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Abstract—Features based on Markov random field (MRF) models are sensitive to

texture rotation. This paper develops an anisotropic circular Gaussian MRF

(ACGMRF) model for retrieving rotation-invariant texture features. To overcome

the singularity problem of the least squares estimate method, an approximate least

squares estimate method is designed and implemented. Rotation-invariant

features are obtained from the ACGMRF model parameters using the discrete

Fourier transform. The ACGMRF model is demonstrated to be a statistical

improvement over three published methods. The three methods include a

Laplacian pyramid, an isotropic circular GMRF (ICGMRF), and gray level

cooccurrence probability features.

Index Terms—Markov random field (MRF), Gaussian MRF (GMRF) model,

isotropic, anisotropic, least squares estimate (LSE), discrete Fourier transform

(DFT), rotational invariance, texture analysis, classification.
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1 INTRODUCTION

A challenging problem in image classification is to extract robust

rotation-invariant texture features. A Markov random field (MRF)

[1] is a powerful tool to model the probability of spatial

interactions in an image and has been extensively applied to

extract texture features for image classification. As features based

on MRF models are generally rotation-variant [2], the application

of MRF models for classifying rotated images is strictly limited.

Some research has alternatively considered the frequency

domain to extract rotation-invariant features for image textures.

Greenspan et al. [3] applied a set of oriented pyramid filters to an

image texture and obtained a set of filtered energies. Porter and

Canagarajah [4] removed the HH wavelet channels and combined

the LH and HL wavelet channels to obtain rotation-invariant

wavelet features. They also used circularly symmetric Gabor filters

to extract rotation-invariant features. A further exploration of

extracting rotation-invariant features through Gabor filters was

done by Haley and Manjunath [5]. Cohen et al. [2] estimated

rotation angle and scale parameters based on a GMRF (Gaussian

Markov random field) model in the frequency domain. Kashyap

and Khotanzad [6] constructed an isotropic circular GMRF

(ICGMRF) model to extract rotation-invariant features. The

ICGMRF model is defined in a circular neighborhood system.

The values of the neighbors which are not located on the image

grid are bilinearly interpolated. The values of all equiradius pixels

are used to generate only one feature. The ICGMRF model,

therefore, discards directional information in the possibly non-

isotropic textures [2]. To capture directional information, the

ICGMRF model will be extended into a novel anisotropic circular

GMRF (ACGMRF) model in this paper. The one-dimensional

discrete Fourier transform (1D DFT) will be employed to convert

the parameters of the ACGMRF model into a set of rotation-

invariant features [3], [7]. Ojala et al. [8] used an occurrence

histogram to perform rotation invariant texture classification. Pun

and Lee [9] applied a log polar transform to perform texture

classification that is both rotation and scale invariant. Some papers

that study rotation-invariant texture features perform comparisons

with other methods [9], [8], [4]; however, not all papers perform

comparisons [2], [3], [5], [6].

As the values of the interpolated neighbors in the ACGMRF

model are highly correlated, the parameter estimation is unreliable

since a singular or nearly singular matrix may occur when using

least squares [10] or maximum likelihood [10]. This paper

demonstrates a design of an approximate least squares estimate

(ALSE) method to overcome this singularity problem. The rotation-

invariant ACGMRF features are shown to be a statistical improve-

ment over rotation-invariant features based on the ICGMRF model,

the steerable Laplacian pyramid method [3], and the cooccurrence

method [11], when classifying rotated textures.

Here, Section 2 discusses the extension of the ICGMRF model to

the ACGMRF model. Section 3 discusses the ALSE method to

estimate parameters of the ACGMRF model. Section 4 presents

experiments and Section 5 concludes this paper.

2 ANISOTROPIC CIRCULAR GAUSSIAN MRF MODEL

2.1 Isotropic Circular Gaussian MRF (ICGMRF) Model

Readers are referred to [1], [12] for details of MRF models, a

recognized technique for modelling image textures. In the two-

dimensional image lattice S ¼ fs ¼ ði; jÞj1 � i � H; 1 � j � W , i; j,

H;W 2 Ig (where H and W are the image height and width in

pixels), the pixel values x ¼ fxsjs 2 Sg are a realization of random

variablesX ¼ fXsjs 2 Sg. A typicalMRFmodel is theGaussianMRF

(GMRF) model [1] which is widely used for modeling image

textures. The GMRF model is also a stationary noncausal two-

dimensional autoregressive process which is described by the

following difference equation:

xs ¼
X

sþr2Ns

�rxsþr þ �s; ð1Þ

where r is the relative position with respect to the central pixel s,

Ns is a neighborhood system centered at s, and f�sg is a stationary

Gaussian noise sequence with a zero mean and a known

autocorrelation [1]. �r is the parameter describing directional

information between pixels xsþr and xs. All �r in the neighborhood

system Ns form the vector parameter � ¼ f�rjsþ r 2 Nsg.
The property of the neighborhood system Ns is determined by

its order and structure. The order of Ns determines the spatial

range of the neighborhood. The structure of the neighborhood

system Ns determines the spatial distribution of neighbors in the

neighborhood. For the parameter vector �, its dimensionality and

inherent directionality are therefore dependent on the order n

together with the structure of the neighborhood system Ns.

A rectangular grid is typically used as the structure of the

neighborhood system Ns in a GMRF model [1], [10], [12]. Here,

such a neighborhood system is referred to as a rectangular

neighborhood (RN) system. Fig. 1a shows an RN system in

different orders. The shape of the RN system changes when it is

rotated by any angle except multiples of �
2 radians. Each rotation of

an RN system will therefore generate a different spatial distribu-

tion of neighbors.
Kashyap and Khotanzad [6] proposed for the GMRF model a

circular neighborhood (CN) system (shown in Fig. 1b) which can
achieve a rotation-invariant spatial distribution of neighbors. All
neighbors in a CN system are located on only a single circle. Values
of the neighbors are estimated using the bilinear interpolation
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method. Kashyap and Khotanzad further restricted the parameter
�r to be the same value if sþ r is located on the same concentric
circle. Equation (1) is changed to:

xs ¼
Xn
k¼1

�k
X

jrj¼k;sþr2Ns

xr

2
4

3
5þ �s: ð2Þ

This GMRF model is referred to as an isotropic circular GMRF
(ICGMRF) model in this paper.

Although the features based on the vector parameter � ¼
f�k; k ¼ 1; . . . ; ng are rotation-invariant, their limitation of model-

ling textures is obvious as textures do not necessarily have

isotropic neighbors but anisotropic neighbors that can be reflected

as directional information [2].

2.2 Anisotropic Circular Gaussian MRF (ACGMRF) Model

Definition 1. An nth order circular neighborhood (CN) system is
CNn

s ¼ fsþ r
��jrj ¼ k; 0 < k � n; k 2 Ig. All neighbors on the same

concentric circle are evenly distributed, and the number of neighbors
on different circles is the same.

According to this definition, the CN system used by Kashyap

and Khotanzad [6] is the first order CN system CN1
s . An angle

interval between two nearest neighbors on the same concentric

circle is defined as � ¼ 2�
� , where � is the number of neighbors on

one concentric circle in the CN system. The third-order CN system

with 16 orientations is shown in Fig. 1c. It can be seen that a CN3
s

has a similar spatial distribution of neighbors as the ninth-order

RN system. The GMRF model defined in the nth order CN system

CNn
s has the following difference equation:

xs ¼
X

sþr2CNn
s

�rxsþr þ �s: ð3Þ

As the parameter �r may be different for different circular

neighbors, this model is referred to as an anisotropic circular

GMRF (ACGMRF) model. Note that this equation is still a

function of the order n in the CN system.

3 PARAMETER ESTIMATION

3.1 Approximate Least Squares Estimate

Due to its computation efficiency, the least squares estimate (LSE)

method has been commonly accepted to estimate the parameters of

GMRF models [10]. Define a quadratic difference Q between the

central pixel xs and its neighbors in the ACGMRF model:

Q ¼
X
s

xs �
X

sþr2CNn
s

�rxsþr

0
@

1
A

2

: ð4Þ

The least squares estimate of �r is [10]:

� ¼
X
s

ZsZ
T
s

" #�1 X
s

Zsxs

" #
; ð5Þ

where Zs ¼ colfxsþrjsþ r 2 CNn
s g.

This solution may encounter a singularity problem when � � n

is larger than the number of neighbors in the rectangular grid. This
is because the interpolated values of the neighbors are highly
correlated. The estimate is unreliable when encountering a
singular or near singular matrix. Using uncorrelated data can
overcome the singularity problem. For this purpose, the para-
meters of the ACGMRF model can be divided into a number of
groups and then estimated separately.

Denote the set of all parameters of the nth order ACGMRF
model by � ¼ f�rjsþ r 2 CNn

s ;8sg. � can be divided into
m groups: �1; �2; � � � ; �m. Each group �k describes a corresponding
group of neighbors in CNn

s , denoted by ðCNn
s Þ

k. The parameter
groups �1; �2; � � � ; �m should satisfy the following conditions:

1. �k ¼ f�k
r j�k

r ¼ �r; sþ r 2 ðCNn
s Þ

kg, where 1 � k � m and
k 2 I.

2. �k 6¼ ; and �k
T
�k0 ¼ ;, for 1 � k; k0 � m and k 6¼ k0.

3. �1
S
�2

S
� � �

S
�m ¼ �.

The groups of pixel values xCNn
s
¼ fxsþrjsþ r 2 CNn

s g corre-
sponding to �1; �2; � � � ; �m are denoted by x1CNn

s
; x2CNn

s
; � � � ; xmCNn

s
,

where xkCNn
s
¼ fxksþrjxksþr ¼ xsþr; sþ r 2 ðCNn

s Þ
kg. Based on taking

partial derivative of the quadratic difference Q (for succinctness,
the details are not shown), two approximate least squares
estimation method can be obtained. The first approximate least

squares estimate (ALSE) method can be designed as:

�k ¼
X
s

Zk
s ðZk

s Þ
T

" #�1 X
s

Zk
s xs

" #
; ð6Þ

where Zk
s ¼ colfxsþrjsþ r 2 ðCNn

s Þ
kg and 1 � k � m. The second

approximate least squares estimate (ALSE) method can be
designed as:

1. For estimating the first group of parameters �1,

�1 ¼
X
s

Z1
s ðZ1

s Þ
T

" #�1 X
s

Z1
s xs

" #
: ð7Þ

2. For estimating the kth group of parameters �k, where
1 < k � m,

�k ¼
X
s

Zk
s ðZk

s Þ
T

" #�1 X
s

Zk
s ðx0s þ xsÞ

" #
; ð8Þ

where x0s ¼
Pk�1

k0¼1 ð 1mxs �
P

�k0 �k0

r x
k0

sþrÞ.
Let �̂0�0 denote the set of parameters estimated by the LSE

method, �̂1�1 the set of parameters estimated by the first ALSE
method, and �̂2�2 the set of parameters estimated by the second
ALSE method. Three quadratic differences can be obtained: Q0 by
�̂0�0, Q1 by �̂1�1, and Q2 by �̂2�2. The smaller the difference jQi �Q0j
(i 2 f1; 2g) the better the ALSE solution approximates the LSE
solution.

An example for estimating parameters of the linear system y ¼
ax1 þ bx2 is given here. The parameters ða; bÞ are to be estimated and

a total of 1; 024 (¼ 32� 32) sets of y; x1; x2 are generated randomly.

Then, the LSE method and both ALSE methods are applied. The

differences Q0, Q1, and Q2 are computed with the corresponding

estimatedparameters. The above experiment is repeated 200 times to

obtain 200 sets ofQ0,Q1, andQ2 plotted in Fig. 2.Q2 varies closely to

Q0, whileQ1 has a larger deviation fromQ0. This observation is also
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Fig. 1. (a) The fifth-order rectangular neighborhood system. (b) The first-order

circular neighborhood system. r ¼ 1 is the radius of the circle. (c) The third-order

and 16-orientation circular neighborhood system. The number 3:x denotes the xth

neighbor on the third concentric circle.



supported by two indicators: p1 ¼ jmeanðQ1Þ�meanðQ0Þj
meanðQ0Þ � 100 percent

and p2 ¼ jmeanðQ2Þ�meanðQ0Þj
meanðQ0Þ � 100 percent, where meanðQiÞ is the

mean of the 200 sets of Qi. Here, p1 ¼ 2:91 percent and p2 ¼ 0:43

percent. Therefore, the second ALSE method is used for texture

feature extraction in this paper.
The following rules are adopted in this paper to divide

parameters of the ACGMRF model into different groups for the

ALSE method.

1, The parameters for the neighbors on different concentric circles
should be divided into different groups.

2, A basic number of parameters for the nth concentric circle is set
to the number of pixels on the border of the nearest rectangular
grid. When the number of parameters on the nth concentric
circle exceeds the basic number of the nth concentric circle, these
parameters should be separated into different groups.

3, The angle intervals � between the nearest neighbors in a group
should be consistent.

4, The parameters on a lower-order concentric circle should be
estimated before those on a higher-order concentric circle.

3.2 Rotation-Invariant Features

The parameters of the ACGMRF model form a one-dimensional
(1D) vector. A rotation of the circular neighborhood is therefore
equivalent to shifting the 1D parameter vector [7]. The 1D discrete
Fourier transform (1D DFT) can be applied to the 1D parameter
vector and obtain a magnitude vector of the DFT coefficients. The
magnitude vector corresponding to a shifted vector remains
unchanged with respect to the magnitude vector corresponding
to the original vector. This DFT-based magnitude vector is
therefore a set of rotation-invariant features. Note that the number
of nonzero and nonredundant components in the magnitude
vector is much smaller than the total dimension of the magnitude
vector. For a symmetric ACGMRF model (which is implemented in
experiments of this paper), the number of nonzero and non-
redundant components of the magnitude vector is not greater than

n��
4 þ 1, as the values of the 1D parameter vector are real and
symmetric.

4 EXPERIMENTAL RESULTS

4.1 Synthesis of Rotated Image Textures

There are two objectives for this texture synthesis experiment. One
is to verify that the ALSE method is able to properly estimate the
parameters of the ACGMRF model. Another is to verify that a
rotation of the circular neighborhood system, which corresponds
to a shift of the parameter vector, will accordingly generate a
rotated image texture.

The raffia texture (D084) in the Brodatz database [13] is selected
as the original texture. The ALSE method is used to estimate a set
of parameters of the third-order and 16-orientation ACGMRF
model. Five angles (0, �

8,
�
4,

3�
8 , and

�
2 radians) are used to rotate the

circular neighborhood system in the counterclockwise direction,
and five sets of shifted parameter vectors for each rotated texture
are generated, accordingly. The Metropolis sampling method [1] is
employed for texture synthesis. The synthesized rotated textures in
Figs. 3c, 3d, 3e, and 3f display the rotated directional information
relative to the original texture.

4.2 Classification Methodology

The classification experiments are performed in a supervised
manner. All image texture samples are placed into separate
training and testing sets. A set of rotation-invariant features based
on the ACGMRF model is extracted from each image texture
sample, denoted by fj ¼ ffjkj1 � k � ��n

4 þ 1g for the jth sample.
The mean of the training class is denoted by �i ¼ f�ik ¼

1
dim ðfiÞ

P
fj2fi fjkj1 � k � ��n

4 þ 1g for the ith texture class whose
feature set is fi. The distance used in [6] is used in this paper as the
metric to measure the feature distance:

îi ¼ argi min fDðfj; �iÞ; i ¼ 1; 2; � � � ; ng; ð9Þ

where Dðfj; �iÞ ¼
P��n

4 þ1

k¼1
fjk��ik

�k

��� ���, and �k ¼ stdffjk; for all jg. An
error matrix is produced when classifying the test data and Kappa
(�) coefficients and associated confidence intervals (�) are
determined [14].

4.3 Classification of Brodatz Textures

Brodatz textures [13] are commonly used as test data for generic
texture interpretation research. Each Brodatz sample is assumed to
contain only one class. Twelve Brodatz textures are selected for
classification (Fig. 4). Each Brodatz texture has 256� 256 pixels.
These Brodatz textures include regular textures, i.e., D006, D011,
D019, D021, D052, D079, D095, and nonregular textures, i.e., D029,
D036, D037, D084, D087.

Nonrotated images are used for the training data. Test data is
obtained by rotating the images over eleven angles ( �12,

�
6,

�
4,

�
3,

5�
12,

�
2,

7�
12,

2�
3 ,

3�
4 ,

5�
6 , and

11�
12 radians). Only the central 128� 128 regions are

used to avoid boundary problems when rotating. Each 128� 128
rotated image is separated into sixteen 32� 32 nonoverlapping
subimages to represent the texture samples. Then, a set of rotation-
invariant features is extracted from each subimage modeled by the
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Fig. 2. The comparison between the LSE method and the two ALSE methods. Q0,

Q1, and Q2 are the quadratic differences obtained by the LSE, first ALSE, and

second ALSE methods, respectively.

Fig. 3. Texture synthesis based on the ACGMRF model by rotating its CN system. (a) Original texture (D084); (b), (c), (d), (e), and (f) are synthesized textures with the

parameters rotated 0, �
8,

�
4,

3�
8 , and

�
2 radians, respectively.



third-order and 24-orientation ACGMRF model. By the classifica-

tion scheme in (9), the test subimages will be classified into one of

the 12 texture classes.
The ACGMRF model is compared to three other published

methods that extract rotation-invariant texture features. First, the
third-order ICGMRF model features are used as discussed earlier.
Second, rotation-invariant features are produced using the method
proposed by Greenspan et al. [3]. Three scales are used with four
orientations per scale to retrieve steerable Laplacian pyramid (SLP)
features [3]. Third, the gray level cooccurrence probability (GLCP)
texture features [11] are used. The GLCP features are generated by
setting three displacements (1; 2; 3), four orientations (0; �4 ;

�
2 ;

3�
4

radians), and three statistics (entropy, contrast, and correlation)
using 64 quantized gray levels and a 9� 9window [15]. The 1-DFT
method is then applied to convert the GLCP features to be rotation-
invariant.

The results listed in Table 1 show the rotation-invariant features
of the ACGMRF model achieve the highest overall classification
rate among all four methods. Although the SLP method can
classify part of the data set at more than 95 pecent, it fails to
classify textures that tend to be nonstationary such as those in

D021, D036, D037, D052, D079, and D095. The GLCP method
shows strong ability for classifying textures in D011, D029, and
D087, but is not successful for classifying those textures in D019,
D021, D052, D079, D084, and D095. This is because the GLCP
method is relatively weak for capturing information for a regular
texture which has a strong and dominant response in certain
frequencies. Comparative statistical testing of the error matrices
demonstrate that the ACGMRF model is a significant improvement
over each of the ICGMRF model, the SLP method, and the GLCP
method.

As cited in the bibliography, there exist other research papers
that have studied rotation-invariant texture classification. There is
no attempt here to directly compare these classification results to
the classification results in these studies since this would not be
scientifically sound. Each paper uses different data sets, different
training/testing samples, a different number of training/testing
samples, different classification methods, different sized windows,
etc. As such, interpaper comparisons based on percentage
classification accuracy are not suitable. It is noted that there is a
tendency for other papers to use window sizes larger than 32� 32.
A 64� 64 window contains 400 percent of the spatial information
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Fig. 4. Twelve Brodatz image textures. First row from left to right: D006 (wire), D011 (woolen cloth), D019 (woven cloth), D021 (French canvas), D029 (sand), D036

(lizard cloth); second row from left to right: D037 (water), D052 (oriental shaw cloth), D079 (oriented grass-fiber cloth), D084 (raffia), D087 (fossilized sea fan), D095

(brick wall).

TABLE 1
Classification Rates (%) over 12 Brodatz Textures by the Rotation-Invariant Features of the ACGMRF Model, the ICGMRF Model, the Steerable

Laplacian Pyramid (SLP) Method, and the GLCP Method, and Corresponding Kappa Coefficients (�) (�)



compared to a 32� 32 window and is thus expected to generate
higher classification accuracies. When the same ACGMRF method
is applied to 64� 64 samples of the same data set, the classification
rate was indeed higher (95.8 percent versus 82.1 percent).

5 CONCLUSION

An anisotropic circular GMRF (ACGMRF) model is developed by
extending the isotropic circular GMRF (ICGMRF) model to model
textures with directional information. To overcome the singularity
problem for the least squares estimate method, an approximate
least squares estimate method is developed and successfully
implemented in the paper. By using the one-dimensional DFT,
the parameters of the ACGMRF model can be converted into a set
of rotation-invariant features. Experimental results indicate that a
significant improvement of classification accuracy is achieved by
the ACGMRF model with respect to the ICGMRF model and two
other published methods. It is recommended that the ACGMRF
model be used for feature extraction of anisotropic textures.

ACKNOWLEDGMENTS

The authors thank GEOIDE (http://www.geoide.ulaval.ca/) and
CRYSYS (http://www.crysys.ca) for financial support of this
project.

REFERENCES

[1] S.Z. Li, Markov Random Field Modeling in Computer Vision. New York:
Springer-Verlag, 2001.

[2] F.S. Cohen, Z.G. Fan, and M.A. Patel, “Classification of Rotated and Scaled
Textured Images Using Gaussian Markov Random Field Models,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 2, pp. 192-202,
Feb. 1991.

[3] H. Greenspan, S. Belongie, R. Goodman, and P. Perona, “Rotation Invariant
Texture Recognition Using a Steerable Pyramid,” Proc. 12th IAPR Int’l Conf.
Pattern Recognition, vol. 2, pp. 162-167, 1994.

[4] R. Porter and N. Canagarajah, “Robust Rotation-Invariant Texture
Classification: Wavelet, Gabor Filter and GMRF Based Schemes,” IEE Proc.
Conf. Vision, Image, and Signal Processing, vol. 144, no. 3, pp. 180-188, 1997.

[5] G.M. Haley and B.S. Manjunath, “Rotation-Invariant Texture Classification
Using a Complete Space-Frequency Model,” IEEE Trans. Image Processing,
vol. 8, no. 2, pp. 255-269, 1999.

[6] R.L. Kashyap and A. Khotanzad, “A Model-Based Method for Rotation
Invariant Texture Classification,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 8, no. 7, pp. 472-481, July 1986.

[7] H. Arof and F. Deravi, “Circular Neighborhood and 1-D DFT Features for
Texture Classification and Segmentation,” IEE Proc. Conf. Vision, Image, and
Signal Processing, vol. 145, no. 3, pp. 167-172, 1998.

[8] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-Scale and
Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987,
July 2002.

[9] C.-M. Pun and M.-C. Lee, “Log-Polar Wavelet Energy Signatures for
Rotation and Scale Invariant Texture Classification,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 25, no. 5, pp. 590-603, May 2003.

[10] R.L. Kashyap and R. Chellapa, “Estimation and Choice of Neighbors in
Spatial-Interaction Models of Images,” IEEE Trans. Information Theory,
vol. 29, no. 1, pp. 60-72, 1983.

[11] R.M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for
Image Classification,” IEEE Trans. Systems, Man, and Cybernetics, vol. 3,
pp. 610-621, 1973.

[12] J.E. Besag, “Spatial Interaction and the Statistical Analysis of Lattice
Systems (with discussion),” J. Royal Statistical Soc., B, vol. 36, pp. 192-236,
1974.

[13] P. Brodatz, Texture—A Photographic Album for Artists and Designers. New
York: Reinhold, 1968.

[14] T. Bishop, S. Fienberg, and P. Holland,Discrete Multivariate Analysis—Theory
and Practice. Cambridge, Mass.: MIT Press, 1975.

[15] D.A. Clausi, “An Analysis of Co-Occurrence Texture Statistics as a Function
of Grey Level Quantization,” Canadian J. Remote Sensing, vol. 28, no. 1, pp. 1-
18, 2002.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 7, JULY 2004 955


