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ABSTRACT

Over the last decade Carbon-Fiber reinforced polymers
(CFRP) have become increasingly important in industry and
consumer oriented products due to their physical robustness
and shape adaptivity. Defect localization and characterization
is key to assuring the quality and durability of CFRPs.

Active thermography has become an important non-
invasive technology for the detection of hidden defects within
CFRP materials. However current active thermographers ex-
hibit resolutions of only up to 640 x 512 pixels, whereas
visible spectrum imagers routinely have resolutions of 10
megapixels and higher. We therefore propose a fusion of ac-
tive thermography and visible imagery data, capable of pro-
ducing higher-resolution thermography images based on the
physical boundaries in the visible domain. Our approach han-
dles the disparity between the two imagers without the need
for stereo or individual calibration.

1. INTRODUCTION

Carbon-Fiber reinforced polymer (CFRP) materials are be-
coming increasingly widespread in automotive and aerospace
industries, but also in consumer goods, due to their adaptiv-
ity to different shapes, good rigidity and high strength-to-
weight ratio. Improved fabrication techniques are reducing
the production costs and time to manufacture. The properties
of CFRP strongly depend on the processing of the material,
thus defect detection and characterization are indispensable,
especially for safety-relevant parts.

Active thermal measurement methods have become vital
for the assessment of the quality of CFRP materials. These
methods are based on the evaluation of a previously excited
heat flow in the tested component and its disturbance by hid-
den defects, illustrated in Figure 1. The heat flow is generated
with a heat pulse or through sinusoidal modulation, observed
with a thermography camera, followed by a pixel-wise com-
putation of the complex phase between the excitation signal
and the reflected infrared signal. This phase information en-
codes the heat-loss within a penetration depth § of the probed
material, with depths of Imm to 2mm typical for CFRPs.

Current state-of-the-art thermography imagers possess res-
olutions of only 640 x 512 pixels and a noise equivalent tem-
perature difference of 20mK. Nevertheless, these cameras are
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Fig. 1: A sinusoidal excitation source emits a thermal wave
onto a CFRP target. The target may contain a defect
not visible on the surface, but which can be detected
in the infrared (b,c). However a visual image, (d), can
be acquired at a much higher resolution.

very expensive, and the CFRP application domain requires
the detection of defects at the noise limit. On the other hand,
cameras in the visible spectrum are inexpensive and easily
deliver images of 10 megapixels per frame with very little
noise. Therefore our strategy is to enhance the resolution of
thermography images by utilizing high spatial frequency in-
formation from a visible spectrum camera in an image fusion
model which takes the disparity between the imagers into ac-
count without requiring stereo calibration.

The contribution of this paper is a model that is capable of
aligning visual and thermal images without the need for cam-
era calibration. The alignment is achieved through the esti-
mation of a non-rigid transformation d by maximizing cor-
relation, based on the correlation prior p (s|) from [1]. The
results show a significant improvement in image resolution



and defect detectability.

2. BACKGROUND

Thermal cameras are widely used in fields such as remote
sensing [2], the agricultural and food industries [3, 4] and
building inspection [5], but have recently attracted increasing
interest in computer vision. Applications range from using
thermal imagery as a segmentation prior [0], in augmented
reality [7] and in surveillance [8, 9].

Multi-Modal image fusion has seen many applications, in
remote sensing, time of flight imaging [10], and medical im-
age registration [11]. Image registration can also be formu-
lated as optical flow [12, 13] or particle image velocimetry
[14].

The data acquisition apparatus consists of a visible spec-
trum camera (VSC) mounted on top of a thermography cam-
era (TC). The resolution of the VSC is 1226 x 1028 pixels
while that of the TC is 640 x 512 pixels, both cameras with a
focal length of 25 mm. We used a sinusoidal excitation source
with a frequency of 0.1 Hz, which corresponds to a penetra-
tion depth of approximately 1.3 mm in the CFRP.

3. IMAGE FUSION

The rationale behind image fusion is to combine the desired
features of all images, while avoiding limitations, here based
on spectrum and resolution.

The image data do not appear well-suited for image reg-
istration, due to their strong structural differences and noise.
Therefore we propose to apply the relatively straightforward
correlation ratio of [15, 1], instead of resorting to more com-
plex approaches using landmark based thin-plate spline meth-
ods or mutual information [16, 17]. Furthermore, we avoided
notoriously unreliable stereo calibration methods [18] by ap-
plying ideas from variational regularization techniques regu-
larly used in optical flow [13, 19].

The method of [1] combines a global correlation prior and
an image deconvolution likelihood

p(sly, 1) ~p(yls)-p(s|T) )

The likelihood p (y|s) models the low resolution thermo-
graphic image, y, as the result of a blurring and subse-
quent down-sampling of the unknown high resolution ther-
mographic image s with additive white noise n:

y=Wys+n n~N(C,) 2

The actions of Gaussian blurring and down-sampling are en-
coded into the filter W,. The prior p (s|I) extracts the high
frequency structural information from the visible spectrum
image I and adds it to s. We assume that both s and I are
drawn from an approximately Gaussian distribution p (s, I),
an assumption which is at least loosely valid for our data

since, from Figure 2b, the bulk of the probability mass in

the joint probability distribution function p (y, I) is approx-

imately Gaussian. Then p (s|I) = % must also both be

Gaussian
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The conditional mean 147 is linear in the VSC image I and
thus encodes the assumption regarding the linearity between
the TC and the VSC data. Cj; is an estimator for the func-
tional relationship between s and

C5|1=0—>s:,u3|1
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and is associated with the correlation ratio 7 (see [20]) as
Cs\] =Css (L=n(s,1))

The maximization of (1) with respect to s gives the analytical
solution [1]
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(4) is intractable to compute due to the dense operator W,
and the matrix-inverse operation. In [1] a computationally
tractable approximation was introduced
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On the basis of the test, shown in Figure 2, we set the scaling
parameter 0 = 4 to minimize C' 50

The key issue is that this method requires both modalities,
I and y, to be co-registered, which is simply not the case for
our TC and VSC data. It is for this reason that a registration /
disparity strategy is required.

4. DISPARITY

We model the disparity between the TC image y and the VSC
image I by assuming y to be co-registered with I,

Is(x) =1 (x+d(x))

where d (x) is an unknown disparity field. Substituting into
(1) and following, we obtain the likelihood

p(S‘y,I,d) :p(s|y7]d) (5)
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Fig. 2: 2a: Dependence of Cg‘ 7 on the scaling parameter o.
2b: Joint Histogram p (y, I) of the TC and smoothed
VSC image pair y and I at the optimum ¢* = 4, the
scale at which y and I are maximally linear.

The maximization of (5) with respect to d (x) is an ill-posed
problem. For regions Vr of I and V, of y in which I and y
contain little structural information, a pixel x; € V; can be
mapped to any pixel in V,,, meaning that d (x) is ambiguous.
We therefore apply a smoothness prior for d (x). A common
choice for such a prior would be the total variation (TV) norm,
[21,22], . However our tests showed that the TV prior caused
sharp discontinuities from the texture in the VSC image I to
lead to discontinuities in the disparity field d. Instead we pro-
pose an alternate prior

p(d)=exp | -2 / Ivay? (©)
Q

The prior (6) isotropically penalizes variations of d across
boundaries induced by texture in the VSC image. d is thus
not susceptible to such distortions.

Combining (5) and (6) we obtain the posterior

The global optimum of the posterior (7) with respect to s is

81.a = st = s + Corg - CLp (la—pr)  (8)

Inserting 51 q into posterior (7), the (locally) optimal disparity
map d is defined by

d = argmax {p (57,4,d[y, 1)} ©)
d

Figures 4c and 4d depict the resulting flow d and high reso-
lution thermography image s; 5. The alignment of s; 5 and
I at the physical boundaries is well achieved. However the
textured regions of I get in-painted into s ra since they also
belong to the high-frequency domain. To resolve this prob-
lem we deploy a texture decomposition method based on a
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Fig. 3: Synthetic test based on the office sequence from the
middleburry dataset. The ground truth 3a and esti-
mated 3b flow fields are shown, with excellent match.
The mean Endpoint error (EPE) is 0.12.

TV norm to separate the image /4 into a cartoon part » and a
texture part v

Ig=u+v

The cartoon image u is modeled with a total variation model
(TV) defined by the posterior p (u|l, d)

flnp(u|I,d):%/{(uffd)2+a|Vu|}dx (10)
")

removing small high-frequency variations from the image
u while preserving sharp discontinuities. =~ We combine
p (u|l,d) together with our image alignment posterior (7) to
form the joint pdf for s, u and d:

5. RESULTS

Synthetic Data

We have tested our approach on the office sequence provided
in [23] (Figure 3). The first image of the sequence was in-
verted and noise (¢ = 0.2) added while the second image
was left untouched. Figure 3 shows the result of estimating
the disparity, d, between the frames. The endpoint error [24]

EPE — ’& - GT‘

is the basis on which we assess the learned disparity. The
mean EPE is 0.12 while the mean GT length is 0.53 meaning
that d has a measurement uncertainty of approximately 20%:;
the EPE is larger in the floor region of the image, since that
region has is largely structureless and has a low signal to noise
ratio.
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Fig. 4: Based on the amplitude image of the TC 4a and the
high-resolution VSC 4b, the disparity 4c was found.
4d shows the estimated high resolution thermographic
image s ra which possesses undesirable high fre-
quency texture from the visible domain. The TV-Prior
of (10) effectively removes the high frequency tex-
ture, so that s, 4 in 4e inherits only the sharp phys-
ical boundarles from the VSC i image 4b. 4f shows the
intensity along a line in the encircled regions in 4a
(solid) and 4e (dashed). It shows that the gradients in
4e are steeper as in 4a

Real Data

Figure 4 shows the proposed method applied to visual and
thermographic data. The recorded object is a carbon-fiber
section of the hood of a car. The images recorded are not
co-aligned, since the cameras naturally have a displacement

on the camera rig. The estimated disparity, estimated per (9),
is shown in Figure 4c, followed by (8) to estimate the high
resolution thermographic image § ra The disparity map d
in Figure 4c clearly aligns the images, such that the physical
edges of the CFRP in the thermographic image (Figure 4a)
are enhanced with the edge information of the visible spec-
trum imager (Figure 4b). Since the car hood is in thermal
equilibrium its intensity distribution is spatially uniform in
the thermal domain, whereas in the visible domain the carbon
fiber structure is visible as a texture which gets in-painted in
Sra (Figure 4d). This texture is clearly an undesired effect,
as the aim of our approach is to enhance only the physical
boundaries. Consequently, the TV prior for the cartoon im-
age u resolves this problem by removing the texture while
preserving the sharp edge discontinuity, shown in Figure 4e.
To illustrate the edge sharpness more clearly, Figure 4f plots
a sample line scan of interest in Figures 4a (solid line) and 4e
(dashed line), showing the improved sharpness of the discon-
tinuities in resolution-enhanced image compared to those in
the TC image.

Conclusion

In this paper we introduced active thermography imaging as
a means for quality assurance of Carbon-Fiber Reinforced
Polymers (CFRP). We tackled the problem of low resolution
of current active thermographers by proposing a combination
of active thermographer and higher resolution visible spec-
trum imager. Our proposed model jointly computes the phys-
ical disparity between both imagers and a higher resolution
thermography image. With this approach we can compute
the disparity without the need of camera calibration, as was
shown in tests on both synthetic and real data with compelling
results.
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