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ABSTRACT
We describe a new model for the detection of edges in a
given image. The model takes the invariance of local features
of the image w.r.t translational symmetry operations into
account. This is done by expressing the symmetries as a local
Lie group and their associated Lie algebras in the regularizer
of our model. Central to our work is the formulation of an
energy density for the regularizer which itself is invariant
under the action of a Lie algebra. Formulated as a Gaussian
Markov Random Field, the parameters of the model are
estimated by the EM principle.

I. INTRODUCTION

The idea of combining multiple image processing tasks
into a single model has gained popularity, triggered by the
seminal paper of Mumford and Shah and related work [1],
[2], [3], which addressed the problem of image denoising.
Given a noisy image Y , the denoised image X and edge-set
S are jointly estimated by maximizing the posterior

P (X,S|Y ) = P (X|Y ) · P (S|X)

− lnP (X|Y ) = µ

∫
Ω

(X − Y )
2 (1)

− lnP (S|X) =
1

2

∫
Ω\S

|∇X|2 dx+ νH (S)

where µ and ν parameters. This approach was developed to
further combine optical flow estimation and image denoising
[4], image deblurring and segmentation [5], [6], [7], level-set
segmentation [8], [9] and image registration [3].

At the center of the approach is the Hausdorff measure
H (S) constraining the length of the edge-set S. Since the
discretization of the edge-set is a tedious problem, [10]
introduced a phase-field approach in which the edge-set S is
implicitly described as the null-space of a function ϕ called
a phasefield

S = {x|ϕ (x) = 0} (2)

[10] also showed that there exists an approximation to the
conditional P (S|X) in the form of a limit procedure with
a limiting parameter ϵ

lim
ϵ→0

P (ϕ|X, ϵ) → P (S|X) , (3)

with further extensions [11], [12], [7] to multi-phase formu-
lations to jointly produce multiple segmentions of a given
image. The approximating conditional P (ϕ|X, ϵ) contains
no prior information about the geometry of S, however such
information is important, particularly for the reconstruction
of object boundaries.

The purpose of this paper is theoretical, to propose a
new prior for ϕ, embedding assumptions on the geometry
of S. We will present an overview of [10] and highlight
the problems of the conditional P (ϕ|X, ϵ); we will then
introduce the concept of conservation which we use in the
development of our prior.

II. CONTINUOUS SEGMENTATION

Our focus is on P (ϕ|X, ϵ), the posterior for ϕ. The
following posterior was proposed in [10]:

P (ϕ|X, ϵ) ∼ P (X|ϕ) · P (ϕ|ϵ) (4)

− lnP (X|ϕ) =
∫
Ω

(
1

2
ϕ (x)

2 ∥∇X∥2
)
dx (5)

− lnP (ϕ|ϵ) =
∫
Ω

(
1

2ϵ
(ϕ (x)− 1)

2
+

ϵ

2
∥∇ϕ∥2

)
dx

The likelihood P (X|ϕ) forces ϕ to 0 at discontinuities in
X (∥∇X∥ ≫ 0). The prior P (ϕ|ϵ) states the assumptions
ϕ = 1 almost everywhere and that ϕ should be continuous.
Furthermore in [10] it is proven that in the limit ϵ → 0 the
maximum a posteriori (MAP) of the posterior is the exact
edge-set S of the image X

S̃ =
{
x|ϕ̃ (x) = 0

}
ϕ̃ = argmax

ϕ

{
lim
ϵ→0

P (ϕ|X, ϵ)

}
While this model leads to good results on images with no
noise, it performs poorly on noisy images, as can be seen
in Fig. 1b, which plots the edge function ϕ learned from
a noisy image. The edge corruption is caused by the fact
that in the limit ϵ → 0 the prior P (ϕ|ϵ) does not impose
any regularity conditions on ϕ. For precisely this reason, our
focus is to construct a new prior for ∇ϕ, P (∇ϕ). P (∇ϕ)
will impose regularity on the tangential component of S.



(a) (b)

Fig. 1: 1a: Noisy image Y , 1b: MAP of ϕ from (4)

Fig. 2: Image with example edge-map ϕ. The white line
denotes the exact edge-set S and the thick black line denotes
the approximation S̃ = {ϕ (x) = 0} to S. ω⊥

xS
is the normal

velocity vector of the set of trajectories ΘxS
intersecting S

at xS .

III. CONSERVED REGULARIZER DENSITY

Our new approach is similar to anisotropic diffusion
[13], [14] in that the prior P (∇ϕ) is required to assume
smoothness along the edge-set S but not normal to it, and
furthermore to assume smoothness in the domain Ω⧹S.
In contrast to [13], [14] our method does not rely on a
point-wise eigenvalue analysis of the structure tensor since
it computes this information implicitly. The main constraint
we pose on P (∇ϕ) is that it should be conditionally
independent on S

P (∇ϕ|S) = P (∇ϕ) (6)

The rationale for the constraint is that we assume two
configurations ϕ1,2 with different edge-sets S1,2 to have
the same probability. That is, we do not want to state any
preference for one edge-set over another, irrespective of size
and geometry.

III-A. Lie Groups and Conserved Quantities

We wish to make more precise the constraint on P (∇ϕ),
eq. (6). We consider a set of arbitrary trajectories ΘxS

, as

shown in Figure 2, which are oriented at the points xS in
the direction of the vector field ω⊥

xS
, which is normal to S

ΘxS
=
{
θxS

: [0, 1] → Ω|θxS
(0) = xS , θ̇xS

(0) = ω⊥
xS

}
(7)

ΘxS fully characterizes the edge-set S and

P (∇ϕ|S) = P
(
∇ϕ|

{
ω⊥ (xS)

})
(8)

Thus the constraint (6) translates via (8) to

P
(
∇ϕ|

{
ω⊥ (xS)

})
= P (∇ϕ) (9)

Ths latter constraint (9) is easier to fulfill in the context of
Lie group theory if P (∇ϕ) belongs to the set of exponential
distributions, such as the energy-density E (x)

− lnP (∇ϕ) =

∫
Ω

E (x) dx (10)

An n dimensional Lie group G over a domain Ω is imposed
by a Lie algebra via the exponential map

exp

(∑
i

ωi (x) · gi

)
= gω ∈ G ω : Ω → Rn (11)

An infinitesimal Lie group Ur ⊂ G is the group within the
open ball Ur around unity

x′
j = xj +

∑
i

δx′
j

δωi
· ωi (x) ∥ω∥ < r

ϕ′ (x′) = ϕ (x) +
∑
i

ωi (x) · (D (gi) ◦ ϕ) (x) (12)

where the representational operator D will be defined later
in (17). From Noether’s theorem [15], [16], given an integral
I =

∫
Q
E (x, ϕ) dx over a region Q ⊂ Ω enclosed by a subset

SG ⊂ S. The change of I under the action (12) is equal to
the divergence of n vector fields Wa : Ω → R2, 1 ≤ a ≤ n

δI = I − I ′ =
∑
a

∫
Q

divWa (x) · ωa (x) dx (13)

If the value of the integral I =
∫
Q
E (x, ϕ) dx remains

constant under the action (12)

I = I ′ (14)

then the vector fields Wa must be divergence free

divWa|Q = 0 (15)

where the Wa are conserved quantities. Using Gauss’s law
(15) translates to

Wa · ω⊥|SG = 0 (16)

where SG is a subset of S and ω⊥ is the normal component
of ω (11) on SG. Thus the integral I is independent of ω⊥

and SG. The pertinent result here is that our prior constraint
is fulfilled for SG

P (∇ϕ|S) = P (∇ϕ|S\SG)



For the rest of this paper we restrict ourselves to the
infinitesimal translation group T over the domain Ω, which
is a two dimensional Lie group with generators t1 and t2.
The representation operators D (ti) are given by the partial
derivatives

D (t1) = ∂x D (t2) = ∂y (17)

and the Wa by
W i

a = δa,i · E (x) (18)

Given (17), then gω in (11) reduces to an element of the
group T. The conditional dependency of ϕ on S reduces via
(13) to the form

I ′ = − lnP (∇ϕ|S) (19)

=

∫
Ω

E (x) dx+

∫
Ω

∂iE · ωidx (20)

If condition (14) is fulfilled then from Noether’s theorem
(15)

∂iE = 0 (21)

Now given (21) we see that ∇ϕ is conditionally independent
of the edge-set S

P (∇ϕ|S) = P (∇ϕ) (22)

IV. STRUCTURE TENSOR
In this section we will introduce an energy-density E

satisfying condition (21) in the absence of noise. Our method
is based on the structure tensor (ST) Aσ introduced in [17],
a well-known tool in image processing, defined as the 2 by
2 matrix

Aσ (x⃗) : =

( ⟨
z2x
⟩σ
x⃗

⟨zx · zy⟩σx⃗
⟨zx · zy⟩σx⃗

⟨
z2y
⟩σ
x⃗

)
(23)

where we define

zx = D (t1)ϕ zy = D (t2)ϕ

⟨f⟩σx⃗ = (Gσ ⋆ f) (x)

The convolution filter Gσ is a Gaussian filter with standard
deviation σ. The eigenvalues a1 and a2 of Aσ characterize
the local neighborhood as

1) a1,2 = 0 ⇒ Constant neighborhood
2) a1 = 0, a2 > 0 ⇒ Neighborhood with dominant

orientation in a2, constant in a1
3) a1,2 > 0, a2 ≫ a1⇒ Neighborhood with dominant

orientation in a2, slowly varying in a1
4) a1,2 > 0 , a1 ≈ a2⇒ Neighborhood with no dominant

orientation (noise, corners)
In order to have E discriminate between cases 1, 2 and 3, 4
we set

E (x) = EST (x) :=
λz

2
det
(
Aσ (x)

)
(24)

avoiding the actual computation of a1 and a2, and ensuring
rotation invariance.

First, for cases 1 and 2, EST vanishes and thus is trivially
conserved.

Next, for case 3, the derivative tangential to the line of
EST is non-zero, ∂yEST ̸= 0. For the derivative normal to
the line it is easily shown that

∂x
⟨
z2x
⟩σ
x⃗
= 0 (25)

at the discontinuity. Thus we have

∂xEST =
1

2

⟨
z2x
⟩
x⃗
∂x

(⟨
z2y
⟩
x⃗

)
̸= 0 (26)

meaning that the conservation of EST is broken only by⟨
z2y
⟩
x⃗

. So regularizing ϕ in the tangential direction alone
retains conservation of EST in both directions.

Finally for case 4 the constraint (21) cannot hold for any
dimension, with the effect that any closed neighborhood R ⊂
Ω with R ∩ S = {0} condition (21) doesn’t hold and by
Gauss’ Law we have

EST |∂R ̸= 0 (27)

This means that EST penalizes this case.
At this point we are ready to estimate ϕ to see the effect of

the prior P (∇ϕ) in the model. P (∇ϕ) in its present form is
numerically difficult to handle since EST is quartic in ϕ. Our
approach to this problem is to loosen the constraint z⃗ = ∇ϕ
by defining a relaxed prior

− lnPR (z⃗|ϕ) =
∫
Ω

ER (x) dx

ER (x) =
λϕ

2

[
(zx − ∂xϕ)

2
+ (zy − ∂yϕ)

2
]

(28)

+
λz

2
Det (Aσ)

This prior is Gaussian for the components of z⃗. PR allows
the development of an EM-like strategy to calculate a
phasefield ϕ̄ given an initial phasefield ϕ0:

1) Start with initial guess ϕ0

2) E-Step: find MAP z⃗n from PR

(
z⃗|ϕn−1

)
3) M-Step: set ϕn = argmax

ϕ
{PR (z⃗n|ϕ)}

4) Repeat the E,M steps until
∥∥ϕn − ϕn−1

∥∥ < ϵ
5) Exit with result ϕ̄ = ϕn

This is essentially a diffusion algorithm which regularizes
the phasefield ϕ0. One example is shown in figure 3. ϕn

resembles the constant line case 2, and it shows that the
component zy which breaks conservation of EST sets the
direction of regularization.

We now use our relaxed prior PR (z⃗|ϕ) as a substitute for
the prior P (ϕ|ϵ) in eq (4)

P (z⃗, ϕ|X) = P (X|ϕ) · PR (z⃗|ϕ) · P (ϕ) ∼ exp (−E)

E =

∫
Ω

(
λ

2
ϕ (x)

2 ∥∇X∥2 + 1

2
(ϕ (x)− 1)

2
+ ER (x)

)
dx

(29)
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Fig. 3: We begin (a) with a synthetic initial image ϕ0 and (b)
its corresponding energy distribution EST (ϕ0). In contrast,
(c) and (d) show the regularized ϕ̄ and ER

(
ϕ̄
)
, the result of

regularization with EST . The prior-based results demonstrate
that the prior PR penalizes the component of the gradient
∇ϕ0 tangential to S while preserving the normal component.

Using this new posterior for the image X in figure 1a we
calculate the MAP estimates (z⃗⋆, ϕ⋆) with an algorithm
similar to the aformentioned one with the difference that we
set an initial guess for z⃗, z⃗ 0 = 0. This reduces (29) to the
original posterior in (4). We then minimize (29) alternately
for ϕn and z⃗ n until ϕn converges,

limϕn

n→∞
= ϕ⋆

Results for the image in figure 1a are shown in figure 4.
Relative to the method of Ambrosio and Tortorelli [10]

in figure 1b, our proposed method very clearly reduces the
noise in the edge space by smoothing in the tangential
direction.

V. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of noise reduc-
tion on the edge-set S, governed by the phase-field ϕ in
Ambrosio’s and Tortorelli’s approach to the Mumford-Shah
posterior (1). We introduced the notion of conservation of
an energy-density EST under the translation group T . This
requirement was shown to be useful in the construction of
a new prior P (∇ϕ). We required EST (x) to be conserved
if the phase-field ϕ contained no noise at point x, and for
conservation to be broken in the case of noise. As a density
fulfilling these requirements we found the determinant of the
structure tensor Aσ (x⃗) to be useful. Using an EM-algorithm

Fig. 4: MAP ϕ⋆ of (29). Observe the significant improve-
ment in edge-space smoothing relative to that of figure 1b.

we proved the effectiveness of our prior P (∇ϕ) on synthetic
and real data.

Our framework is based on the operators in (17), however
an extension to a more general Lie group H with generators
hi is readily possible by replacing the operators D (ti)
with D (hi), an approach similar to that in [18]). The idea
then follows the same principles in section IV, constructing
structure tensors AGi (x) for a set of N Lie groups Gi. A
possible generalization of the energy density in eq. (24) is
the density

E (x) =

N∏
i=1

Det (AGi) (x) (30)

In theory the density (30) should preserve any edge SGj at
the points xS ∈ SGj since the determinant of the corre-
sponding structure tensor vanishes, Det

(
AGj

)
(xS) = 0. A

thorough study of eq. (30) is planned for future experiments.
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