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Abstract

In the statistical estimation context, the dif-
ficulty in the transition from two– to three-
dimensional problems is much more than an in-
crease in the number of pixels: the complexity
per pixel is cubed!, even for efficient estimation
algorithms. That is, even aside from the other
challenges posed by 3D estimation (e.g., com-
plex data structures, the difficulty of determin-
ing empirical statistics), the computational issues
alone are significant and merit attention. This
paper introduces an alternative approach, moti-
vated by multiscale estimation and the multipole
algorithm of mathematical physics.

1 Introduction

The statistical estimation of even modestly-sized
three-dimensional and large, global scale, two-
dimensional remote sensing problems problems
presents tremendous and pertinent challenges:
heightened environmental awareness and con-
cerns have led to an explosion in the quantity of
remotely-sensed data, much of which contains ir-
regular gaps and nonstationary underlying fields.
Figure 1 shows one motivating example: the es-
timation of the volumetric temperature distribu-
tion in the central Pacific based on sparse data[2].

The origin of the difficulty in producing statis-
tical estimates is straightforward. Methods such
as nested dissection or multiscale estimation[1]
are all based on a recursive divide-and-conquer
metaphor: a subset of the random field needs
to be found, such that conditioned on this sub-
set the remaining portions of the field are condi-
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Figure 1: The Pacific basin bathymetry and
sparse measurement distribution (measurements
are taken at all depths below each circle).

tionally independent and hence can be processed
separately. For example, the four quadrants of
a first-order Markov random field can be decor-
related by conditioning on the boundary pixels,
shown in Figure 2. So whereas a single pixel can
decorrelate the two halves of a one-dimensional
process, a column of pixels is required for the 2D
field in Figure 2, and a whole plane of pixels in
three dimensions (Figure 1). Thus for an n×n×...

hypercube of voxels in d dimensions, the compu-
tational effort to solve the estimation problem is

O(n(d−1)3) (1)

= O(n(2d−3)) per pixel (2)

in other words, O(n3) per pixel in 3D, which very
rapidly becomes infeasible for large n. That is,
aside from the other challenges posed by estima-
tion in three-dimensions, the computational is-
sues alone are significant and serve as the focus
of the research in this paper.
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Figure 2: Densely sampled boundaries which con-
ditionally decorrelate the four quadrants of a
first-order Markov random field.

2 Multiscale Estimation

The multiscale statistical estimation method[1, 3]
has, at its core, the following statistical model:

x(s) = A(s)x(sγ̄) + B(s)w(s) (3)

where s is an index on a tree with parent sγ̄,
A and B are deterministic matrices, and w is a
white-noise process. This equation is essentially a
restatement of the conditional decorrelation dis-
cussed in the Introduction: the whiteness of w

implies that the state x(sγ̄) must conditionally
decorrelate all states connected to sγ̄, leading to
a large state dimension or, in the case of reduced-
order states (which do not reduce the asymptotic
computational complexity), some level of incon-
sistency across the quadrant boundaries.

For example, Figure 3 shows a measured “tree
grain” Markov random field texture. A good
reduced-order multiscale state definition[3] was
used to produce the estimates in Figure 4, which
faithfully (in an MSE sense) capture the random
field’s statistics, but also manifest artifacts at the
quadrant-boundary. A similar approach[2] can be
used to solve the 3D problem of Figure 1 by ap-
plying the singular value decomposition to the
vertical statistics, approximately decoupling the
3D problem into a set of 2D ones, each of which
can be solved independently. Although this ap-
proach is feasible — sample estimates are shown
in Figure 5 — the decoupling makes certain sta-
tionarity assumptions and offers limited vertical
resolution.

Figure 3: “Tree grain” sample path; the whole
field is observed at 0dB SNR, a portion of which
is shown at the top of the image.

Figure 4: Estimates based on a reduced-order
multiscale model applied to Figure 3.
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Figure 5: Two planes of Pacific temperature es-
timates, corresponding to Figure 1, based on a
decoupled set of models.
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Figure 6: A reduction in state from Figure 2,
appropriate for estimating the top-left quadrant.

3 Proposed Approach

The key problem with the state representation
in Figure 2 is that it attempts to decorrelate too
much: in terms of estimating quadrant “2”, keep-
ing details of the distant part of quadrant “4” is
largely irrelevant; that is, the reduced state of
Figure 6 will perform very nearly as well. Al-
though we now require four such reduced models
(one for each quadrant), the computational effort
is less than one fourth of that before, giving an
overall performance increase. We can apply this
insight recursively, for example finding an even
further reduced set of states to estimate just a
portion of quadrant ’2’ etc. Taken to the extreme,
we can imagine defining a state to estimate just a
single pixel; Figure 7 shows an example of such a
state, in which the resolution at which each por-
tion of the field is represented is proportional to
the distance to the pixel being estimated. Al-
though such an approach may seem impractical,
the asymptotic state dimension is only O(log n)
in 2D and in 3D, implying a matrix-inversion ef-
fort of only O[(log n)3] per pixel, which is an enor-
mous improvement over (2).

This approach is illustrated in Figure 8, where
the “tree grain” field is estimated pixel-by-pixel
based on the measurements of Figure 3. The
estimates are reasonable, possess no quadrant-
boundary artifacts, and the corresponding error
statistics (not shown) are accurate to within 10%.

Significant challenges remain. The per-
pixel complexity of O[(log n)3] represents matrix-
inversion time only; the effort required to com-
pute all of the needed joint statistics can very eas-
ily overwhelm this complexity unless we are very
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Figure 7: One possible limiting case of Figure 6
for estimating the single pixel (18,9). The state
elements are either individual pixels (solid circles)
or local averages of pixels (open circles).

Figure 8: Estimates of Figure 3, but now based
on a pixel-by-pixel state assignment.

careful. Furthermore to apply the concepts of
Figure 7 to large 3D problems will require an ef-
ficient software implementation. Both issues will
be discussed in detail at IMDSP’98.
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