0.021 0.022 0.054 0.110 

Table I shows the actual fBm scale to scale variance ratios as 
predicted by (13). The deviation from the approximate scaling law 
of (15) is most pronounced at low H; it is this deviation that leads 
to a bias for those estimators based on (15), as shown in Table 11. 

The actual estimator for H, based on the multiscale model of 
(6) and (7) and the variances of (13), takes precisely the form as 
outlined in (S), in which the likelihood maximization is performed 
using standard nonlinear techniques (e.g., the section search method 
of MATLAB). 

IV. EXPERIMENTAL RESULTS 

Sixty four fJ3m sample paths, each having a length of 2048 
samples, were generated using the Cholesky decomposition method 
of [7 ] ;  this is precisely the same approach as in Kaplan and Kuo 
[4], whose experimental results form the basis of comparison with 
ours. 

The performance of three fBm estimators is compared in Table 111. 
The bias in the estimator of [I 11 for low H ,  as was argued earlier 
based on Table I, is evident. In addition, recall that the multiscale 
model of (6) and (7) assumed the wavelet detail coefficients to 
be uncorrelated; this assumption becomes progressively poorer as 
H increases [3], leading to an increase in the error variance for 
our estimator at large H .  Nevertheless, our method still performs 
reasonably well over quite a wide range of values of H. Moreover, 
using the techniques developed in [SI, we can construct higher order 
multiscale models that account for most of the residual correlation in 
the wavelet coefficients. However, since fBm itself is an idealization, 
the benefit in practice of such higher order models over that based 
on the low-order model (6) and (7) depends on the application. 

Our approach also applies equally well in a variety of other settings. 
In particular, the multiscale measurement model (4) does not assume 
that R(s)  is constant over the finest scale (permitting nonstationary 
measurement noise), and it does not assume that a measurement 
exists at each finest scale node (permitting nonuniformly sampled 
processes in which each intersample spacing is an integer multiple 
of some period 7'). Both of these special cases are accomplished 
with essentially no change in the algorithm; an example of each is 
illustrated in Table IV. In addition, by using a quadtree rather than a 
dyadic tree, we can also apply these techniques in 2-D. An example 
of such an application to the estimation of nonisotropic fractal 
parameters for a 2-D random field based on irregular, nonstationary 
data is given in [2]. 
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Corrections to “Signal Processing Applications 
of Oblique Projection Operators” 

Richard T. Behrens and Louis L. Scharf 

In Section VI of the above paper,’ we presented an application 
of our results to intersymbol interference. Although the equations in 
that section are correct, we drew an erroneous conclusion in the text. 
The incorrect statement is that “. . .we can at least make sure that the 
first element of @%, namely i j ( i ) ,  has all IS1 removed by choosing as 
S the first m columns of H since these are the only columns that 
contribute to the first element of y,.” 

On the contrary, the remaining columns of H can, and generally 
do, contribute to the first element of yz, and it is not generally possible 
to construct a zero-forcing equalizer in this manner. 

We thank D. Slock for pointing out this error. 
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A Delta MYWE Algorithm for Parameter 
Estimation of Noisy AR Processes 

Qiang Li, H. (Howard) Fan, and Erlandur Karlsson 

Abstract-In this correspondence, we develop a delta-operator-based 
modified Yule-Walker equation algorithm (MYWE) for parameter es- 
timation of a noisy autoregressive (AR) process. The methodology in 
developing this new algorithm is similar to the previous works on 
pure AR processes. Computer simulation results are given to show the 
improvement of performance in estimating AR parameters in white noise 
over the q-operator MYWE algorithm. 

I. INTRODUCTION 

In [l]  and [2], 6 operator off-line and on-line Levinson-type 
algorithms have  been developed. These algorithms have shown 
their advantage over q-operator-based algorithms for their superior 
numerical ability for ill-conditioned data. However, It is well known 
that Levinson-type algorithms can efficiently estimate noise-free AR 
processes but perform poorly when estimating a noisy AR process 
[5] .  Therefore, these 6 operator algorithms still cannot overcome the 
difficulty of estimating noisy AR processes accurately, which is also 
the case with q-operator Levinson algorithms. 

One of the methods to estimate noisy AR processes is to use 
an autoregressive moving average (ARMA) model for a noisy AR 
process and the so-called modified Yule-Walker equation (MYWE) 
algorithm [5] to estimate the AR parameters under this situation. 
However, when it is applied to an ill-conditioned noisy AR process 
and implemented in finite precision, the poor performance of this 
q-operator-based algorithm becomes obvious. In other words, when 
poles of this AR process are close to the so-called lightly damped 
low-frequency (LDLF) region that corresponds. to fast sampling, 
the estimation error of the AR parameters using the traditional q- 
operator MYWE algorithm will become large and unacceptable in 
finite precision implementation. 

In this correspondence, a 6 b  -operator MYWE algorithm is devel- 
oped by transfonning the q-operator MYWE algorithm into the 6 b  

domain. A backward difference is defined as 6 b  = where 
1 is a positive constant and is often chosen to be the same as the 
sampling interval, and q-’ is a delay operator. Some Sb-operator- 
related issues such as the relationship and comparison of 6 b  and 
6 operators were addressed in [2] and are not repeated in this 
correspondence. Computer simulation results are given to show the 
improvement of the accuracy of parameter estimation performed by 
the &operator MYWE algorithm over q-operator MYWE algorithm 
for finite precision implementation. 

11. DEVELOPMENT OF A 6b-OPERATOR MYWE ALGORITHM 

A noisy discrete-time pth order AR process can be modeled as 

Manuscript received February 9, 1995; revised November 3, 1995. This 
work was supported by the Office of Naval Research under Grant N00014- 
90-5-1017 and by the NSF under Grant INT-9321821. 

Q. Li is with Hughes Network Systems, Germantown, MD 20876 USA. 
H. Fan is with the Department of Electrical and Computer Engineering, 

University of Cincinnati, Cincinnati, OH 45221 USA (e-mail: h.fan@uc.edu). 
E. Karlsson is with Systems and Control Group, Uppsala University, 

Uppsala, Sweden. 
Publisher Item Identifier S 1053-587X(96)03071-1. 

1053-587X’96$05.00 0 1996 IEEE 


