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Abstract—Despeckling of complex polarimetric SAR images is
more difficult than denoising of general images due to the low
signal-to-noise ratio and the complex signals. A novel stochastic
polarimetric SAR despeckling technique based on quasi Monte
Carlo sampling (QMCS) and region-based probabilistic similarity
likelihood has been developed. The despeckling of complex
polarimetric SAR images is formulated as a Bayesian least
squares optimization problem, where the posterior distribution
is estimated by QMCS in a nonparametric manner. The QMCS
approach allows the incorporation of the statistical description of
local texture pattern similarity. Experiments on two benchmark
quad-pol SAR images demonstrate that the proposed QMCTLS
filter outperforms referenced methods in terms of both noise
removal and detail preservation.

I. INTRODUCTION

Polarimetric SAR imagery is a very important source of
information for a wide range of remote sensing applications,
including terrain classification, target detection, and sea-ice
analysis. However, polarimetric SAR imagery is contaminated
by speckle noise, which greatly hampers visual interpretation
and computer-aided data analysis. While signal averaging is a
common tool used to deal with speckle noise in non-complex
SAR magnitude data, the scattering matrix for complex po-
larimetric SAR data needs to be converted to a covariance or
coherency matrix before performing averaging [1]. The sim-
plest method is the boxcar method that performs the filtering
in a square window. Lee et al. [2] used a local statistics filter
which is applied in edge-aligned nonsquare windows. Vasile
et al. [3] proposed an intensity-driven adaptive-neighborhood
(IDAN) filter which adopts an adaptive neighborhood formed
by a region growing technique. Such local methods are not
easy to achieve an optimal balance between noise removal
and detail preservation.

In contrast to these local methods, the non-local means
(NLM) approaches perform despeckling based on observa-
tions that are beyond the traditional local window. In NLM
approaches, observations that are similar to the referenced
observation in a nonlocal searching area are used for per-
forming weighted averaging. Chen et al. [4] proposed a
despeckling method called “Pretest” which uses a likelihood-
ratio test statistic based on the complex Wishart distribution
to measure the similarity between patches. Liu and Zhong [5]
proposed a filter based on discriminative similarity measure
under a maximum a posteriori (MAP) framework. Torres et

al. [6] proposed a new polarimetric filter based on stochastic
distances, hypothesis test and nonlocal means techniques.

In this letter, complex polarimetric SAR despeckling is
formulated as a Bayesian least squares optimization prob-
lem, where the posterior distribution is estimated non-
parametrically by quasi Monte Carlo sampling (QMCS). Pre-
viously Monte Carlo sampling approaches have been applied
for denoising of natural images [7] and despeckling of single-
channel SAR images [8]. However, both approaches are not
suitable for the despeckling of complex polarimetric SAR
images, considering the particularities of polarimetric SAR
data. This letter therefore aims to design a new statistical
approach based on QMCS for complex polarimetric SAR
image despeckling. Compared with the traditional Monte
Carlo sampling, QMCS has faster convergence rate, and thus
requires fewer samples to achieve an accurate estimation of
the posterior distribution. Moreover, a region-based acceptance
likelihood based on the complex Wishart distribution is used
to aid the QMCS process. Compared with the pixel-based
likelihood, the region-based likelihood is capable of capturing
the local textual patterns, and is therefore more robust to
speckle noise. After the posterior distribution is obtained, the
noise-free image value is estimated as the discrete conditional
mean.

II. METHODOLOGY

A. Complex Polarimetric SAR Noise Model

The degradation model of multi-look polarimetric SAR
images can be formulated as [9]:

Z = C + Nm + Na (1)

where Z is the observed covariance matrix, C is the true
covariance matrix, Nm represents a multiplicative speckle
noise component, and Na represents an additive speckle noise
component.

Z is usually modeled as a complex Wishart distribution [1]:

p
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where n is the number of looks, q is the number of elements
in the covariance matrix, which is equal to 3 under the



Original image Boxcar

IDAN [3] Lee [2]

Pretest [4] QMCTLS
Fig. 1. Zoomed-in of the San Francisco image, containing both sea and
urban areas. The proposed QMCTLS filter achieves a smoother result within
the homogeneous sea area, and preserves details in the urban area

reciprocity assumption, Tr(·) is the trace of the matrix, |·|
is the determinant function, and Γ(·) is the Gamma function.

B. Problem Formulation

Complex polarimetric SAR image despeckling is essentially
an inverse problem, where the estimation of noise-free value
C from the observed noisy-value Z can be formulated as a
Bayesian least squares optimization problem [10]:

Ĉ = argmin
C

{
E((C− Ĉ)2 | Z)

}
= argmin

C

{∫
(C− Ĉ)2p(C | Z)dC

} (3)

In the above equation, p(C | Z) represents the posterior
distribution of C given Z. To estimate Ĉ, the derivative is
taken and set to zero:

∂

∂Ĉ

∫
(C− Ĉ)2p(C | Z)dC =

∫
2(C− Ĉ)p(C | Z)dC = 0

(4)∫
Cp(C | Z)dC =

∫
Ĉp(C | Z)dC (5)

The right-hand side of (5) can be simplified as:∫
Ĉp(C | Z)dC = Ĉ

∫
p(C | Z)dC = Ĉ (6)

Therefore, the goal is to estimate the conditional mean:

Ĉ =

∫
Cp(C | Z)dC = E(C | Z) (7)

Original image Boxcar

IDAN [3] Lee [2]

Pretest [4] QMCTLS
Fig. 2. Zoomed-in of the Ottawa image at rural area. The proposed QMCTLS
filter not only preserves river boundary very well, but also achieves smoother
results at homogeneous area

However, estimating the conditional mean directly is diffi-
cult because the posterior distribution p(C | Z) is unknown.
In Section II-D, p(C | Z) is estimated via stochastic QMCS,
based on the texture similarity likelihood in Section II-C.
The weighted histogram, as the estimate of p(C | Z), will
afterwards be used to calculate Ĉ, as the discrete conditional
mean.

C. Region-based Texture Similarity Likelihood

The QMCS approach requires a probabilistic measure of
the similarity between two patches. A probabilistic similarity
likelihood can be derived based on the log-likelihood-ratio test
statistic for equality of two observed complex Wishart matrices
Z0 and Zk with equal number of looks in the image [11]:

lnQ = n(6ln2 + ln |Z0|+ ln |Zk| − 2ln |Z0 + Zk|) (8)

Based on this statistic, the probabilistic similarity likelihood
α(Zk | Z0) between the two matrices can be expressed as
[11]:

α(Zk | Z0) = P {−2ρlnQ ≥ z} ' 1−
ω2P

{
χ2(q2 + 4) ≤ z

}
− (1− ω2)P

{
χ2(q2) ≤ z

} (9)

where ρ = 1 − 17/(12n), ω2 = 423/(24n − 34)2, χ2 is the
chi-square distribution, and z is the observed Q. The term
P {−2ρlnQ ≥ z} in (9) represents the probability of finding
a bigger value than −2ρlnQ. It measures the probability of
similarity between Z0 and Zk, and returns a value between 0
and 1. When Zk = Z0, it reaches the maximum.



Therefore, based on the complex Wishart distribution, (9)
provides a statistical similarity measure between two pixel-
observations in polarimetric SAR images. However, a pixel-
based probabilistic measure is incapable of accounting for the
local texture patterns, and thus, is very sensitive to speckle
noise. Accordingly, in order to utilize the textural information
for improving despeckling performance, in this section, a
region-based similarity likelihood is introduced to replace the
one in (9).

While a region can be assumed an irregular shape, here it
is defined as a square window. We assume that the elements
in the local region are statistically independent. Accordingly,
the texture similarity likelihood of a new region Rk relative
to the referenced region R0 can be formulated as:

α(Rk | R0) =

∏
j

{P(−2ρlnQj ≥ z)}


1/β

(10)

where β is a scaling parameter ranging from 0 to +∞, and j
is used to iterate over all pixels in regions.

D. Posterior Estimation Using Quasi Monte Carlo Sampling
A QMCS strategy is used to estimate the posterior probabil-

ity p(C|Z) in a non-parametric manner, which is more flexible
than parametric estimation approaches. Moreover, compared to
the standard Monte Carlo method that uses a pseudo-random
sequence, QMCS uses a low-discrepancy sequence which has
a faster rate of convergence [12]. The region-based textural
likelihood described in Section II-C is used here to help the
sampling process.

In the proposed QMCTLS filter, QMCS is first used to
randomly select some pixels around pixel Z0. Then, an accep-
tance probability of a sampled pixel Zk, given the referenced
pixel Z0, is used to decide whether to accept Zk or to
reject it. The acceptance probability is realized by probabilistic
similarity likelihood measures, introduced in Section II-C.
Instead of using α(Zk | Z0), we use α(Rk | R0) as the
acceptance probability of Zk, in order to account for the local
texture patterns. Square regions centered at all the sampled
pixels, which we call region-based samples, requires to be
obtained to calculate the acceptance probability.

Then, α(Rk | R0) is compared with a random number
between (0, 1) drawn from uniform distribution. If α(Rk | R0)
is greater than the random number, the center pixel in the
sampled region will then be accepted into a sample set Ω.
Otherwise, the sample is rejected. After sample pixels are
selected into Ω, the posterior distribution is computed in a
nonparametric manner via a weighted histogram.

Given samples in Ω, the importance-weighted Monte Carlo
posterior estimation can be calculated according to the follow-
ing weighted histogram [7]:

p̂(C | Z0) =

∑
k∈Ω α(Rk | R0)δ(C− Zk)

N
(11)

where Zk is the center pixel in region Rk, α(Rk | R0)
represents the acceptance probability of Zk in Ω, δ(·) is the

Dirac delta function, and N is a normalization term such that∑
C p̂(C | Z0) = 1.
Based on p̂(C | Z0), we can estimate the noise-free image

value as the discrete conditional mean, according to (7).

E. Summary of the QMCTLS filter

The proposed QMCTLS filter is processed as the following
steps:

1) For each pixel in the image, draw M region-based
samples from a search space around the referenced pixel Z0

using QMCS.
2) For each sample, calculate the probabilistic similarity

measure of each pixel pair Rk(j) and R0(j) at location j of
the region, using (8) and (9).

3) Calculate the acceptance probability α(Rk | R0) based
on all the pixel pairs using (10).

4) Generate a value u randomly from a uniform distribution
U(0, 1). The sample k is accepted into the sample set Ω, if
u ≤ α(Rk | R0), or otherwise discarded.

5) After processing the M samples by repeating (2)-(4),
the accepted samples in Ω are used to estimate the posterior
distribution p̂(C | Z0) in (11);

6) Compute the noise-free estimation Ĉ0 of the reference
pixel Z0 as the discrete conditional mean, according to (7).

7) Repeat (1)-(6) for all the pixels in the image.

III. EXPERIMENTS AND DISCUSSION

Two benchmark airborne quad-polarimetric SAR images for
testing in comparison with several other popular methods. A
300× 300 subimage from the four-look San Francisco image,
acquired by AIRSAR in L band with 10 × 10 m spatial
resolution, and the 340×220 ten-look Ottawa image, acquired
by a C-band sensor on a Convair 580 platform with 64 cm ×10
m resolution, are used for testing. Methods for comparison
include three classical filters, i.e., the Boxcar filter, IDAN filter
[3] and refined Lee filter [2], and the state-of-the-art Pretest
filter [4]. The window size of IDAN filter is set to be 50× 50
pixels, and the size of the refined Lee filter filter is set to be
7× 7 pixels. The Pretest filter is set to have a search area of
15× 15 and patch size of 3× 3. All parameter settings follow
the authors’ suggestions in the referenced papers.

The QMCTLS filter was implemented in Microsoft Visual
C++ 2010. The search area is set to be 21 × 21, with
approximately 50% of the pixels in the search area sampled
via QMCS, which is a tradeoff between computation cost and
filtering performance. The region is defined as a 5× 5 square
window. When the window size increases, the acceptance
probability is more reliable by considering more pixels, but in
the meanwhile the chance of finding similar samples decreases,
and the computation cost will increase as well. The scaling
parameter β in (10) is set to be the patch size, i.e., 25. The
experiments are conducted on an Intel Core i7-4770@ 3.4
GHz. It takes 308 and 265 seconds to filter the San Francisco
and Ottawa image respectively.

Fig. 3 and Fig. 4 show the despeckling results in Pauli RGB.
They indicate that classical methods, i.e., Boxcar, IDAN and



the refined Lee filter, remove speckle noise in stationary areas,
but tend to erase details in heterogenous areas. The reason that
these classical methods fail to achieve a good balance between
noise removal and detail preservation is probably because
they rely on local heterogeneity measures, which could not
reflect true texture patterns. The Pretest method preserves more
details in the urban areas by using non-local information.
QMCTLS is comparable to the Pretest method based on visual
evaluation. Fig. 3 tells that, for both methods, details in the
vegetation area and urban area are well-preserved, while the
speckle noise in the water area is largely removed. However,
Fig. 4 indicates that the proposed method achieves smoother
regions than Pretest in the rural areas. In order to show more
distinctions, Figs. 1 and 2 show one zoom-in area in each
image. Both zoom-in images suggest that QMCTLS achieves
smoother result than Pretest at the homogeneous areas.

Two statistics, equivalent number of looks (ENL) and edge-
preservation degree based on ratio of average (EPD-ROA) [13]
are used for measuring the despeckling performance. Larger
ENL denotes better noise removal, while larger EPD-ROA
means better detail preservation. The results are shown in
Table I. The columns are the numerical measures by either
ENL or EPD-ROA in the test regions corresponding to those
in the red rectangles in Fig. 3 and Fig. 4. The EPD-ROA
measurement values are averaged using 10 sample regions.
The numerical measures are basically consistent with the
visual observation. We notice that the Lee filter achieved
slightly lower ENL values, but higher EPD-ROA values than
Boxcar and IDAN methods. Overall, the ENL and EPD-
ROA achieved by QMCTLS on both images are higher than
the classical methods and the Pretest method. Particularly,
QMCTLS achieves about twice the ENL value, and 27 percent
higher EPD-ROA value than the average performances of clas-
sical methods on two test images. Compared with the Pretest
method, QMCTLS achieves higher ENL and EPD-ROA values
within the 1% significance level by the Kruskal-Wallis tests
[14] for both images, indicating that with higher capability
at detail preservation, the proposed QMCTLS method is also
better at noise removal.

TABLE I
QUANTITATIVE COMPARISON BETWEEN TESTED METHODS. THE ENL-1
AND ENL-3 COLUMN REPRESENTS THE ESTIMATED ENL VALUES FOR
REGION 1 AND REGION 3 RESPECTIVELY, AND THE EPD-ROA-2 AND

EPD-ROA-4 COLUMN REPRESENTS THE AVERAGED ESTIMATED
EPD-ROA VALUES FOR THE REGIONS LABELED AS 2 AND 4

RESPECTIVELY.

Methods ENL-1 EPD-ROA-2 ENL-3 EPD-ROA-4
Original 3.11 1.00 9.25 1.00
Boxcar 66.19 0.62 220.71 0.54
IDAN 45.55 0.63 226.18 0.55
Lee 26.19 0.71 102.73 0.81
Pretest 159.16 0.90 414.29 0.93
QMCTLS 190.02 0.94 558.92 0.97

IV. CONCLUSION

A novel polarmetric SAR despeckling technique based
on QMCS and region-based probabilistic texture similarity
likelihood was presented. The stochastic QMCS was used to
estimate the posterior probability. Also, in order to utilize
the textural information, a regional probabilistic similarity
measure based on the complex Wishart distribution was used
to calculate the acceptance probability in QMCS. Experiments
on two benchmark quad-pol SAR images demonstrated that
the proposed QMCTLS method can effectively remove speckle
noise, and in the meantime preserve image details. Future work
is to replace the uniformly rectangular image regions with
irregular regions based on local image property.
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Original image Boxcar IDAN [3]

Lee [2] Pretest [4] QMCTLS
Fig. 3. Pauli-RGB of despeckling results on San Francisco image. Boxcar filter tends to blur the image. IDAN and Lee oversmooth the image to some
degrees. The Pretest and the proposed QMCTLS filter preserve the details in the vegetation and urban areas very well, and, remove noise in the sea area.

Original image Boxcar IDAN [3]

Lee [2] Pretest [4] QMCTLS
Fig. 4. Pauli-RGB of despeckling results for Ottawa image. Boxcar blurs the image greatly. IDAN is better, but still tends to lose details in the urban area.
Lee filter seems to preserve undesirable artifacts in the farm area. Pretest and the proposed QMCTLS filter achieve better balance between noise removal and
detail preservation, but QMCTLS achieves smoother results in farm area.


