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Abstract—A novel generalized sampling-based probabilistic scale space
theory is proposed for image restoration. We explore extending the defini-
tion of scale space to better account for both noise and observation models,
which is important for producing accurately restored images. A new class
of scale-space realizations based on sampling and probability theory is in-
troduced to realize this extended definition in the context of image restora-
tion. Experimental results using 2-D images show that generalized sam-
pling-based probabilistic scale-space theory can be used to produce more
accurate restored images when compared with state-of-the-art scale-space
formulations, particularly under situations characterized by low signal-to-
noise ratios and image degradation.

Index Terms—Bayesian, estimation, generalized, image restoration,
noise, nonlinear, probabilistic, sampling, scale space.

I. INTRODUCTION

A powerful approach to multiscale decomposition and analysis that
has gained significant popularity in the research community is scale-
space theory [1], which is a framework for handling the inherent multi-
scale nature of the physical world by representing them across multiple
scales, with a monotonic decrease in fine-scale structures being repre-
sented at each successive scale. One of the motivations for scale-space
theory stems from the idea that, given no prior information about the
scale of structures, the only reasonable course of action is to repre-
sent them at multiple scales [2]. Scale-space theory has become a par-
ticularly powerful tool in pattern recognition and image processing
and has been widely used in feature detection [2]-[5], noise reduction
[5]-[8], segmentation [9]-[13], classification [14], and color constancy
enhancement [15].

While scale-space theory has been shown to be a very powerful,
robust tool for computer vision applications [16], the application of
scale-space theory in the context of image restoration has been largely
limited to noise reduction [5]-[8]. Given that images are often subject
to not only noise but also observation-based degradations, which has
been largely unexplored in the context of scale-space theory, investi-
gating the extension of scale-space theory to account for both noise
and observation models can yield potential benefits for producing ac-
curately restored images.

In this study, we propose a novel generalized sampling-based scale-
space framework based on probability theory for the purpose of image
restoration. The underlying goal of this generalized sampling-based
probabilistic scale-space theory is to extend the definition of scale space
to better account for noise and observation models, which are important
for producing accurately restored images. We study nonlinear scale-
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space theory based on the generalized diffusion equation proposed by
Perona and Malik [3] from a sampling and probabilistic point of view
and derive a sampling-based probabilistic scale-space formulation that
better satisfies the extended scale-space definition for image restora-
tion under an identity observation model. We then derive a generalized
sampling-based probabilistic scale-space formulation that satisfies the
extended scale-space definition for image restoration under nonidentity
observation models.

This paper is organized as follows. Previous scale-space formula-
tions are reviewed in Section II. Scale-space realizations derived using
the generalized diffusion equation is studied based on sampling and
probability theory, and the sampling-based probabilistic scale-space
formulation is derived in Section III. The generalized sampling-based
probabilistic scale-space formulation is derived in Section IV. Finally,
experimental results involving the restoration of 2-D images using the
proposed sampling-based probabilistic scale-space formulation under
different noise and degradation scenarios are presented in Section V,
and conclusions are drawn in Section VI.

II. EXISTING SCALE-SPACE FORMULATIONS

Let S be a set of sites into a discrete lattice £ and s € S be a
sitein £. Let X = {X,|s € S}, Z = {Z,|s € S},and N =
{Ns|s € S} be random fields on S, where X, Z,, and N, take on
values representing the state, observation, and observation noise at site
s, respectively. Let = {xz,|s € S}, z = {zs]s € S},and n =
{ns|s € S} be realizations of X, Z, and N, respectively, such that,
given an observation model H, we have

ze = Has + ns. )

Scale-space theory attempts to represent x, as a single-parameter
family of derived realizations /., where ¢ is a scaling parameter
that defines the scale of structures in x, being represented. As first
formalized by Witkin [1] and Koenderink and Van Doorn [17], an
m-dimensional scale-space realization I, ; can be defined as the
convolution of [ o = z, with a Gaussian function G of variance ¢ as
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This linear scale realization can be equivalently defined as the solution
to the diffusion equation [17]

9
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where V2 is the Laplacian. The linear scale-space formulation has been
successfully used in a wide variety of computer vision applications
[16], and scale-selection methods have been proposed for the linear
scale-space formulation for robust feature detection [2].

Subsequent work by Perona and Malik [3] proposed that nonlinear
scale-space realizations can be defined by extending to the solution of
the generalized diffusion equation
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where ¢, ¢ is the conduction coefficient, and V is the gradient. As such,
the linear scale space becomes a special case of this nonlinear scale
space where ¢, ; = 1/2. Furthermore, Perona and Malik reasons that
immediate localization and piecewise smoothing are important criteria
to consider [3] and proposed the use of a nonnegative conduction co-
efficient that is a function of the gradient magnitude to better satisfy

these criteria
[ (uw.q,fu)z}
st =exp |— | ——— .
K

This conduction coefficient discourages diffusion when ||V .|| is
large and encourages diffusion when ||V, (|| is small, hence pro-
moting intraregion structure suppression over interregion structure
suppression as well as structure localization.

Subsequent work in nonlinear scale-space theory have largely been
focused on improving the computation of local conductivities. Catte et
al. [4] proposed the regularization of ||V, .|| using Gaussian regular-
ization priors to improve posedness of the problem. In a similar vein,
Yu et al. [5] proposed a kernelized approximation of |V, || using ra-
dial-basis function kernels to improve posedness of the problem as well
as structural separability. Black ez al. [18] take a different approach to
improving the posedness of the problem by proposing an alternative
conduction coefficient based on robust statistics. Gilboa et al. [7] ex-
tended the generalized diffusion equation into the complex domain by
combining nonlinear diffusion and the free Schrodinger equation and
was shown to provide ramp-preserving characteristics. Arridge et al.
[14] and Undeman and Lindeberg [13] extended the local conduction
coefficient using probability theory. It is important to note that these ex-
isting probabilistic scale-space formulations differ significantly from
the probability scale-space formulation proposed in this study, since
the probabilistic aspect of these works stems from the local conduc-
tion coefficient, while the probabilistic aspect of the proposed proba-
bilistic scale-space formulation stems from the sampling process. The
benefits of the latter approach will be discussed in later sections. Fur-
thermore, the proposed generalized probabilistic scale-space formula-
tion accounts for the observation model, which existing probabilistic
scale-space formulations do not.

Another powerful class of nonlinear scale-space formulations with
more attractive properties that avoids the “false edge” issues faced by
methods based on the model by Perona and Malik [3] are those based
on tensor diffusion models [19]. Such methods utilize the local image
structure as measured by a second moment matrix to adapt local con-
ductivities and have been shown to allow for good feature detection
under noisy scenarios [20].

Given the usefulness of scale-space theory for computer vision ap-
plications [16], there is great potential benefit in utilizing scale-space
theory for the purpose of image restoration. However, existing scale-
space formulations are not designed for the purpose of image restora-
tion and, as such, are limited in this context for several reasons. First,
while effective for feature detection, existing scale-space formulations
can produce poorly restored images in situations characterized by low
signal-to-noise ratios (SNRs) since local information redundancy may
be insufficient for image restoration under such situations. Second, ex-
isting scale-space formulations also do not account for the observation
model and, as such, do not produce accurately restored images when
H is not the identity I. To apply scale-space theory for the purpose of
image restoration, we believe that the definition of scale space should
extended to account for the following criteria.

¢ Noise robustness: The presence of noise should have minimal in-

fluence on the scale-space realizations at all scales, with the ex-
ception of the zeroth scale.

* Observation model awareness: The observation model should

be taken into consideration.

©)
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In Section IIi, we will study scale-space realizations derived using
the generalized diffusion equation using probability theory to gain a
better understanding of limitations of existing scale-space formulations
in the context of image restoration. Furthermore, we will derive the pro-
posed probabilistic scale-space formulation, which addresses the afore-
mentioned criteria.

III. SAMPLING-BASED PROBABILISTIC SCALE-SPACE THEORY

Let X and Z be modeled as Markov random fields (MRFs), where
the probability distributions of X, and Z, given their local neighbor-
hood X, is independent of the rest of @ and z, respectively. Based
on probability theory, the scale-space realization [, ; derived from the
generalized diffusion equation defined in (5) can be formulated as the
expected value of Z, E(Z,), given a conditional probability density
function f(Zs|Rs)

.= E(Z,) = / Z.0(2)42Z,  Z~f(ZR) (D)

Z

where [5 0 = zs and f(Zs|Ns) is estimated in a deterministic manner
using all samples from [, +— within a local neighborhood around site s
weighted by a conduction coefficient ¢, ;. Unfortunately, restricting
samples to be drawn only from within the local neighborhood around
s can result in a poor estimate of f(Z,|RX,) for image restoration for
two reasons. First, since the proximity of samples used to estimate
F(ZsXs) to s is very close, there is significant information overlap
between the samples. As such, the estimate is biased due to the spatial
closeness of the samples to s, which can have a negative impact on the
quality of the restored image. Second, the number of samples used to
estimate f(Zs|R;) is small, and, as such, the estimated f(Zs|X,) is
sensitive to noise, resulting in restored images with low visual quality
in situations characterized by low SNRs.

Intuitively, the visual quality of the restored image in situations char-
acterized by low SNRs can be greatly improved by utilizing a more ac-
curate estimate of f(Zs|R;). To achieve this goal, we forgo the deter-
ministic estimation approach used in existing scale-space formulations
and instead perform a stochastic estimation of the conditional proba-
bility distribution f(Z,|RN,) using a conditional sampling scheme.

Recall that S is a set of sites into a discrete lattice £ and s € S
be a site in £. Let {2 be a random variable in .S. To draw a sample
z that follows the unknown conditional probability density function
F(ZIN,), we first draw a sample w from an instrumental distribution
¢(€2). The instrumental distribution g(£2) used in the implementation
of the proposed formulation is a Gaussian function centered at s with
a standard deviation of o, = 40. The motivation behind the use of
the aforementioned Gaussian function for the instrumental distribution
g(£2) is that it promotes samples that are spatially close to s but does not
eliminate the possibility of samples that are spatially distant to s (which
may still be realizations of f(Z,|R.)). Letus now introduce the concept
of a squared neighborhood gradient magnitude ||Vx, . ¢||,, which
is defined as the cumulative Gaussian-weighted *-norm between two
local neighborhoods

Vi, xg,elly = Z Gro (e = loguwsan)?
rEN,

®)

The associated observation z(w) is then either accepted or rejected as
a realization of f(Z|X,) based on the following condition:

(Voo l, <7 C)]

where 7 is the rejection threshold. If the condition in (9) holds, then
observation z(w) is accepted as a realization of f(Z;|R;). If the con-
dition does not hold, then z(w) is rejected. The conditional sampling
process is repeated until an upper bound v for the number of sam-
ples to draw from ¢(£2) has been reached. The resulting set of samples
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{2w1s- -5 %0, }» weighted by a conduction coefficient cs w,(—1, pro-
vides a significantly more accurate estimate of f(Zs|X;) and can then
be used to compute the expected value E(Z; ). In the discrete case, the
expected value E(Z,) formulated in (7) can be alternatively computed
as

5 (cont) (2
E(Z)==

(10)
Z Cs,w,t
=1

The conduction coefficient ¢, ., used in the proposed probabilistic
scale-space theory extends upon the nonnegative conduction coeffi-
cient proposed by Perona and Malik [3] by making ¢, ., + a function
of the squared neighborhood gradient magnitude ||V, x,, +||, intro-
duced in (8) and given as

_ { <IIWS,NW¢||2)}
Cswit = €Xp |— | —————=]|.
K

Let L; = {Ls+|s € S} bean MRF on S, where L, ; takes on values
representing the scale-space state at site s for scale ¢. Given v sam-
ples {lu,,...,lu, } drawn from conditional probability density func-
tion f(Ls —1|R,) using the conditional sampling scheme, the proba-
bilistic scale-space realization [/, ; can be computed as

an

5 (oot 1) ()

loy=E(Ly ) = 51— (12)
Z Cs,w,t—1
i=1

It is important to note that the probabilistic scale-space realiza-
tion I, in (12) can be considered a special case of the nonlocal
means (NLM) method [23], where, instead of utilizing all samples
in the image like in the traditional view of NLM, we are utilizing
only a small set of relevant samples drawn from the image. However,
this probabilistic sampling process makes a significant difference in
terms of both computational efficiency and estimation accuracy. For
example, in the case of a 256 x 256 image, 65 536 samples used for
estimating each pixel based on the traditional view of NLM. How-
ever, based on the proposed probabilistic sampling approach, only a
small set of samples (e.g., at most 150 samples in our implementa-
tion) are needed to estimate each pixel at each scale. Furthermore, the
proposed approach achieves improved estimation accuracy due to the
use of only relevant samples, which will be illustrated in the exper-
imental results in Section V.

IV. GENERALIZED SAMPLING-BASED PROBABILISTIC
SCALE-SPACE THEORY

While the aforementioned computation of E(Z;) using the sto-
chastic estimate of f(Z,|N,) addresses issues associated with noise,
E(Z,) is only suitable when the observation model H is the identity
1. However, many situations are characterized by observation models
where H is not the identity I, making it important to account for the
observation model to construct accurately restored images. Intuitively,
given that the underlying goal of image restoration is to recover
the original state x,, what we really want to base our generalized
probabilistic scale space realization I ¢ on is the estimate of =, given
H and z,.

Recall that + = {z,|s € S} is a realization of random field
X = {X.|s € S}. Therefore, given Z, ~ (E[Z,],Xz,) and
Ns, ~ (0,En,), where ¥, and X, are the process and noise
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covariances, respectively, the estimate of x given H and z; in the
Bayesian sense can be expressed as

s = argmin E [(;iS - ;L’S)T(;ﬁs - ;l's)] . (13)

Ts

Based on the relationship between x, z, and n; established in (1), the
Bayesian estimate &, takes the form of
#s = Az, + . (14)
A and b can be derived based on the unbiasedness and orthogonality
conditions of the Bayesian estimator, where the estimator is unbiased

and the estimation error is perpendicular to any linear combination of
x5 as

El[#, — Xs] =0 (15)
E [(r ~X.)(aZ. + 5)T] —0. (16)
Given the unbiasedness condition
E[z, — X:] =0
E[(AZ: +b) - X] =0
AE[Z]+b—-E[X.] =0
b=E[X,] - AE[Z.]. 17

Given the orthogonality condition
E (. = X.) (aZ, +8)"] =0
E [(AZS $b— X)) (aZs + /:a)T} =0
E [(Azs +(E[X.] - AE[Z.]) - X.) (0 Z. + 3)"] =0
(AE [(zs _E[Z.]) z,;f‘] -E [(Xs —E[X.]) Zl]) o’ =0.

(13)
For (18) to hold for all values of «
AE [(ZS —E[Z.]) Zf] _E [(XS _E[X.]) ZZ] =0 (19
and so
- - T N
A=E [();5 ~E[X.]) 2! ] E [(ZS ~E[2.) 2! ] .0
Given that
E[HX, + N.]=E[Z/]
E[X.]=H 'E[Z] (3]
E [(XS —E[X.]) ZZ] =y, H" (22)
where X z_ is the process covariance, and
E[(Z. -E[2.)) 2]| = HE2, H + Sy, (23)
where ¥ v, is the noise covariance, A and b can be rewritten as
T T -1
A=Yy, 0" (HSz,H" +3y,) 24)
b=H"'E[Z,]) - AE[Z.]. (25)
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Based on A and b, the Bayesian estimate of @, based on the expected
value E(Z;) given f(Z;|X;) defined in (7) can be expressed as

b= H'E[Z)+ (H Sy, 'H+3;)7"
xH'S3' (2 — E[Z.]). (26)

While (26) provides a nice closed-form solution for &, the covari-
ance matrices X, and ¥, and observation model H are not known
a priori and must be estimated. The approximate solution for &, can
be defined as

—1
kn,
ke (-~ EIZ.])
a

i

2
B+
o2 o2,

&y =kn, T 'E[Z] +

27

where k£, is a nonstationary kernel at site s, aA;Z,, is the estimated noise
variance, and 035 is the estimated process variance as defined by
4%, = / (Zs = E(Z))* f(Zs)da. (28)

z
While not the main focus of this study, the nonstationary kernel &y,
can be computed using the method proposed by Joshi ez al. [22], which
allows for the estimation of spatially varying, nonparametric point-
spread functions (PSFs) from the observed image. First, a blind sharp
image estimation is performed on the observed image, where the edges
in the observed image are localized, the corresponding edge profiles
are predicted, and an estimated sharp image is computed accordingly.
Second, based on this estimated sharp image, a maximum a posteriori
(MAP) estimation approach is used to estimate the PSF that, when ap-
plied to the estimated sharp image, produces the observed image. This
approach has been shown to be very effective at estimating nonsta-
tionary kernels due to motion, defocus, and intrinsic camera properties

[22].

Based on (27), the generalized probabilistic scale-space realization

I, of z, can be defined as

ls,O = Zs, (29)
—1 khs t2 1 -
lsg =kn,, B(Lst 1)+ =+
ol Tl n
kn, ., )
(5',% (55 - E(Ls,tfl)) (30)
where, given v samples {l,, ...l } drawn from conditional prob-

ability density function f(L,+|N,) using the conditional sampling
scheme, the expected value E(L; ;) is computed as

5
S (o) (1)
F(La) = = 31
Z Cs,w,t
=1
and &fs, , is computed as
o 1Y 2
6.0 = = 2 (e = (L) (32)
=1

This generalized probabilistic scale-space formulation accounts for
both noise and nonidentity observation models, making it well suited
for image restoration.

V. EXPERIMENTS

The goal of this section is to investigate the effectiveness of the pro-
posed sampling-based generalized probabilistic scale-space formula-
tion at producing accurately restored images. To achieve this goal, we
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Fig. 1. Set of test images.
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Fig.2. Inthe first set of tests, “Scene” and “Barbara” images were corrupted by
additive Gaussian noise with a standard deviation of ¢ = {10%,40%} of the
dynamic range of the image. In the second set of tests, the “Barbara” image was
corrupted by motion blur of angle § = 0° and length of d = 5 and a Gaussian
blur with a standard deviation of 3 pixels, as well as additive Gaussian noise
with a standard deviation of ¢ = 25% of the dynamic range of the image.

perform a number of experiments involving the restoration of natural
images and clinical ultrasound images using the proposed prob-
abilistic scale space formulation. For comparison purposes, three
state-of-the-art nonlinear scale-space formulations, as well as the
state-of-the-art NLM restoration method [23] were also evaluated.
The tested scale-space formulations include the nonlinear diffusion
scale space introduced by Perona and Malik [3] (PM), the regularized
nonlinear diffusion scale-space proposed by Catte et al. [4] (CA), and
the complex nonlinear diffusion scale space proposed by Gilboa [7]
(GI). All tested formulations were implemented using the parameters
proposed in the respective works. The proposed generalized sam-
pling-based probabilistic scale space will be denoted as PS. For testing
purposes, the constant x for all tested scale-space formulations was
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o = 40%

Fig. 3. Restored “Scene” images of the tested scale-space formulations and NLM under additive Gaussian noise with a standard deviation of o = {10%, 40%}

of the dynamic range of the image.

set based on the estimated noise standard deviation ¢, of the image.
Furthermore, the upper bound v was set to 150 and rejection threshold
A2 . . .

0,, as it was shown to produce stable results during testing
for various images. Finally, the local neighborhoods used are 9 x 9
rectangular neighborhoods. The set of test images is shown in Fig. 1.
Note that both the “Scene” and “Barbara” images used are 256 x 256.

T =

A. Noise and Degradation

To study the effect of noise and image degradation on the restored
image produced by the different approaches, two sets of tests were con-
ducted on the test images. For the first set of tests, the “Scene” and
“Barbara” test images were corrupted by additive Gaussian noise with
standard deviations of o = {10%, 40%} of the dynamic range of the
image. This set of tests is designed to investigate the effect of different
noise levels on the restored images. For the second set of tests, the “Bar-
bara” test image was first degraded using two different image degrada-
tion models and then corrupted by additive Gaussian noise with a stan-
dard deviation of ¢ = 25% of the dynamic range of the image. The
image degradation models used were a motion blur of angle § = (°
and length of d = 5 and a Gaussian blur with a standard deviation
of 3 pixels. This set of tests is designed to investigate the effect of dif-
ferent observation models on the restored images under the presence of
noise, with the goal of highlighting the importance of accounting for
the observation model during the image restoration process. The de-
graded and noise corrupted versions of the test images used for testing
are shown in Fig. 2. Peak SNR (PSNR) and the mean structural simi-
larity (MSSIM) value [24] was measured to quantify the quality of the
restored images.

The PSNR and MSSIM values for the restored images produced
using the tested scale-space formulations as well as NLM for the
different noise levels are shown in Table 1. The proposed probabilistic
scale space formulation achieves noticeably higher PSNR and MSSIM
when compared with the other tested scale-space formulations and
NLM, thus indicating that scale-space theory can be successfully
extended for improved image restoration. The restored “Scene” and
“Barbara” images produced using the tested scale-space formulations
as well as NLM for the different noise levels are shown in Figs. 3 and
4, respectively. For PM and CA, ¢ = {20, 30} iterations were used to
produce the restored images for o = {10%,40%}, respectively. For
GI, t = {10, 15} iterations were used to produce the restored images

TABLE I
PSNR AND MSSIM OF THE RESTORED IMAGES OF THE TESTED
SCALE-SPACE FORMULATIONS AND NLM UNDER ADDITIVE GAUSSIAN
NOISE WITH A STANDARD DEVIATION OF ¢ = {10%,40%}
OF THE DYNAMIC RANGE OF THE IMAGE

| Scene |
Method o= 10% o = 40%
PSNR (dB) MSSIM | PSNR (dB) MSSIM
PM 37.00 0.952 36.17 0.949
CA 37.00 0.952 36.26 0.949
GI 36.96 0.952 36.48 0.950
NLM 45.34 0.985 37.32 0.910
PS 45.18 0.987 38.15 0.964
| Barbara |
Method o= 10% o = 40%
PSNR (dB) MSSIM | PSNR (dB) MSSIM
PM 24.31 0.650 20.18 0.428
CA 24.28 0.651 20.45 0.451
GI 25.18 0.720 18.67 0.313
NLM 27.75 0.811 20.90 0.457
PS 29.61 0.875 22.15 0.552

foro = {10%,40%}, respectively. For PS, t = 3 iterations were used
to produce the restored images for both noise cases. The scales are
chosen to provide similar levels of noise reduction. Visually, the prob-
abilistic scale space provide noticeably superior structural preservation
when compared to the other tested scale-space formulations, hence
better satisfying the noise robustness criterion for image restoration.
The visual quality of the restored images produced by probabilistic
scale space shows improvements to that produced by NLM for both
o = 10% and 0 = 40%.

The PSNR and MSSIM values for the restored images produced
using the tested scale-space formulations as well as NLM for the dif-
ferent image degradation models are shown in Table II. The proposed
probabilistic scale-space formulation achieves noticeably higher PSNR
and MSSIM when compared to the other tested scale space formula-
tions as well as NLM, thus demonstrating that scale-space theory can
be successfully extended for the purpose of image restoration. The re-
stored images produced using the tested scale-space formulations as
well as NLM for the different image degradation models are shown in
Fig. 5. For PM and CA, t = 20 iterations were used to produce the



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

o =10%

2779

o = 40%

Fig. 4. Restored “Barbara” images of the tested scale-space formulations and NLM under additive Gaussian noise with a standard deviation of o = {10%, 40%}

of the dynamic range of the image.

motion blur of angle & = 0° and length of d = 5

Gaussian blur with a standard deviation of 3 pixels

Fig. 5. Restored images of the tested scale-space formulations and NLM under motion blur of angle § = 0° and length of d = 5 and a Gaussian blur with a
standard deviation of 3 pixels, as well as additive Gaussian noise with a standard deviation of ¢ = 25% of the dynamic range of the image.

TABLE II
PSNR AND MSSIM OF THE RESTORED IMAGES OF THE TESTED SCALE SPACE
FORMULATIONS AND NLM UNDER MOTION BLUR OF ANGLE § = 0° AND
LENGTH OF d = 5 AND A GAUSSIAN BLUR WITH A STANDARD DEVIATION
OF 3 PIXELS, AS WELL AS ADDITIVE GAUSSIAN NOISE WITH A STANDARD
DEVIATION OF ¢ = 25% OF THE DYNAMIC RANGE OF THE IMAGE

Method Gaussian blur Motion blur
PSNR (dB) MSSIM | PSNR (dB) MSSIM
PM 18.77 0.386 18.65 0.380
CA 18.77 0.388 18.63 0.379
GI 18.77 0.385 18.63 0.379
NLM 21.07 0.425 21.30 0.440
PS 22.17 0.518 2222 0.532

restored images for both degradation cases. For GI, ¢ = 10 iterations
were used to produce the restored image for both degradation cases. For
PS, t = 3 iterations were used to produce the restored image for both
degradation cases. As with the previous set of tests, the restored image
produced using probabilistic scale space provide noticeably superior

structural restoration when compared with the other tested scale-space
formulations as well as NLM, hence better satisfying the observation
model criteria. This is due to the fact that the generalized probabilistic
scale-space formulation accounts for both noise and the observation
model, hence providing more accurately restored images under noise
and image degradation.

B. Clinical Ultrasound Image

In the second set of experiments, we study the restored image pro-
duced by the generalized sampling-based probabilistic scale-space for-
mulation for a real clinical ultrasound image of the prostate. A total of
t = 3 iterations were used to produce the restored image. The original
image and restored image produced using the proposed probabilistic
scale space formulation for the clinical image are shown in Fig. 6. The
restored image produced using generalized probabilistic scale space
maintains good structural preservation while much of the noise in the
original image has been suppressed, hence demonstrating the effective-
ness of the generalized probabilistic scale space for producing restored
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Original

Restored

Fig. 6. Original image and restored image produced using the proposed proba-
bilistic scale space formulation for the clinical ultrasound image of the prostate.

images under real-world noise scenarios. The quality of the restored
ultrasound image is important for both visualization and midlevel pro-
cessing such as segmentation, which has potential for improved clinical
diagnosis.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel generalized scale-space framework based on
sampling and probabilistic theory for the purpose of image restora-
tion was introduced. The definition of scale space was extended to
better account for noise and the observation model, which are impor-
tant to image restoration. A generalized scale-space formulation was
derived based on sampling and probability theory that satisfies the ex-
tended scale-space definition for image restoration. The generalized
sampling-based scale-space theory was applied to image restoration
in 2-D images and experimental results show that improved image
restoration performance can be achieved when compared to existing
scale-space realizations under situations characterized by low SNRs
and image degradation. Future work involves investigating alternative
conditional sampling approaches for estimating the conditional prob-
ability density functions in a more efficient and effective manner, dif-
ferent conduction coefficients to further improve structural preserva-
tion and noise robustness, as well as stopping criteria for determining
the optimal number of scales to use.
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