
Hidden Dynamic Models for Speech

Processing Applications

by

Leo Jingyu Lee

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical & Computer Engineering

Waterloo, Ontario, Canada, 2004

c©Leo Jingyu Lee 2004

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

Leo J. Lee

I further authorize the University of Waterloo to reproduce this thesis by photocopying or

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Leo J. Lee

iii

Abstract

Human speech has a dual nature: the goal of speech is to convey discrete linguistic symbols

corresponding to the intended message while the actual speech signal is produced by the

continuous and smooth movement of the articulators with rich temporal structures. Such

a dual nature has been amazingly utilized by humans in a beneficial way but has presented

a big challenge for both speech science and speech technology.

This thesis starts with the observation that the continuous or dynamic aspect of human

speech is inadequately modeled in current speech technology, especially in state-of-the-art

speech recognition systems, while much could be learned from recent advances in speech

science. This motivates a study of articulatory dynamics, based on a recently available large

scale speech production database that provides simultaneous acoustic and articulatory

measurements. Indeed many insights and valuable experiences have been gained from

such a study and, as a result, a hidden dynamic model (HDM) that gracefully integrates

the discrete and continuous nature of speech is proposed. But it also turns out that

articulatory dynamics is highly complicated and can not be captured by simple models,

thus the dynamics are very difficult to put into an efficient computational framework for

use in speech technology.

As a continuing effort to seek internal dynamics of human speech that can reflect the

continuous shape change of the vocal tract and benefit the current speech technology,

the second part of the thesis turns to a study of vocal-tract-resonance (VTR) dynamics,

built upon the insights and experiences gained from studying articulatory dynamics. It

verifies that VTR dynamics can be captured by simple dynamic equations, and a highly

accurate and efficient piecewise linear mapping from VTR dynamics to the acoustic space

is also carefully designed. Two novel VTR tracking methods are developed in this part:

one is based on mimicking manual tracking of VTR dynamics by human experts and uses

advanced image processing methods (active contours), the other is the natural outcome of

formulating a HDM for VTR dynamics and recovering the hidden dynamics by Kalman

smoothing. The residual feature resulting from VTR tracking by HDM has also been used

as an appended acoustic feature to improve a hidden Markov model (HMM) based phone

recognizer on the TIMIT database.

The final part of the thesis is dedicated to arguably the most difficult and compre-

iv

hensive speech processing application: automatic speech recognition (ASR). It first casts

the HDM formulated for speech application under the general framework of probabilistic

graphical models in machine learning. However, it also becomes clear that exact inference

and parameter learning for such a model is NP hard. In order to use HDM for speech

recognition, this final part concentrates on developing novel and powerful variational EM

algorithms. The effectiveness of the new algorithms invented has been demonstrated by

extensive simulation experiments, and special concerns for speech recognition are also dis-

cussed.

v

Acknowledgements

I wish to express my deep appreciation to Prof. Li Deng, who leads me into the fascinating

research area of speech processing. Li has helped me develop interest in speech problems

and gain solid background in both speech technology and speech science. Two fruitful

internships at Microsoft Research (MSR), under Li’s close guidance, is what makes many

breakthroughs in this thesis possible.

I feel that I am extremely lucky to have Prof. Paul Fieguth as my supervisor after

Li’s left of Waterloo to pursue industrial interests at MSR. Paul has set me an example of

being an excellent lecturer, researcher and supervisor. His encouragement and continuing

emphasis on seeing the big picture is what makes this broad yet focused thesis possible.

Dr. Hagai Attias (previously with MSR, currently working on his own start-up com-

pany) is a great mentor with great patience that leads me into the exciting new field of

probabilistic graphical models, especially variational methods. It has been a great plea-

sure and memorable experience to work with Hagai. I also wish to thank him for always

standing by my side when difficulty and pressure seem to prevail.

My committee members, Prof. Mari Ostendorf, Prof. Brendan Frey, Prof. Daniel

Miller and Prof. En-Hui Yang, have taken time to carefully read my thesis and attend the

defense from their extremely busy schedules. The valuable suggestions they provided and

the good questions asked at the defense help to further improve the quality of this work.

Ontario graduate scholarship (OGS) has provided most of the financial support during

my PhD journey, with further help from NSERC research grants and Ontario student

assistance program (OSAP). I have also been surrounded by love and support from family

and friends in Waterloo during the last few years so that this journey has never been lonely.

vi

To my beloved wife and my parents...

vii

Contents

1 Introduction 1

1.1 Human Speech Communications . 1

1.2 Machine Speech Processing . 4

1.3 Motivations . 6

1.4 Thesis Organization . 9

I A Study on Articulatory Dynamics 11

2 Fundamentals of Speech Production and Analysis 13

2.1 Source-Filter Model of Speech Production 13

2.2 All-Pole Filter Model . 16

2.3 Short-Time Analysis and Spectrogram . 17

3 Data Description and Processing 23

3.1 The UW-XRMB Database . 23

3.1.1 Data Acquisition . 24

3.1.2 Corpus Organization . 28

3.2 A Data Segmentation and Analysis Tool 28

3.3 Preliminary Processing and Data Preparation 30

3.3.1 Selecting a Subset of Measured Articulatory Points 30

3.3.2 Hand Labeling and Segmentation 35

viii

4 Data Analysis 39

4.1 Examples of Interesting Speech Phenomena 39

4.2 Learning the Articulatory-to-Acoustic Mapping 44

4.2.1 A Simple Linear Articulatory-to-Acoustic (ATA) Mapping 44

4.2.2 ATA Mapping Approximated by MLPs 46

4.2.3 ATA Mapping Approximated by RBFs 57

4.2.4 Further Improvements by Ensemble Learning 65

4.2.5 Summary . 69

4.3 Modeling the Articulatory Dynamics . 70

4.3.1 A Functional Articulatory Dynamic Model 70

4.3.2 Model Parameter Learning . 73

4.3.3 Articulatory Trajectory Fitting Experiments 77

4.3.4 Further Observations and Possible Improvements 81

4.4 An Articulatory Speech Production Model 85

4.5 Concluding Remarks . 87

II A Study on VTR Dynamics 89

5 Introduction to VTR Dynamics 91

5.1 Are VTR Dynamics Really Hidden? . 91

5.2 Hand Labeling of VTRs . 93

5.2.1 The TIMIT Database . 93

5.2.2 A VTR Hand-Tracking Tool . 94

5.3 Modeling VTR Dynamics . 95

6 VTR Tracking by Active Image Contours 107

6.1 Existing VTR Tracking Methods . 108

6.2 Problem Formulation and Algorithm Development 110

6.3 VTR Tracking Experiments . 113

6.4 Further Improvement by B-Spline Snakes and Simulated Annealing 115

ix

7 VTR Tracking with a Hidden Dynamic Model (HDM) 121

7.1 The VTR-to-Acoustic Mapping . 121

7.1.1 VTR to LPC-cepstra Nonlinear Mapping 122

7.1.2 A Piecewise Linear Approximation 123

7.1.3 How About Other Acoustic Features? 127

7.2 The HDM for VTR Tracking . 128

7.2.1 A HDM Using VTR Dynamics . 128

7.2.2 A Simplified HDM for VTR Tracking 130

7.3 VTR Tracking Results and Analysis . 131

7.4 Using VTR Residual Feature in a HMM Speech Recognizer 135

7.4.1 Description of the Baseline System 136

7.4.2 Why Use VTR Residual? . 136

7.4.3 TIMIT Phone Recognition Results 137

7.5 Conclusions and Discussions . 137

III Algorithm Development of HDM towards ASR 139

8 Introduction to Automatic Speech Recognition (ASR) 141

8.1 The Formulation of ASR Problem . 141

8.1.1 Speech Preprocessing . 142

8.1.2 Acoustic Modeling . 143

8.1.3 Language Modeling . 144

8.1.4 Hypothesis Search . 145

8.2 Overview of the Hidden Markov Model (HMM) 145

8.2.1 A Classic View of HMM . 146

8.2.2 HMM as a Probabilistic Graphical Model 152

8.3 From HMM to HDM . 154

9 Algorithm Development for HDM 159

9.1 A SSSM Formulated from HDM . 159

9.1.1 Detailed Model Description . 160

x

9.1.2 Review of Previously Developed Algorithms 162

9.2 Introduction to Variational Methods . 163

9.2.1 Variational EM versus Exact EM 164

9.2.2 An Illustrative Example . 166

9.3 Variational Inference for SSSM . 177

9.4 Model Parameter Learning for SSSM . 191

9.5 Hidden State Recovery of SSSM . 192

9.6 Simulation Experiments . 194

10 Special Considerations and Experiments for ASR 199

10.1 Some ASR Related Issues . 199

10.1.1 An Alternative Decoding Scheme 199

10.1.2 Effect of Piecewise Linear Mapping 202

10.2 Some Speech Examples . 203

IV Overall Conclusions 207

11 Summary and Future Work 209

11.1 Summary of Contributions . 209

11.2 Future Research Directions . 210

A Derivations 213

A.1 Exact Inference from a Variational Principle 213

A.2 Full Equation of Exact Inference for SSM 214

A.3 A Forward-Backward Algorithm of Probability Propagation 216

A.4 Parameter Estimation Formulas of SSSM 218

xi

List of Tables

3.1 Regression R2 statistics when estimating TB1 and TB2. 33

4.1 R2 statistics for a linear ATA mapping. 45

4.2 R-Values for a MLP network with 200 hidden neurons on raw data. 52

4.3 R-Values for a MLP network with 200 hidden neurons on appended data. . 55

4.4 R-Values for a regularization RBF network on raw data. 60

4.5 R-Values for a regularization RBF network on appended data. 62

4.6 R-Values for a generalized RBF network. 68

4.7 Test error (MSE) of different neural network architectures. 70

5.1 Context-independent VTR target values. 97

5.2 Context-dependent VTR target values. 98

5.3 VTR fitting errors. 105

7.1 TIMIT phone recognition error rates (%) of two triphone HMM systems. . 137

10.1 Five hypotheses of a test sentence. 204

10.2 Likelihood score of the hypotheses. 204

xii

List of Figures

1.1 A five state HMM used in ASR as a phone model. 6

1.2 Modeling comparison in speech science (a) and speech technology (b). . . . 7

2.1 Major speech production organs. 14

2.2 An example of wideband and narrowband spectrograms. 20

3.1 A schematic of the UW-XRMB system. 25

3.2 Pellet placements and coordinate system for articulator tracking. 26

3.3 A GUI data segmentation and analysis tool. 29

3.4 PCA of tongue measurements . 32

3.5 Linear regression estimates of TB1 and TB2. 34

3.6 Example of a hand-labeled sentence. 37

4.1 Acoustic and articulatory data: Example 1. 40

4.2 Acoustic and articulatory data: Example 2. 42

4.3 MSE of a MLP network with 100 hidden neurons. 49

4.4 MSE of a MLP network with 200 hidden neurons. 49

4.5 MSE of a MLP network with 300 hidden neurons. 50

4.6 True and estimated MFCCs on raw data. 51

4.7 MSE of a MLP network with 200 hidden neurons on cleaned data. 53

4.8 MSE of a MLP network with 200 hidden neurons on appended data. 54

4.9 True and estimated MFCCs on appended data. 56

4.10 Test error versus basis function spread. 58

4.11 True and estimated MFCCs on raw data by a regularization RBF. 59

xiii

4.12 True and estimated MFCCs on appended data by a regularization RBF. . 61

4.13 Test error versus spread ratio 1. 64

4.14 Test error versus spread ratio 2. 64

4.15 True and estimated MFCCs on raw data by a generalized RBF. 66

4.16 True and estimated MFCCs on appended data by a generalized RBF. . . . 67

4.17 Articulatory trajectory fitting example 1. 79

4.18 Articulatory trajectory fitting example 2. 80

4.19 Derivatives of TTy trajectory. 82

4.20 Derivatives of TDy trajectory. 83

4.21 Articulatory dynamic model used in speech synthesis. 86

5.1 A GUI VTR hand tracking tool. 95

5.2 VTR fitting on a TIMIT sentence by first order models. 100

5.3 VTR fitting on a TIMIT sentence. 103

5.4 VTR fitting on a fast speaking sentence. 104

6.1 VTR tracking by waves+. 108

6.2 A preliminary example of VTR tracking by active contours. 113

6.3 Small scale VTR tracking example 1. 114

6.4 Small scale VTR tracking example 2. 114

6.5 B3 basis function and a sample B-spline . 117

6.6 VTR tracking by B-spline snakes and simulated annealing. 118

7.1 Linearization of h(f, b) on f and b separately. 125

7.2 Piecewise linear approximation to h(f, b). 126

7.3 TIMIT VTR frequency and bandwidth tracking example 1. 133

7.4 TIMIT VTR frequency and bandwidth tracking example 2. 134

8.1 A simple Bayesian network. 153

8.2 HMM represented as a Bayesian network. 154

9.1 The SSSM represented as a Bayesian network. 161

9.2 A Bayesian network representation of the SSM and its variational posterior. 168

xiv

9.3 Comparison of variational and Kalman smoother for scalar-scalar case 1. . 173

9.4 Comparison of variational and Kalman smoother for scalar-scalar case 2. . 174

9.5 Comparison of variational and Kalman smoother for vector-vector case. . . 175

9.6 Variational posterior of the SSSM represented as a Bayesian network. . . . 177

9.7 Hidden state recovery under different noise levels by variational inference. . 195

9.8 Model parameter estimation by variational EM. 196

10.1 VTR tracking for a typical TIMIT sentence with variational inference. . . . 203

xv

Chapter 1

Introduction

1.1 Human Speech Communications

The capability of speaking a language is one of the most amazing skills humans possess. It

serves as a very effective way of communication, sharing experiences, feelings, thoughts and

ideas among people. However, such an ability has also been taken for granted for a long

time and serious research started only fairly recently. The discipline that aims to under-

stand the human speech communication process is speech science, which usually includes

the study of the physiology of speech production, the acoustical characteristics of speech

and the process by which listeners perceive speech [22]. Although some pioneering work in

these areas can be dated back to the 19th century or even earlier, for example, Hermann

Von Helmholtz’s study on acoustics [110], Henry Sweet’s study on phonetics [232, 233]

and Alexander Graham Bell’s effort to make speech visible to deaf people [15] (besides his

many profitable inventions including telephone), modern collaborative research on human

speech communication doesn’t start until around 1930’s [71], along with the development of

telephony communication systems. During this early period, speech science and speech en-

gineering, which refers to the practical applications dealing with speech signals, are closely

coupled and many achievements important to both fields are summarized in Flanagan’s

classical book [77].

Among the many valuable studies in speech science, the modeling aspect of human

behavior is of major interest in this thesis, since it helps both to understand the speech

1

2 Hidden Dynamic Models for Speech Processing Applications

process and to suggest ways of simulating human speech tasks by machine. Over the

last forty years, speech scientists have developed increasingly detailed and sophisticated

models for human speech production and perception. Speech production, which concerns

the conversion from an intended linguistic message, e.g., the phrase “so cool”, to the

acoustic waveform radiated mainly from one’s mouth, is the focus of this thesis. Recent

and comprehensive reviews on speech production models and theories can be found in the

book chapters [79, 131]. Some important scientific findings and theories related to speech

production are briefly presented below to serve as a background for readers who are not

familiar with this area.

A phoneme sequence is usually taken as the input to human speech production systems.

Phonemes are the minimal contrastive units of speech sounds in a given language, and are

typically specified by a set of distinctive features based on articulatory, acoustic or per-

ceptual properties [39, 117]. Phonemes are defined in an abstract sense while the acoustic

realizations of them are called phones or allophones. After defining phoneme as the basic

unit of spoken language, it is tempting to assume that the speech production system merely

produce each phoneme sequentially to generate the intended linguistic message. Such a

“beads on the string” approach has been the basis of traditional linear phonology but it has

also been shown to be far from adequate in capturing important aspects of human speech.

At the phonological level speech is symbolic or discrete, but it becomes smooth and con-

tinuous at the phonetic level, reflected by the smooth movement of the speech production

organs, also known as articulators, or the continuous change of the vocal tract shape. In

continuous speech, it is often impossible to determine the phone boundaries precisely from

the acoustic signal1, although a person can clearly perceive these discrete speech units. The

realization of a phoneme can also be very different from when it is realized in isolation,

heavily depending on the neighboring phonemes. Such a phenomenon is generally called

coarticulation, which very broadly refers to the fact that a phonological segment is not

realized identically in all environments, but often apparently varies to become more like an

adjacent or nearby segment [103]. Coarticulation cannot be explained as an imperfection

in the way language is realized due to the physical constraint of the articulators. On the

contrary, coarticulation significantly aids human speech perception beyond the efficient in-

1Some speech scientists even argue that such a procedure itself is ill-defined.

Introduction 3

tegration of realizing successive phonemes [65, 103]. However, coarticulation does present

a big challenge if we want to faithfully model human speech production.

There are many other subtle phenomena that make modeling human speech a very

difficult problem, but further introduction is beyond the scope of this thesis. Generally

speaking, as an effort to account for all or at least most of the complexities involved

in human speech production, speech scientists typically take a multi-level approach. As

mentioned previously, the top level is usually a sequence of phonemes, each of which

is represented by a set of distinctive features or feature bundles. However, unlike the

unstructured features used in traditional linear phonology, features in modern nonlinear

phonology2 are allowed to extend over domains greater or less than one single phoneme

[94, 129], hierarchically organized based on their inter-relationships [41], or directly related

to the action of articulators [27, 28, 29]. A computational model for American English

based on the theoretical foundations of these nonlinear phonological theories was also

developed recently [57, 58, 66, 230], known as overlapping articulatory features. This first

step effectively turns a phoneme sequence into a set of multi-tier overlapping features.

The next level is task dynamics or task-variables [130, 213], for example they can be

defined as vocal tract constriction locations and degrees for each feature. These task-

variables are usually realized by the coordination of an ensemble of articulators, resulting

in the articulatory dynamics measured in many scientific studies [107, 249, 250, 254]. The

movements of the articulators drive the smooth and continuous change of the vocal tract

shape, which can be mainly characterized by the location and bandwidth of its resonances.

Finally the glottis and the vocal tract interacting as source and filter to produce the noisy

acoustic signal that we perceive as speech. To complete the human speech communication

chain, the acoustic waveform is subsequently received by the intended listener, processed

by the highly robust peripheral auditory system against environmental variations, and

cognitively decoded by the human brain using all sources of speech-related knowledge

accumulated in the past, where the details at this end are also subject to substantial

amount of further research work [175].

Although this thesis is mainly engineering and application oriented, it has been mo-

2Here “linear” and “nonlinear” refer to whether the strict sequential order of phonemes are followed,

which is quite different from the concept of “linear” systems in math and engineering communities.

4 Hidden Dynamic Models for Speech Processing Applications

tivated and benefited from many scientific studies on human speech. In particular, the

thesis has paid much attention to the dynamic nature of speech, e.g., at the articulatory

or vocal tract resonance (VTR) level, besides its symbolic nature. It is the author’s belief

that this is one important aspect that hasn’t been addressed enough in the current speech

technology while much can be learned from advances in speech science.

1.2 Machine Speech Processing

Along with the development of telephony communication systems, the first important ma-

chine speech processing application is speech coding: to store and transmit speech signals

efficiently [70]. In the early days, it was the center of speech applications and a driving

force under both speech engineering and speech science [77, 199]. Today the need to con-

serve bandwidth or bit rate persists even with the ever increasing capacity of transmission

medias, especially in areas such as cellular phone communication systems, live audio feed

over the internet and secure (encrypted) voice communications. However, as computers

and other “smart devices” penetrate more and more into the daily life of ordinary peo-

ple, communicating with machines via natural speech has become a focus in recent years.

There are three key steps that machines need to perform in order to have a conversa-

tion with human beings: speech recognition (or speech to text), speech understanding

(understand the content of speech and act appropriately), and speech synthesis (or text

to speech). As security concerns grow in our society, speaker recognition (including both

speaker identification and verification) [31, 84, 205] also provides a cheap and convenient

way for preliminary access control. Speech enhancement is often used to improve speech

quality under adverse conditions for human listeners or further machine processing. There

are fundamental speech processing techniques important for different applications as well,

such as speech analysis and feature extraction. A few recent books provide excellent and

up-to-date coverage on these basic techniques and application areas [92, 115, 178]. In sum-

mary, it is reasonable to expect that as natural and ubiquitous as speech is to humankind,

so will be machine speech processing applications in the future.

Among the various speech processing applications, it is fair to say that automatic

speech recognition (ASR) remains to be the most difficult and comprehensive one so far.

Introduction 5

It has long been touted as the Holy Grail of artificial intelligence; it also subsumes many

other speech processing techniques and important speech-specific knowledge as necessary

components. To further illustrate, let us view the human speech communication chain as

an encoding-decoding process, which is more familiar to electrical engineers and computer

scientists. As an encoder, a talker uses the knowledge of words, phrases, grammars and

the sound representation of the intended linguistic messages to generate a phonetic plan;

such a phonetic plan is subsequently executed by the human speech production system to

produce speech waveforms. At the decoder end, the listener uses extensive knowledge about

speech accumulated over the years to interpret the speech signal received and transformed

by the human auditory system. ASR plays the role of a listener to decode the underlying

linguistic message from the speech waveform received via a (typically) noisy channel. Such

a view point not only requires an ASR system to possess the power of human auditory

system but also indicates that it needs to be equipped with a key, or an internal generative

model, that is compatible with (but does not have to be identical to) the human speech

production system in order to decode successfully. This makes the design of ASR systems

both comprehensive (requiring the knowledge of human speech perception and production

systems and related processing techniques) and difficult (due to the complexity of both

systems).

The generative model used in state-of-the-art speech recognition systems is the hid-

den Markov model (HMM) and its extensions [16, 179, 196, 197]. Although details of

HMM does not belong here as introduction to the whole thesis3, the basic structure of this

statistical model is presented in Fig. 1.1, which is a typical phone model used in speech

recognition [259]. There are five hidden states in this model with the permissible transi-

tion probabilities aij drawn as arrows. Notice that this is a left-to-right model since as

time increases the state index increases or stays the same. This is a simple constraint to

reflect the temporal flow of speech. The hidden state sequence is supposed to account

for the observed acoustic feature vectors oj (computed from the acoustic waveforms) via

probability distributions bi(oj). Given the hidden state sequence, the observation vectors

are assumed to be distributed independently. Of course in practical training and testing

3A detail introduction of HMM including various key algorithms will be given in Part III, where ASR

is focused.

6 Hidden Dynamic Models for Speech Processing Applications

1 2 3 4 5
a12 a23 a34 a45

o1 o2 o3 o4 o5

b2(o1) b2(o2) b3(o3) b4(o4) b4(o5)

Observation
Sequence

Hidden
States

a22 a33 a44

a24

Figure 1.1: A five state HMM used in ASR as a phone model.

scenarios the hidden state sequence is unknown and has to be inferred from the data. Also

notice that the first and last hidden states are non emitting, i.e., they do not generate

any observable acoustic measurements. Such a design is to facilitate the concatenation of

phone models. Therefore, the above model is usually referred to as a three-state HMM

instead of a five-state one in the speech literature.

1.3 Motivations

From the overview of human speech communication and machine speech processing pre-

sented in the previous sections, it is not hard to observe that speech engineers are using

a much simpler model structure to account for the human speech production mechanism

than speech scientists. Typical approaches of both are illustrated in Fig. 1.2.

Is the HMM good enough as a generative model for speech processing applications,

especially for speech recognition? As increasingly difficult, real-world speech recognition

tasks are being attacked [85, 62], such as the recent AURORA and EARS project, more and

more researchers realize that the answer is clearly no. Although current speech recognizers

Introduction 7

HMM

Overlapping

Articulatory

Features

Task-

Dynamics

Aritulatory

Dynamics

Vocal Tract

Dynamics

Phoneme

Sequence

Acoustic

Features

Phoneme Sequence
 Acoustic Features

(a)

(b)

Figure 1.2: Modeling comparison in speech science (a) and speech technology (b).

are quite successful in some limited yet useful applications [50, 96, 114], their word error

rates are still at least an order of magnitude worse than those of human listeners on many

speech tasks [156, 192]. Even worse is that under more challenging conditions, such as

high level of noise or significant change of speaking style, most speech recognizers will

completely break down. Moreover, typical speech recognizers today have a few million

trainable parameters while there is evidence that the language competency humans are

born with is encoded with about 5,000 bytes of information on the human genome [193].

All these indicate that the success of current speech recognizers is mainly achieved by

their rigorous statistical formalism and computational efficiency to learn huge number

of parameters from ever increasing amount of training data, while the underlying model

structure remains to be weak, demonstrated by their inherent lack of robustness. Further

analysis of HMM also shows that it is far from compatible with the true human speech

production mechanism, comparing to knowledge gained from scientific studies of human

speech production (more details will be provided in Part III). It is clear that in order to

further improve the current speech technology and to bring it closer to human performance,

a very promising direction is to enrich the underlying model structure while reducing the

number of trainable parameters. This is exactly the goal of this thesis.

On the other hand, although increasingly detailed and sophisticated speech production

models have been developed by speech scientists over the past forty years, none of them

8 Hidden Dynamic Models for Speech Processing Applications

can be directly “ported” to speech technology. This is mainly due to the following reasons:

• These scientific models are deterministic in nature, resulting from the study and

simulation of a very limited number of subjects under constrained conditions, and

not able to cover the complicated variability among a large number of speakers, or

even the systematic variability of the same speaker under different conditions.

• Although considerable efforts have been devoted to model human speech in accuracy

and detail, most of the models lack the comprehensiveness in covering all classes of

speech sounds, which is essential for speech technology.

• Most importantly, speech science and speech engineering have very different research

goals. Speech science aims to understand the human speech communication process

and concentrates on the explanatory power of the models to account for diverse and

complicated speech phenomena, while computational issues, which are crucial for

engineering implementation, play very little or no role at all.

This thesis is strongly motivated by observing the respective strengths and weaknesses

of speech engineering and speech science after broad literature survey in both fields. It aims

to combine the knowledge-based modeling approach in speech science and the data-driven

approach in speech engineering in a graceful way to achieve novel, compact and efficient

modeling of human speech production to benefit the current speech technology. It also aims

to bridge the gap between the largely distinct communities of speech scientists and speech

engineers (despite their common origin in the 1930’s) to stimulate further collaborations

among researchers of these two communities. More specifically, this thesis studied two

kinds of “hidden” dynamics that are completely missing in HMM and its extensions used

in the state-of-the-art speech technology, namely the articulatory dynamics and the vocal

tract resonance (VTR) dynamics which largely characterize the continuous change of the

vocal tract shape. These dynamics are called “hidden” because they are usually not directly

observable from acoustic measurements. This thesis not only proposed new models based

on detailed studies of these hidden dynamics but also developed powerful and advanced

statistical algorithms to facilitate their use in speech technology. A brief outline of the

thesis is given in the next section.

Introduction 9

1.4 Thesis Organization

The thesis is largely divided into three parts. Part I concentrates on the study of articula-

tory dynamics based on a recently available speech production database that measures the

movement of the articulators and the produced acoustic signal simultaneously. A graphic

user interface (GUI) analysis tool is first developed to facilitate the study on the database.

Important insights about speech are developed by scrutinizing the data and shown by

a few typical examples. Next, the nonlinear articulatory-to-acoustic (ATA) mapping is

studied by using two neural network architectures and some standard machine learning

techniques, followed by further attempts to model the movement of the articulators during

speech production. Finally these two studies are combined to form a novel articulatory

dynamic model of human speech production.

Part II naturally shifts to the study of VTR dynamics based on insights and results

obtained from studying articulatory dynamics. It starts with another GUI tool to ease

the task of manually tracking VTR dynamics, followed by proposing and testing a number

of powerful models to capture VTR dynamics during speech production. Then a novel

VTR tracking method is developed by simulating the way human experts do so based

on spectrograms, using image processing methods, namely, active contours or snakes. A

knowledge-based piecewise linear mapping is carefully constructed next to describe the

relationship between the VTRs and the observed acoustic features. Based on a VTR

dynamic equation and the VTR-to-acoustic (VTA) mapping, another novel VTR tracking

method is developed by formulating the relationship between VTR dynamics and acoustic

features as a state space model to do Kalman filtering and smoothing. At the end, the

importance of VTR dynamics is demonstrated by appending the resulting residual vector

as a new feature to improve a well-trained baseline TIMIT phone recognizer.

Finally a specific form of the hidden dynamic model (HDM) formulated as switching

state space (SSS) model aiming at ASR application is fully developed in Part III. Due

to the intractability of exact inference in the SSS model, novel variational methods are

first developed to approximate the exact inference in a principled way, and the powerful

expectation-maximization (EM) framework is subsequently adopted to estimate model pa-

rameters. These new algorithms are thoroughly studied and tested by extensive simulation

examples. A few practical considerations of building a speech recognizer with the original

10 Hidden Dynamic Models for Speech Processing Applications

variational EM algorithms are also listed and discussed, followed by some simple speech

examples.

The thesis is concluded in Part IV with summaries and discussions of future work.

Part I

A Study on Articulatory Dynamics

11

Chapter 2

Fundamentals of Speech Production

and Analysis

This chapter briefly presents some background material about the speech production mech-

anism and related analyzing techniques. These theories and methods will be used exten-

sively in the remaining chapters of the thesis. It also defines important concepts and sets

up notations that will be used consistently throughout the thesis.

2.1 Source-Filter Model of Speech Production

At a global and functional level, human speech production can be viewed as an excitation

source filtered by an acoustic tube [75, 224]. In modeling speech, effects of the excitation

source and the acoustic filter are often considered independently. While in reality the

source and filter do interact, their interdependence only causes minor secondary effects

and is ignored in most speech analysis methods. A cross sectional view of major speech

production organs is sketched in Fig. 2.1.

The source of most speech occurs in the larynx where vocal folds can obstruct airflow

from the lung. For sonorant sounds (mainly vowels), the sound pressure is originated from

the periodic vibration of the vocal folds1. The rate of vibration is called the fundamental

1More accurately, the vibration is only quasi-periodic over intervals of tens of milliseconds: the oscilla-

tion of the vocal folds is a highly complicated nonlinear phenomenon known as Bernoulli oscillation.

13

14 Hidden Dynamic Models for Speech Processing Applications

Larynx

Vocal Folds

Jaw

Lower Lip

Lower Teeth

Upper Lip

Upper Teeth

Nasal Cavity

Velum

Oral Cavity

Tooth Ridge

Hard Palate

Soft Palate

Tongue Dorsum

Tongue Tip

Tongue Front

Tongue Middle

Pharyngeal Cavity

Figure 2.1: Major speech production organs.

Fundamentals of Speech Production and Analysis 15

frequency or F0, which ranges from 60 Hz for a large man to 300 Hz for a small woman

or child. When the vocal folds are further relaxed, they can form a narrow constriction to

produce turbulent noise at the glottis. Speech arising from such noise is called aspiration,

such as the phoneme /h/ in English or when people speak in a whisper. When the vocal

folds are totally relaxed, such as in normal breathing or the generation of unvoiced frica-

tives, the air expelled by the lungs passes through the larynx unobstructedly and creates

little audible sound.

The acoustic filter for most speech sounds is the vocal tract, which consists of the

pharyngeal cavity and oral cavity. For example, all the vowels in English use the same

excitation source and are solely distinguished by different vocal tract shapes that amplify

certain sound frequencies while attenuating others. When the velum is lowered (opened),

the vocal tract couples with the nasal tract to produce nasals. For obstruent (stop and

fricative) sounds, the vocal tract also contributes as the sound source by generating turbu-

lent noise near its narrowest constriction. The point of narrowest vocal tract constriction

is also known as the place of articulation. For obstruent sounds, the filter is mainly formed

by the portion of the vocal tract in front of the place of articulation, resulting in larger

gains for high frequency components than aspiration due to the shorter cavity.

While properties of the sound source help to define broad phoneme classes, it is the

acoustic filter that provides most of the contrast among different phonemes. Therefore,

the vocal tract, which mainly acts as the time-varying acoustic filter, plays a central role

in human speech production. In this thesis, much effort has also been devoted to studies

of the vocal tract properties. It is very difficult to directly model the time-varying vocal

tract shape in speech, although recently there have been some complex physiological models

aiming at achieving that [47, 48, 214, 255]. For most practical applications, the modeling is

done at the frequency domain, which is both easier to work with and more directly related

to human speech perception. Typically the excitation source is simply modeled as a white

noise source, an impulse train with a flat spectrum or a combination of both depending

on the sound class, while all the frequency shaping is accounted for by the acoustic filter,

which will be further discussed in the next section.

16 Hidden Dynamic Models for Speech Processing Applications

2.2 All-Pole Filter Model

As with any filter in signals and systems, the property of the acoustic filter is fully char-

acterized by its frequency response or transfer function, which is the z-transform of its

impulse response2. As a reasonable approximation, the frequency response of the acoustic

filter for human speech production (which mainly consists of the vocal tract, but may also

include effects caused by the glottis, nasal tract and sound radiation) is popularly mod-

eled as having poles only. If we denote the z-transform of the speech signal as S(z), the

excitation source as E(z) and the frequency response as H(z), we have

H(z) =
S(z)

E(z)
=

G
∏N

n=1(1 − pnz−1)
=

G

1 −
∑N

n=1 anz−n
, (2.1)

where G is the gain of the filter and the pn’s are its pole locations (N in total). Alternatively,

the denominator can also be expressed as an N th order polynomial of z−1.

The above all-pole model has worked quite well in many speech applications and may

be considered reasonable for speech production due to the following reasons:

• When a sound source has only one acoustic path to the output, the frequency response

has only poles (resonances) and no zeros. This is the case when the vocal tract solely

acts as the acoustic filter.

• When the glottis, nasal, radiation and other minor effects are considered, zeros will

be introduced into the frequency response. However, typically these zeros only play

a secondary role in human speech perception since humans pay much more attention

to spectral poles than zeros.

• A spectral zero can be expressed by an infinite number of poles through the following

series expansion:

1 − az−1 =
1

∑∞
i=0 aiz−i

when |a| < |z| . (2.2)

In practice a few extra poles are often good enough to represent a spectral zero (by

truncating the infinite series expansion).

2In modern speech processing, the original continuous-time speech signal is always properly sampled

to obtain a discrete-time counter-part first. Therefore z-transform is commonly used.

Fundamentals of Speech Production and Analysis 17

• There exist fast and efficient algorithms to calculate the parameters of the all-pole

model from observed speech signals.

It is not hard to see that the all-pole filter model has a very clear meaning in the time

domain as well. By taking inverse z-transform, we have

s[n] =
N
∑

i=1

ais[n − i] + e[n]. (2.3)

This equation is generally known as an autoregressive (AR) model, where the current

sample is predicted by a linear combination of previous N samples plus an error term

(the excitation source). Such a time domain explanation gives the all-pole model another

popular name: linear predictive coding (LPC).

2.3 Short-Time Analysis and Spectrogram

As mentioned previously, the frequency domain properties of speech are much more closely

related to human speech perception than time domain properties, but conventional fre-

quency analysis methods can not be directly applied to speech signals since these methods

are only defined for the entire signal while speech signals are time-varying or non-stationary.

In order to reveal the time-varying spectral content of speech, a set of techniques known as

short-time analysis have been developed for speech analysis, and they are equally applica-

ble to any other time-varying signals. These techniques decompose the speech signal into a

series of short segments, referred to as analysis frames, and analyze each one independently.

It is implicitly assumed that the speech signal within each analysis frame is approximately

stationary. The analysis frames are typically obtained by multiplying the original signal by

a window function which is zero everywhere except a small region centered at the time of

interest (the window length is around 10-30ms for speech analysis). The window function

can be a simple rectangular function, or more commonly a smoother function such as the

Hamming window whose nonzero portion is a raised cosine defined by

w(n) = 0.54 − 0.46 cos

(

2πn

N − 1

)

for 0 ≤ n ≤ N, (2.4)

18 Hidden Dynamic Models for Speech Processing Applications

or the closely related Hanning window to reduce edge effects and spectral leakage. Each

analysis frame is further processed by one or more signal analysis techniques, such as

Fourier and similar transforms, filterbank analysis and cepstral analysis, thus forming a

diverse array of speech features suitable for different applications. Just to name a few,

popular speech features include mel-frequency cepstral coefficients (MFCCs), linear pre-

dictive coding derived cepstral coefficients (LPC-cep), line spectral frequencies (LSF) and

perceptual linear prediction (PLP) coefficients [115, 259].

A spectrogram is a critical visual tool for speech analysis since its debut in the 1940’s

[139]. It is computed based on the short-time Fourier transform (STFT), i.e., by applying

fast Fourier transform (FFT) to each analysis frame which is a few milliseconds apart and

keep the amplitude or energy of the spectrum only. It displays time in its horizontal axis,

frequency in its vertical axis and usually uses a gray scale to indicate the energy at each

point (t, f), with white representing low energy and black high energy. Sometimes a color

scale or even a 3-D representation may also be used for display to achieve better visual

effects. Typically a few extra processing steps are needed to produce a “good” spectrogram:

the speech signal is first pre-emphasized by a first-order difference FIR filter to counter the

roll-off of natural speech, which refers to the typical power fall-off of voiced speech with

frequency at about -12dB/octave; the computed energy from STFT is displayed at a log

scale to better match the sensitivity of human auditory perception; and some thresholding

is usually applied when using a gray or color scale.

There are two types of spectrograms depending on the span of the window function w(n)

used when constructing the analysis frames. If w(n) is of a short duration (< 10ms), then

its Fourier transform will be of wide bandwidth (> 200 Hz) and the resulting spectrogram

is called a wideband spectrogram. It is able to achieve good time resolution and track the

rapid spectral change during speech, but has poor frequency resolution and cannot display

fine spectral details, e.g., the individual harmonics in voiced speech due to glottal vibration

(multiples of F0) are often completely smeared. On the other hand, if a relatively long

window is used (> 20 ms) which leads to a filter with narrow bandwidth (< 100 Hz), the

resulting spectrogram is called a narrowband one. It achieves good spectral resolution at

the expense of poor time resolution, e.g., it is capable of resolving the spectral harmonics

but often fails to track the spectral change quickly enough. A typical example of both is

Fundamentals of Speech Production and Analysis 19

shown in Fig. 2.2. Ideally one would like to achieve good time resolution and frequency

resolution simultaneously, but this is impossible due to the well-known uncertainty principle

in signal analysis [42]. To better handle this dilemma, more advanced signal processing

methods, such as wavelet analysis [188], could be explored.

It has been long observed that visual cues in the spectrogram (usually wideband spec-

trogram for this purpose) are closely related to much of the significant acoustic-phonetic

properties of speech and aspects of human speech perception [65, 178, 265]. Most re-

searchers also agree that the human auditory system extracts some perceptual relevant in-

formation directly from a spectrogram-like representation of speech. Indeed, a well-trained

human expert is able to decode the underlying linguistic units by carefully examining the

time-frequency properties of speech signals visually displayed by spectrograms. Such a

process, known as spectrogram reading [266], plays a special educational role for speech

researchers. While we as human beings acquire the skill of translating auditory infor-

mation into meaningful messages at an early age, it is almost impossible to consciously

analyze this process. Learning to read a spectrogram allows our conscious mind fully in-

volved in examining the time-frequency pattern of speech signals to gain insights into the

encoding-decoding process of human communication and sparks to improve the current

speech technology.

Looking at the example in Fig. 2.2(b), the most prominent feature is the smooth move-

ment of the dark bands during voiced speech. The center of these dark bands indicate the

formant frequencies, which are usually defined to be the resonance frequencies or poles of

the acoustic filter in the “filter” part of the source-filter model. Formant frequencies, com-

monly denoted as F1, F2, . . . , FN , are the most important property that characterizes the

acoustic filter (others are the formant bandwidths B1, B2, . . . , BN and formant amplitudes

A1, A2, . . . , AN). For example, it is well-known that the first three formant frequencies are

sufficient to discriminate all English vowels and semivowels [190]. Formants also play an

important role in speech coding (formant vocoders) and speech synthesis (formant synthe-

sizers [32, 137, 138]). A closely related but different concept is the vocal tract resonance

(VTR) frequencies. While the formant frequencies are typically defined in the measurable

acoustic domain or on an abstract modeling sense (“filter” part of the source-filter model of

speech production), VTR frequencies are the intrinsic physical property of the vocal tract.

20 Hidden Dynamic Models for Speech Processing Applications

0 0.5 1 1.5 2 2.5

−1000
0

1000
2000

Time (s)

Time (s)

Fr
eq

ue
nc

y
(H

z)

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

Time (s)

Fr
eq

ue
nc

y
(H

z)

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

(a)

(b)

(c)

Don’t ask me to carry an oily rag like that.

Figure 2.2: Acoustic waveform (a) and the corresponding wideband (b) and narrowband

(c) spectrograms of a sentence.

Fundamentals of Speech Production and Analysis 21

When the vocal tract solely acts as the acoustic filter, e.g., for nonnasalized vowels, the

formant and VTR frequencies are identical, but they can be different otherwise. Moreover,

formant frequencies can change abruptly, e.g., due to the sudden lowering of the velum

which introduces nasal coupling, but the time-evolvement of the VTR frequencies, as a

result of the relatively slow shape change of the vocal tract, are always continuous and

smooth during the production of all sound classes. Such a property of the VTR plays a

vital role in later chapters of the thesis where VTR is chosen as the underlying dynamics

characterizing human speech production.

There are many more important concepts and techniques of speech that are impos-

sible to cover in such a short chapter. As a matter of fact, speech is inherently a multi-

disciplinary research area which requires the joint effort from electrical engineers, computer

scientists, linguists, physiologists and psychologists in order to progress. It is often neces-

sary to have a general understanding about all these fields as well in order to successfully

carry out research on a specific topic. Interested readers are referred to a few excellent

and up-to-date books that cover the topics of speech research and applications from one

or more different angles [65, 92, 115, 127, 178, 224]. However, the background material

provided in this chapter should be adequate to help readers understand most of the thesis

with little problem. Later chapters of the thesis will emphasis automatic speech recognition

(ASR) in particular and an introduction to this specific application area will be provided

in Chapter 8.

Chapter 3

Data Description and Processing

This chapter describes the University of Wisconsin X-ray microbeam (UW-XRMB) speech

production database used in the study of articulatory dynamics, a graphic user interface

(GUI) tool developed for data analysis and some simple processing to prepare the data for

further study.

3.1 The UW-XRMB Database

Being able to obtain accurate measurements of the articulatory motion and the simulta-

neously generated acoustic waveform has long been a goal for speech scientists. However,

collecting such highly useful data is no easy task. Early attempts involve generating full

X-ray movies or X-ray cineradiography of the vocal tract but were quickly abandoned due

to serious health concerns [77], although old data (with relatively low image and audio

quality) is still available for analysis [171]. More recently, magnetic resonance imaging

(MRI) and ultrasound are able to provide three dimensional, high spatial resolution image

about the shape of the vocal tract during the production of various sounds. But these

techniques cannot achieve good enough time resolution (20 ms or less) to truly capture

the complex articulatory movements during continuous speech. Nonetheless, some impor-

tant “quasi-static” studies of human speech production have been done based on these

techniques [6, 226, 229, 238, 262]. Another class of techniques have good temporal or

time resolution but can only provide limited spatial information about the configuration

23

24 Hidden Dynamic Models for Speech Processing Applications

of the mouth, such as electropalatography (EPA/EPG) [102], electromagnetic midsagit-

tal articulography (EMMA) [189] and X-ray microbeam (XRMB) tracking [81, 235, 134].

While EPA only indicates points of contact between the tongue and palate1, EMMA and

XRMB techniques can accurately track a few selected points on the articulators, usually

restricted to the midsagittal plane (the plane which bisects the speaker’s head vertically).

But this is not a very serious limitation since it is often possible to infer the shapes that

the tongue assumes during speech production from its mid-line profile only [227, 228].

The UW-XRMB database is a large-scale multi-speaker database collected by the XRMB

tracking technique, after more than a decade of diligent work by John Westbury and his

team [247, 248]. More details about this database is described below.

3.1.1 Data Acquisition

The XRMB tracking technique was invented by Osamu Fujimura and his colleagues in

1970’s [81] when they built the first machine of this kind for speech research at the Uni-

versity of Tokyo. The current machine at the University of Wisconsin–Madison is a second

generation and improved system over the original one. A schematic of this system, which

is used as a device for recording motions of articulators during speech production, is shown

in Fig. 3.1. First an electron beam is generated by a 600 kV, 5 mA (maximum) power

supply and carefully directed to a specific point on the surface of the water-cooled tungsten

target, by the accelerating column and beam-line components, to generate high energy X-

rays. The deflection and focusing of the electron beam, and consequently, the direction

of the incident narrow X-ray beam (roughly 0.4 mm in diameter), can be accurately and

rapidly controlled by a built-in computer. The X-ray beam then passes through a pinhole

and strikes desirable areas of a speaker’s head. Such a narrow beam significantly reduces

the radiation dosage a subject has to suffer comparing to early full X-ray scans so that it

becomes possible to collect large amount of speech data over many speakers. Finally the

X-ray beam passes through the speaker’s head and reaches the X-ray detector at the far

right side, which consists of a sodium iodide (NaI) crystal, a photon-multiplier tube and an

integration circuit. The entire machine is further encased in 2-4 inch lead plates, making

1Such information is nonetheless valuable for speech production since other techniques often fail to

detect the contact accurately enough.

Data Description and Processing 25

Figure 3.1: A schematic of the UW-XRMB system. Adapted from a UW-XRMB webpage

http://www.medsch.wisc.edu/ubeam/gen/generator.html

its total weight approximately 15 tons.

A number of 2.5-3.0 mm diameter gold pellets are glued to some selected points on the

speaker’s midsagittal plane. The system performs its primary, pellet-tracking function by

producing local X-ray scans roughly 6 mm square, circumscribing the expected location

of each pellet. When a pellet falls within such a search square, it casts a recognizable

shadow on the X-ray detector so that its position can be accurately calculated. Current

and previous locations of a pellet are used to predict its future position and to determine

the required area of a subsequent local scan of the X-ray beam for that particular pellet.

The series of x-y positions for a pellet so determined during speech production constitutes

the pellet’s trajectory recorded in the database.

The placements of gold pellets used in the UW-XRMB database are shown in Fig. 3.2,

where a total of eleven pellets are used. Among the eleven pellets, eight are used for

tracking articulatory motions while the remaining three are used as reference points. Jaw

articulation is tracked via pellets on the mandibular incisor (MANI) and mandibular molar

(MANM). Soft tissue pellets are placed on upper lip (UL), lower lip (LL), tongue tip (TT),

26 Hidden Dynamic Models for Speech Processing Applications

 x

(mm)

y(mm)

0

0

40

-70

30

-100

MAXN

MAXG

MAXI

MANI

MANM

TD

TT

TB2 TB1

UL

LL

Reference Points (3): MAXN, MAXG, MAXI

Measurement Points (8): UL (upper lip), LL (lower lip)

 TT (tongue tip), TD (tongue dorsum)

 TB1 (tongue body 1), TB2 (tongue body 2)

 MANI (mandibular incisor), MANM (mandibular molar)

Figure 3.2: Pellet placements and coordinate system for articulator tracking; a total of

11 points are tracked, with three serving as reference points and the remaining eight as

measurement points.

Data Description and Processing 27

two on the tongue blade (TB1, TB2), and tongue dorsum (TD). Two nose pellets (MAXN,

MAXG) and a maxillary incisor (MAXI) pellet are used as references to help setting up

a coordinate system suitable for each speaker (also shown in the figure) and to correct

for head movements during tracking. These pellets are tracked with different frequencies

(40 to 160 Hz) based on typical moving speed of the point being attached to. In final

distributions of the database, however, all pellets are re-sampled to have a sampling period

of 6.866 ms (this somewhat odd number is chosen for technical conveniences) to facilitate

further analysis.

It is very difficult to accurately determine the spatial resolution or tracking error of the

system due to various technical reasons. A rough estimate according to John Westbury

is 0.15-0.6 mm [248]. The tracking error can also be estimated from the data itself based

on the interesting fact that there are two pellets (MANI and MANM) tracking the same

bony structure — the jaw. If there is no tracking error, the distance between these two

pellets should be a constant for a given speaker. Therefore, an error estimate can be

obtained by calculating simple statistics of this distance throughout the database and it

is roughly 0.7 mm [211]. This estimate is slightly larger than the one given by Westbury

possibly because such a method also takes into account the imperfection of the head motion

correcting calculation. Nevertheless, these error estimates indicate that the accuracy of

articulator tracking in UW-XRMB database is good enough for most scientific studies on

human speech production.

Sound pressure wave is simultaneously recorded by a high quality directional micro-

phone with a sampling period of 46 µs (approximately 21739 Hz) for most speakers. There

is considerable machine and room noise present during the experiment so that the signal

to noise ratio (SNR) is no better than 30 dB for loud speakers and even worse for quite

ones. The timing or synchronous error between sound recording and articulatory tracking

is no more than 2 ms. There are also other measurements recorded synchronously during

the experiments but not contained in the CD distribution of the database, such as the neck

wall vibration signal which roughly indicates voicing during speech and lateral and frontal

video images taken throughout each speaker’s session mostly for monitoring purposes.

28 Hidden Dynamic Models for Speech Processing Applications

3.1.2 Corpus Organization

The UW-XRMB database is a remarkable achievement in high quality data collection for

speech science and related studies. It vastly increases the extent of speaker sample and

the richness of speech tasks performed comparing to previously available data, where both

are very limited (typically no more than three speakers performing one or two types of

speech tasks) [248]. The UW-XRMB database contains articulatory and acoustic data

from 57 native American English speakers, 32 females and 25 males, each performing

about 20 minutes of speech tasks. The task inventory include isolated phones, connected

phone sequences, isolated words, sentences, paragraph and some special motor oral tasks,

organized into 118 utterances, and is weighted more towards continuous natural speech,

which is also the main focus of this study. A speaker also performs a subset of required

speech tasks before the attachment of gold pellets: both as an opportunity for the speaker

to practice some sample utterances and for the examiner to detect the effect of pellet

placement on the quality of speech. Such audio-only data is also included in the distribution

of the database and the effect of pellet placement seems to be negligible from the author’s

own listening experience. The database is organized into subdirectories denoted by each

speaker’s subject number and filenames indicating task numbers.

3.2 A Data Segmentation and Analysis Tool

At the beginning of this study, very limited tools were available to manipulate the articula-

tory and acoustic data contained in the database. As a result, a GUI tool coded in Matlab

was developed from scratch to suit the needs of this study. The tool was originally writ-

ten under Matlab 5.0 and subsequently updated to take advantage of the enhancements

in newer versions (Matlab 6.5 at the time of writing). The choice of Matlab is mainly

due to its powerful signal processing capacity and rich graphical support coupled with an

adequate set of GUI programming commands. Moreover, the developed tool is able to

behave consistently across multiple platforms as Matlab itself does. A few nice examples

of GUI programming with Matlab can be found in [100], which also inspired the original

development of this tool.

A screen shot of the GUI tool displaying some typical acoustic and articulatory data is

Data Description and Processing 29

Figure 3.3: A GUI data segmentation and analysis tool.

30 Hidden Dynamic Models for Speech Processing Applications

shown in Fig. 3.3. The top two plots are the acoustic waveform and corresponding wideband

spectrogram while the remaining plots display trajectories of some key articulators. Among

the displayed articulatory trajectories, the jaw trajectory (Jx and Jy) corresponds to the

measurements of “MANI” pellet in Fig. 3.2. This tool provides not only a compact and

informative view of the acoustic and articulatory measurements but also various useful

functions in visualizing and analyzing the data. For example, it allows you to zoom into a

specific portion of the original data to have a better view, play a selected segment of the

original waveform (indicated by vertical purple lines in Fig. 3.3), cut a long utterance into

smaller segments and save them separately (this is particularly useful for the UW-XRMB

database since one utterance often contains a number of sentences with pauses in between),

type in the word-level or phone-level transcripts of the utterance after listening to them

(it can also convert a word transcript to phone transcript based on the CMU pronouncing

dictionary2) and save these labeling results in appropriate file extensions and formats for

future analysis. Most importantly, it supports convenient manual segmentation of the data

based on acoustic or articulatory features. These features will be elaborated with examples

in later sections where details of data processing and analysis are described.

3.3 Preliminary Processing and Data Preparation

For a general-purpose database, it is often necessary to do some simple processing first to

suit a particular research goal. This is especially true for the UW-XRMB database since

the raw data distributed on the CDs has gone through very little post-processing. The

preprocessing steps to suit the goal of the current study are described in detail in this

section.

3.3.1 Selecting a Subset of Measured Articulatory Points

The main goal of this study is not a purely scientific one. It is rather to gain insight

and motivate the use of articulatory dynamics to benefit the current speech technology.

As a result, computational issues are considered up-front. An effective way to reduce

2The dictionary is available for free download at http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

Data Description and Processing 31

potential computational cost is to reduce the dimensionality of the articulatory data being

studied and/or modeled, since computational effort often grows exponentially with data

dimensionality.

Originally there are eight articulatory points being tracked which results in a 16 × 1

measurement vector for each sample (x and y coordinates for each point). Since pellets

“MANI” and “MANM” track the same rigid jaw structure, only one of them needs to be

kept without loss of information (ignoring tracking error). Here “MANI” is chosen to repre-

sent jaw position. Moreover, four points on the tongue surface are tracked in the database,

but from my previous experience of working with physiologically based articulatory mod-

els, controlling two points on the tongue (tip and dorsum) is capable of generating almost

all speech sounds [49, 147, 150]. Separate factor analysis (FA) results based on different

sets of articulatory data also indicate that two factors are sufficient to represent the tongue

shape during speech production [104, 262]. Therefore, I choose two tongue points, TT and

TD, to represent the tongue shape while discarding the other two (TB1 and TB2) in this

study. The overall dimensionality of the measurement vector is thus reduced from 16 to

10 by keeping five out of the eight measured articulatory points.

The selection of two tongue points is further verified by simple analysis on the data

itself. For simplicity, one speaker’s data (JW15) is chosen for analysis. First a simple

principal component analysis (PCA) [122] is performed on the measurement of four tongue

points, which is an 8 × 1 vector. The result is summarized in Fig. 3.4. It is clear that the

tongue measurements have a high redundancy and can be well explained by 3-5 principal

components, with the first three accounting for 93.1% of the variance and the first five

accounting for 98.6%. Therefore it is reasonable to expect that the selected two tongue

points, TT and TD, which corresponds to a 4× 1 vector, may be able to well represent the

tongue shape during speech production.

Next the positions of TT and TD are used to predict the positions of TB1 and TB2.

A very simple linear model is adopted and 100 out of the total 120 utterances3 are used

for training and the remaining 20 utterances are reserved for testing. Every coordinate of

TB1 and TB2 is estimated by a linear combination of the coordinates of TT and TD plus

3 Two utterances are repeated for this speaker so that the total number of utterances is 120 instead of

the usual 118.

32 Hidden Dynamic Models for Speech Processing Applications

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Number of Principal Components

V
ar

ia
nc

e
E

xp
la

in
ed

 (%
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 3.4: Principal component analysis (PCA) of the four measured tongue points for

speaker JW15. Blue bar: variance explained by individual principal components; red line:

variance explained by the principal components accumulated.

Data Description and Processing 33

a constant bias term, i.e.,

TB1x = aTTx + bTTy + cTDx + dTDy + e, (3.1)

where a, b, c, d, e are the parameters to be estimated. The effectiveness of such a rudimen-

tary linear regression model can be evaluated by calculating the R2 statistics [180] when

fitting the model to data in the training set, and the results are listed in table 3.1. The

Articulatory Position TB1x TB1y TB2x TB2y

R2 Statistics Value 0.9352 0.7314 0.8364 0.8431

Table 3.1: Regression R2 statistics when estimating TB1 and TB2.

value of R2 is the amount of variance in the predictors (TB1x, TB1y, TB2x and TB2y)

explained by the regressor variables (TTx, TTx, TTx, TTx), and these relatively high val-

ues indicate that the simple linear model is doing a good job . This is further confirmed

by testing on untrained utterances. The estimation result for a test sentence is plotted

in Fig. 3.5, where reasonably good estimates of TB1 and TB2 trajectories are obtained.

From this example it can also be observed that the test result is consistent with the train-

ing one, i.e., TB1x is estimated with the highest accuracy while TB1y is the lowest and

TB2x, TB2y are somewhere in between. Of course it is reasonable to expect that more

general and powerful nonlinear estimators (some of them will be used in the next chapter)

will be able to achieve better results, but the simple results obtained here, combined with

knowledge gained from independent speech scientific studies, are sufficient to validate the

selection of two tongue points out of the four being measured in the database.

It is also quite straightforward to further reduce the dimensionality of the data by

PCA or FA methods. This is not carried out, however, in order to preserve the clear

physical meanings of the original measurement points so that their behavior can be better

understood and analyzed at the current stage. As a result, a 10 × 1 measurement vector,

z = [Jx, Jy, ULx, ULy, LLx, LLy, TTx, TTy, TDx, TDy]
T , (3.2)

is consistently used throughout the remaining of the study.

34 Hidden Dynamic Models for Speech Processing Applications

0 50 100 150 200 250 300 350 400
−30

−20

−10

TB
1x

0 50 100 150 200 250 300 350 400
−10

0

10

20

TB
1y

0 50 100 150 200 250 300 350 400
−50

−40

−30

TB
2x

0 50 100 150 200 250 300 350 400
−20

0

20

40

TB
2y

estimated
measured

Figure 3.5: Linear regression estimates of TB1 and TB2 for a test sentence.

Data Description and Processing 35

3.3.2 Hand Labeling and Segmentation

There are a number of important issues need to be solved before further analysis on the

data, especially the relationship between articulatory dynamics and the corresponding

acoustic waveform, can be carried out. These include:

• Mistracked pellets: A technical limitation of the XRMB tracking system is that a

pellet may be lost by the X-ray beam at certain times . This means that for certain

periods the position information of a particular pellet (especially one of the tongue

pellets due to the relatively swift and irregular movement of the tongue) may be

unavailable. These mistracked intervals are marked in the original data file, which

account for about 2% of the total time that the pellets are tracked. However, the

proportion of the utterances that contains at least one mistracked pellet is close to one

half. These mistracked points create little problem when studying static properties

of the articulators where time ordering of the points is irrelevant, such as in the

previous section where the correlation among four tongue points is studied, since the

mistracked data can be simple ignored. But they become quite troublesome when

dynamic properties of the articulators are to be studied.

• The actual phone level transcripts: Although nominal word level transcripts are

provided with the database, which is the same for all speakers, there is no record

about what is actually being said by each speaker. The nominal word transcript

is merely the text that subjects were instructed to read from, but even a casual

listening of the audio files reveals that what is actually said is often different from

these ideal word transcripts. High level errors, such as deleting, adding or repeating

entire words or phrases, are not uncommon, nor do all speakers choose the same

phonetic pronunciation of the words.

• Acoustic phone boundaries: As is customary in many speech scientific studies, it

is often desirable to know the acoustic phone boundaries so that the relationship

between the discrete (or symbolic) and continuous nature of human speech can be

studied in detail. These phone boundaries are not provided by the UW-XRMB

database either.

36 Hidden Dynamic Models for Speech Processing Applications

All the above issues are handled by the self-developed GUI tool described in Section

3.2. Since pellet mistracking typically occurs only during a short interval of the affected

utterance, while each utterance usually contains concatenated words or sentences with

pauses in between, only affected portions of the utterance are cut out by the GUI tool.

The mistracking problem is also less severe for the current study due to the exclusion of

two tongue points. As a result, only a very small portion of the original measurement

has to be discarded. In general, long utterances, e.g., those that contain a few sentences,

are also cut into shorter ones (typically one sentence long) to facilitate further analysis.

The only way to correct for individual speakers’ deviation from nominal word transcripts

appears to be labeling the acoustic files by a human listener. Therefore, each utterance

is loaded into the GUI tool and carefully listened to, so that the actual word level and

phone level transcripts can be typed in by consulting the nominal word transcript and

CMU pronunciation dictionary (the conversion from word transcript to phone transcript is

done automatically by a Perl script, but manual correction is needed from time to time).

The acoustic phone boundaries are also hand-labeled by the GUI tool, and an example

of a labeled sentence displaying all phone boundaries is shown in Fig. 3.6. Notice that

although the nominal word transcript is “Combine all the ingredients in a large bowl”,

what is actually said is “Combine all the gredients in a large bowl”, i.e., the first syllable

of word “ingredients” has been deleted. Such a mistake by the speaker is not recorded in

the word level transcript (since ”gredients” is not a dictionary word) but is reflected in the

phone level transcript.

Admittedly, this kind of hand-labeling is extremely tiring and time-consuming and it

is simply impossible to manually label all speakers in the database. As a result, only

two speakers (JW12 and JW15) have been hand-labeled, which is still a formidable task

that takes months. It should be pointed out that automatically obtaining acoustic phone

boundaries with a fairly high accuracy is possible, e.g., by training a HMM on the data

and performing forced alignment or Viterbi Alignment, which is a well-known intermediate

step in training automatic speech recognition (ASR) systems [120, 259]. However, this

method requires a correct word level transcript at least, which again needs to be done

Data Description and Processing 37
A

rti
cu

la
to

ry
 M

ea
su

re
m

en
ts

A
co

us
tic

 M
ea

su
re

m
en

t

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−40

−20

0

TT
x

(m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−60

−50

−40

TD
x

(m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

15

20

U
Lx

 (m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

LL
x

(m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

Jx
 (m

m
)

S
pe

ct
ro

gr
am

 (k
H

z)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (ms)

W
av

ef
or

m

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

0

20 TTy (m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

0

20 TD
y (m

m
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

15

20 U
Ly (m

m
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

−10

0 LLy (m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

0 Jy (m
m

)

Time (ms)

Figure 3.6: Example of a hand-labeled sentence.

38 Hidden Dynamic Models for Speech Processing Applications

manually4. Since the mistracked portion of the articulatory data also has to be handled

manually, automatic phone segmentation doesn’t provide that much help in preparing data

for further analysis. Due to all these limitations, further analysis of the UW-XRMB data

is concentrated on the two speakers whose data has been hand-labeled.

4The deletion of a syllable as shown in the previous example cannot be handled correctly by this method

unless the nondictionary word “gredients” is manually added to the pronunciation dictionary.

Chapter 4

Data Analysis

This chapter focuses on results and insights derived from the UW-XRMB database. It

starts by illustrating a few important properties of the human speech production process

with typical examples of articulatory and acoustic measurements in Section 4.1, followed

by a study on the static mapping from articulatory to acoustic space in Section 4.2. In Sec-

tion 4.3 some attempts are made to model the highly complicated articulatory movements

at a global level. The studies of Sections 4.2 and 4.3 are combined to formulate a hidden

dynamic model (HDM) of speech in Section 4.4, geared towards practical applications, and

finally some conclusions are drawn in Section 4.5.

4.1 Examples of Interesting Speech Phenomena

Let us first look at the measurement of a typical sentence in the UW-XRMB database,

shown in Fig. 4.1, to illustrate some important and interesting phenomena in human speech.

First it can be observed that although the acoustic signal can be divided into distinct re-

gions, articulatory movements are smooth and continuous throughout the whole utterance.

The distinction of different acoustic regions can be crudely determined by looking at the

amplitude and shape of the waveform over time, or much more accurately, by reading the

rich visual cues contained in the corresponding spectrogram. In fact, spectrogram read-

ing is the most reliable way to determine acoustic phone boundaries, although sometimes

perceptual verification may be needed. However, if only the articulatory trajectories are

39

40 Hidden Dynamic Models for Speech Processing Applications
A

rti
cu

la
to

ry
 M

ea
su

re
m

en
ts

A
co

us
tic

 M
ea

su
re

m
en

t

0 200 400 600 800 1000 1200 1400 1600 1800
−40

−20

0

TT
x

(m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800
−60

−50

−40

TD
x

(m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800
10

15

20

U
Lx

 (m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800
5

10

15

LL
x

(m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800
−5

0

5

Jx
 (m

m
)

S
pe

ct
ro

gr
am

 (k
H

z)

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400 1600 1800
Time (ms)

W
av

ef
or

m

0 200 400 600 800 1000 1200 1400 1600 1800
−20

0

20 TTy (m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20 TD
y (m

m
)

0 200 400 600 800 1000 1200 1400 1600 1800
10

15

20 U
Ly (m

m
)

0 200 400 600 800 1000 1200 1400 1600 1800
−20

−10

0 LLy (m
m

)

0 200 400 600 800 1000 1200 1400 1600 1800
−10

−5

0 Jy (m
m

)

Time (ms)

Figure 4.1: Acoustic and articulatory data: Example 1.

Data Analysis 41

given, there is no way whatsoever to segment an utterance into perception-related acoustic

regions. Displaying the acoustic and articulatory measurements simultaneously allows us

to clearly see the dual nature of speech: on the one hand, the movement of the articulators

is always smooth and continuous, on the other hand, some distinct discrete regions can be

observed from the acoustic signal1. Furthermore, the bearing of this dual nature of speech

on auditory perception is subtle yet important. On the one hand, it allows us to clearly

perceive the discrete units of speech, such as phones or syllables; on the other hand, it also

makes the perception of a phone heavily depend on the context or its neighboring phones.

One clear evidence is that it is impossible to label acoustic phone boundaries based on per-

ception alone, i.e., by listening to small segments of the speech waveform. When cut into

small segments, some phones just don’t sound like what they were intended to be anymore.

More commonly, for two adjacent phones, there is an interval of overlap. If you place the

acoustic phone boundary within this interval, both phones can be perceived from either

side. This actually reflects a big advantage coarticulation offers to speech perception, i.e.,

we can usually perceive a phone by only listening to a very small segment of the actual

realization, sometimes even by subtle cues in the neighboring phones. Such an amazing

ability contributes greatly to the robustness of human speech perception under noisy or

adverse conditions.

Secondly it can be observed that the articulators don’t simply move independently

of each other. On the contrary, their movements are often closely related or strongly

correlated. For this particular sentence, it can be most easily observed by looking at the

movements of ULx and LLx, which appears to be very similar. Moreover, the correlation

among articulators also depends heavily on the speech sound intended to be produced,

which means that for a different utterance, the similar movements between ULx and LLx

will likely not occur. This is demonstrated by a second example of acoustic and articulatory

measurements shown in Fig. 4.2. Of course it is impossible to get a detailed and complete

picture of the correlation among articulators by simply looking at examples. Sophisticated

data driven methods, such as a few simple ones used in 3.3.1, or careful examination of

the underlying physical connections among articulators, will be needed.

1Nonetheless, the continuous or dynamic nature can be observed from the acoustic signals as well, e.g.,

manifested by the smooth movement of the formants in vowel regions.

42 Hidden Dynamic Models for Speech Processing Applications
A

rti
cu

la
to

ry
 M

ea
su

re
m

en
ts

A
co

us
tic

 M
ea

su
re

m
en

t

0 1000 2000 3000 4000 5000 6000 7000
−40

−20

0

TT
x

(m
m

)

0 1000 2000 3000 4000 5000 6000 7000
−55

−50

−45

TD
x

(m
m

)

0 1000 2000 3000 4000 5000 6000 7000
10

15

20

U
Lx

 (m
m

)

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

LL
x

(m
m

)

0 1000 2000 3000 4000 5000 6000 7000
−5

0

5

Jx
 (m

m
)

S
pe

ct
ro

gr
am

 (k
H

z)

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

0 1000 2000 3000 4000 5000 6000 7000
Time (ms)

W
av

ef
or

m

0 1000 2000 3000 4000 5000 6000 7000
−20

0

20 TTy (m
m

)

0 1000 2000 3000 4000 5000 6000 7000
−20

0

20 TD
y (m

m
)

0 1000 2000 3000 4000 5000 6000 7000
10

15

20 U
Ly (m

m
)

0 1000 2000 3000 4000 5000 6000 7000
−20

0

20 LLy (m
m

)

0 1000 2000 3000 4000 5000 6000 7000
−10

−5

0 Jy (m
m

)

Time (ms)

Figure 4.2: Acoustic and articulatory data: Example 2.

Data Analysis 43

Fig. 4.2 also presents an excellent example to explain the concept of active and inactive

articulators for the implementation of a phoneme. The active articulators of a phoneme

refer to those that have to reach one or more well-defined positions (also called targets

or goals) in order to produce the specific phone; while inactive articulators, on the other

hand, are largely irrelevant to the production of the phone since their positions have a

fairly large degree of freedom throughout the production of the phone2. Although such

a definition may not be so rigorous, it helps to identify two different roles an articulator

may play in generating different sounds. For example, TDy is the active articulator for all

vowels while TTy is inactive for most of them. This concept is better illustrated by looking

at real data, such as the production of phoneme /d/ in Fig. 4.2. Since during the initial

closing phase of generating /d/, the tongue tip has to touch the back of the upper teeth,

TTy is an active articulator for this phone. This is clearly demonstrated by examining

the trajectory of TTy, where it reaches a fixed target value (approximately 10 mm) at the

beginning of each /d/ production. In contrast, TDy is inactive for /d/ since its positions

vary quite a lot depending on the neighboring phones (where some of them have TDy as an

active articulator).

Another important and common property of the articulators is their anticipatory be-

havior, which refer to that fact that they often move towards the target of a phoneme well

ahead of its acoustic realization. This can be clearly observed in both examples. For ex-

ample, in producing /d/, the movement of TTy towards its target all starts in the previous

phone as shown in Fig. 4.2. Note that this anticipatory behavior can be observed from

the movement of the formants (especially F2) in the spectrogram as well. Sometimes the

anticipation of articulators can also occur more than one phone ahead, e.g., the movement

of TDy in producing /k/ and /iy/ in Fig. 4.2. This is possible since in the generation of

/n/ (the phone preceding /k/), /n/ and /w/ (the two phones preceding /iy/), TDy is an

inactive articulator.

As a quick summary, this section has illustrated the dual nature (continuous versus

discrete) of speech, the correlation among articulators, the concept of active versus inactive

2This concept is closely related to the feature values in the overlapping articulatory features theory

[66]: roughly speaking, active articulators correspond to nonzero feature values while inactive articulators

correspond to a feature value of zero.

44 Hidden Dynamic Models for Speech Processing Applications

articulators and the important anticipatory behavior in speech production via two typical

examples. They by no means cover all the important phenomena in speech, in fact, not

even most of them. Instead, these are only a few that can be easily demonstrated through

measurements in the UW-XRMB database so that the complexity and subtlety of speech

science research as well as the challenge of studying articulatory dynamics can be better

appreciated. Many behaviors of articulators during speech production, especially at a more

detailed level, are still far from being well understood and is the subject of a large amount

of ongoing research in speech science [53, 106, 107, 249, 250, 252, 251, 253, 254].

4.2 Learning the Articulatory-to-Acoustic Mapping

This section studies a somewhat simple problem, which is from some point measurements

in the articulatory space to features in the acoustic space. It is simple in the sense that it

can be characterized by a static nonlinear mapping, i.e., without taking into account the

dynamic behavior of the articulators, as opposed to the study of articulatory dynamics to

be carried out in the next section. The static nature of this mapping is because of the

underlying physical laws which govern the generation of speech sounds, and is exemplified

by sophisticated yet well-developed transmission line models in speech science to calculate

acoustic waveforms from static vocal tract configurations [161]. If detailed measurements

along the mid-sagittal plane are available, one can use an α-β model [109] to predict the

vocal-tract area functions for a given speaker and input them to a transmission line acoustic

model to compute the corresponding acoustic output. However, such a knowledge-based

scientific approach is not applicable for the UW-XRMB database since we only have a few

point measurements and there are no well-established methods to reconstruct the entire

vocal tract configuration based on a few points. Therefore, a data-driven approach, as is

typical in machine learning, is adopted in this section.

4.2.1 A Simple Linear Articulatory-to-Acoustic (ATA) Mapping

Although knowledge from speech science and similar past studies [133, 211] indicate that

such a mapping could be highly nonlinear, it still makes sense to start from a simple linear

model. Linear mapping is very easy to implement; it can serve as a baseline to compare

Data Analysis 45

with more advanced but complicated methods and also gives a rough estimate on the

difficulty of the problem.

The articulatory measurement used here is the ten dimensional vector shown in equation

(3.2). The acoustic feature is the mel-frequency cepstral coefficients (MFCCs) which are

most popularly used in speech and speaker recognition applications [204, 259]. MFCCs

are computed from speech waveforms using analysis frames 10 ms apart and 24 mel scale

filter banks, and all 24 coefficients are retained as the acoustic feature. In order to be

synchronous with the calculated MFCCs, the articulatory measurement is resampled to

have the same period of 10 ms (from the original 6.866 ms) using a spline interpolation.

One speaker’s data (JW15), which has been hand-labeled, is used in this study. Since

this thesis focuses on continuous natural speech, only this type of utterance is included in

the training and test set, which consists of 50 and 10 sentences respectively. In terms of

data points, the training set contains 13,685 and the test set has 2,518. This amount of

data is large enough to set up a very well-defined machine learning problem to suit the

purpose here, although it may be considered little data in many speech applications since

it corresponds to only a few minutes of speech.

As in Section 3.3.1, a simple linear regression model is used and the values of R2

statistics for the first 12 MFCCs on the training set are listed in table 4.2.1. Based on the

Acoustic Feature MFCC1 MFCC2 MFCC3 MFCC4

R2 Statistics Value 0.2378 0.3302 0.2297 0.3996

Acoustic Feature MFCC5 MFCC6 MFCC7 MFCC8

R2 Statistics Value 0.2820 0.1724 0.2013 0.0581

Acoustic Feature MFCC9 MFCC10 MFCC11 MFCC12

R2 Statistics Value 0.0592 0.2314 0.0958 0.0986

Table 4.1: R2 statistics for a linear ATA mapping.

very low R2 values in the table, it is clear that such a rudimentary linear model fails to

capture the ATA mapping and further test is unnecessary. It also indicates that such a

mapping is highly nonlinear and may be quite difficult. Therefore, the remainder of this

study focuses on using powerful nonlinear regression methods, namely two popular neural

network architectures: multilayer perceptrons (MLPs) and radial basis functions (RBFs),

46 Hidden Dynamic Models for Speech Processing Applications

to model the ATA mapping. Mathematical background of neural networks will not be

presented in this thesis due to space constraint, if necessary readers may refer to a number

of good books [19, 97, 108] or the documentation of Matlab’s neural network tool box [55]

for more details.

4.2.2 ATA Mapping Approximated by MLPs

MLPs with one hidden sigmoid layer have been widely used in many difficult function

approximation (regression) problems. Such a network architecture has been proven to be

a general function approximator under very mild conditions [46, 83, 113]. Furthermore it

also scales nicely with the dimensionality of the input space [10] so that it is much less

sensitive to the curse of dimensionality than many other function approximators (such as

an nth order polynomial), making it suitable for approximating multidimensional input-

output relationships. However, the universal function approximation theorem is only an

existence proof. In practice the number of hidden neurons has to be determined through

experiments. This is carried out first.

Choosing the number of hidden neurons

First a small development set with five training sentences (1452 data points) and one

test sentence (277 data points) is used in order to save computational time and to get a

rough idea about the complexity of the mapping. The Levenberg-Marquardt algorithm

with Bayesian regularization is chosen as the training algorithm for this small set since it

possesses a number of desirable properties and is also an efficient fast training algorithm

for MLPs. A little more detail about this algorithm is provided below.

As with any standard regularization techniques, the cost function J for training a neural

net under Bayesian regularization is a weighted sum of two terms: the usual error function

which is the mean of the sum of squares error (MSE) and a regularization term which is

the mean of the sum of squares of the network weights and biases (MSW), i.e.,

J = MSE + γ · MSW. (4.1)

For MLPs, smaller weights and biases will force the network response to be smoother and

less likely to overfit. But unlike traditional regularization techniques where the regulariz-

Data Analysis 47

ing parameter γ has to be chosen heuristically, under the Bayesian framework it can be

determined automatically [159]. More specifically for MLPs, the algorithm is developed

under the assumption that both the noise in the training data set and prior distribution of

the network parameters (weights and biases) are Gaussian while γ has a noninformative

uniform prior [78]. As a by-product of calculating γ, it also provides a measure of how

many parameters are effectively used to reduce MSE during training, which is very helpful

when proper network size, i.e., the number of hidden neurons, has to be determined for

a specific regression problem. Estimation of γ involves the calculation of Hessian matrix,

whose complexity is at least O(NW 2) where N is the total number of training examples

and W is the total number of network parameters, but this expensive computational over-

head can be avoided by using an approximate Hessian matrix as provided by quasi-Newton

optimization methods [194]. Therefore, it is natural to integrate Bayesian regularization

with a quasi-Newton method for MLP network training. The Levenberg-Marquardt algo-

rithm [162], which is a quasi-Newton method specifically designed to minimize MSE and

has been demonstrated to be an efficient algorithm for MLP training [98], provides a rea-

sonably accurate approximate Hessian matrix and fits this purpose well. This has been

implemented in Matlab as the function trainbr.

Initially 20 hidden neurons are tried and sample output from Matlab is as follows:

TRAINBR, Epoch 290/300, SSE 19957.8/1e-05, SSW 332.902, Grad 2.43e+01/1.00e-10, #Par 7.12e+02/724

TRAINBR, Epoch 295/300, SSE 19957.6/1e-05, SSW 332.992, Grad 2.37e+01/1.00e-10, #Par 7.12e+02/724

TRAINBR, Epoch 300/300, SSE 19957.4/1e-05, SSW 333.092, Grad 2.35e+01/1.00e-10, #Par 7.12e+02/724

The output shows that the training has virtually converged with 300 epochs since both

the sum squared error (SSE) and sum squared weights (SSW) remained almost constant

over the last ten iterations. It also shows that 712 out of 724 parameters are effectively

used in the training, which indicates that no overfit has occurred with 20 hidden neurons.

Therefore, 30 hidden neurons are used and a sample output is:

TRAINBR, Epoch 290/300, SSE 17136.4/1e-05, SSW 484.05, Grad 2.43e+01/1.00e-10, #Par 1.06e+03/1074

TRAINBR, Epoch 295/300, SSE 17136.4/1e-05, SSW 484.045, Grad 2.43e+01/1.00e-10, #Par 1.06e+03/1074

TRAINBR, Epoch 300/300, SSE 17136.4/1e-05, SSW 484.044, Grad 2.43e+01/1.00e-10, #Par 1.06e+03/1074

Again it shows that training converged with 300 epochs and no overfit occurs (1060 out

of 1074 parameters are effectively used). One could keep increasing the number of hidden

neurons and monitor the output to eventually choose the appropriate number of hidden

48 Hidden Dynamic Models for Speech Processing Applications

neurons for this small development set. However, it turns out that the memory requirement

of this algorithm for larger MLPs is prohibitive: with 20 hidden neurons the algorithm re-

quires up to 600MB RAM; with 30 hidden neurons it requires up to 900MB. Therefore,

this simple case study shows that Levenberg-Marquardt algorithm with Bayesian regu-

larization is not applicable for large scale problems (even the small development set for

ATA mapping) in spite of its very desirable properties. To continue further study, training

algorithms coping well with large MLPs as well as alternative methods of detecting overfit

are needed.

After a few comparisons and also heavily based on the author’s previous experience of

working with MLPs [146], the scaled conjugate gradient algorithm [167] is chosen to train

the large MLPs (with more than a few thousand parameters) in this study. The scaled

conjugate gradient algorithm strikes a good balance between training speed and memory

requirement, and has been demonstrated to be the most efficient for training large MLPs

(where quasi-Newton methods such as Levenberg-Marquardt are not applicable) in many

situations. Overfit is detected by early stopping, but for simplicity no separate validation

set is used. The complete 50 sentence training set is used for training while test error

on the 10 sentence test set is directly monitored throughout the training phase to detect

overfit. Initially 100 hidden neurons are tried and the training and test errors as a function

of the training epochs are shown in Fig. 4.3. The result indicates no overfit. The number of

hidden neurons are subsequently increased to 200 and 300 and the corresponding training

and test errors are shown in Fig. 4.4 and Fig. 4.5. Again, no obvious overfit occurs in

either case. Comparing Fig. 4.3, Fig. 4.4 and Fig. 4.5, it can also be observed that although

the training errors decrease as the number of hidden neurons increase from 100 to 300, the

test errors stay about the name. Keep in mind that MLP training algorithms are local

optimization algorithms, and the performance of trained MLP networks does depend on

initial values of the parameters. Therefore a number of different random initializations have

been tried on each network architecture but it turns out that the effect of initialization

is very minor, and the training and test errors shown in Fig. 4.3 to Fig. 4.5 are typical

cases3. Although the MSE as shown in the figures is a good indicate of the performance of

3The long computing time of training MLPs also prevent this from carrying out too extensively: training

a MLP network with 300 hidden neurons takes a whole day on a Pentium 4 2.4 GHz PC.

Data Analysis 49

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100

Epochs

M
ea

n
S

qu
ar

ed
 E

rr
or

 (M
S

E
)

Training
Test

Figure 4.3: Training and test error of a MLP network with 100 hidden neurons.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100

Epochs

M
ea

n
S

qu
ar

ed
 E

rr
or

 (M
S

E
)

Training
Test

Figure 4.4: Training and test error of a MLP network with 200 hidden neurons.

50 Hidden Dynamic Models for Speech Processing Applications

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100

Epochs

M
ea

n
S

qu
ar

ed
 E

rr
or

 (M
S

E
)

Training
Test

Figure 4.5: Training and test error of a MLP network with 300 hidden neurons.

a MLP network, in many cases such a single number doesn’t provide enough information to

facilitate detailed analysis and guide further improvement. Therefore more careful analysis

on the results obtained so far is performed before further refinements are attempted.

Result analysis

Fig. 4.6 shows the test result of a trained MLP network with 200 hidden neurons on one

test sentence. Out of the 24 predicted MFCCs, 12 are plotted in the figure. It can be

seen that the overall result is not very good: reasonably good estimation of lower order

MFCCs is obtained but the result is very poor for higher order ones. The poor estimation

of higher order MFCCs could be attributed to their relatively small magnitude and high

sensitivity to environmental noise, while the recording noise in the UW-XRMB database

is not negligible as explained in Section 3.1.

A more comprehensive and informative way of evaluating the performance of a neural

network for function approximation problems is to perform a linear regression analysis

between the network response and the corresponding targets. If the network is trained

Data Analysis 51

0 1000 2000 3000
−20

0

20

M
FC

C
0

0 1000 2000 3000
−20

0

20

M
FC

C
2

0 1000 2000 3000
−50

0

50

M
FC

C
4

0 1000 2000 3000
−20

0

20

M
FC

C
6

0 1000 2000 3000
−20

0

20

M
FC

C
8

0 1000 2000 3000
−40

−20

0

20

M
FC

C
10

0 1000 2000 3000
−20

0

20

M
FC

C
12

0 1000 2000 3000
−20

0

20

M
FC

C
14

0 1000 2000 3000
−10

0

10

M
FC

C
16

0 1000 2000 3000
−10

−5

0

5

M
FC

C
18

0 1000 2000 3000
−5

0

5

M
FC

C
20

Time (ms)
0 1000 2000 3000

−1

0

1

M
FC

C
22

Time (ms)

Figure 4.6: True and estimated MFCCs for a test sentence. Dash blue line: true MFCCs;

solid red line: estimated MFCCs from a MLP network with 200 hidden neurons.

52 Hidden Dynamic Models for Speech Processing Applications

perfectly, the R-values of such a linear regression analysis for all the output variables will

be 1 when feeding the training data to the neural net; if the network can also predict

perfectly, the R-values will be 1 on the test set as well. In general R is a number between

-1 and 1, and the closer it is to 1 the better is the network performance4. Such a linear

regression analysis has been done on the training and test sets separately and the results are

listed in Table 4.2. By looking at the R-values on the training set, it shows the same trend

Features Rtrain Rtest Features Rtrain Rtest

MFCC0 0.7811 0.6573 MFCC12 0.5537 0.3892

MFCC1 0.7971 0.6720 MFCC13 0.6468 0.5521

MFCC2 0.7707 0.6760 MFCC14 0.6398 0.5393

MFCC3 0.7627 0.6622 MFCC15 0.5137 0.3651

MFCC4 0.8477 0.7642 MFCC16 0.6248 0.4848

MFCC5 0.8071 0.6781 MFCC17 0.3056 0.2579

MFCC6 0.6840 0.5718 MFCC18 0.5407 0.4468

MFCC7 0.7303 0.6456 MFCC19 0.4460 0.3278

MFCC8 0.6839 0.4701 MFCC20 0.3927 0.2697

MFCC9 0.5834 0.4714 MFCC21 0.3320 0.2365

MFCC10 0.7238 0.5896 MFCC22 0.1371 0.0757

MFCC11 0.6020 0.4154 MFCC23 0.0402 0.0104

Table 4.2: R-Values of the linear regression analysis for a MLP network with 200 hidden

neurons.

as the one test example reveals: R-values are reasonably high (around 0.8) for lower order

MFCCs while quite poor for higher order ones. However, by comparing with table 4.2.1, it

can be observed that this nonlinear mapping does provide a significant improvement over

a simple linear one5. R-values obtained from the test set shows the same trend, but are

also marginally lower than those obtained from the training set as is typically the case.

4Readers are cautioned that MSE and linear regression R-values are different measures on the quality

of the mapping and they don’t always agree; when inconsistency occurs, MSE is a more direct measure

for function approximation problems.
5R2 statistics is simply the square of R-values for linear regression analysis [112].

Data Analysis 53

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100

Epochs

M
ea

n
S

qu
ar

ed
 E

rr
or

 (M
S

E
)

Training
Test

Figure 4.7: Training and test errors of a MLP network with 200 hidden neurons on cleaned

data.

Enhancing input data quality

It is always possible that network output cannot be accurately predicted from network input

due to lack of information. Do articulatory measurements in the UW-XRMB database

provide enough information to predict MFCCs? Unfortunately the answer is no based on

knowledge about human speech production. First of all, there is usually a short period of

leading and/or trailing silences for most sentences in the data set. During these periods,

the movement of the articulators does not produce any speech while the target MFCCs

merely reflect the environmental noise (which is relatively small but not negligible in this

database). Therefore to enhance input data these silence periods should be removed. This

is carefully done by hand and the resulting cleaned training and test set have 11,920 and

2,210 data points respectively. Training and test MSEs on this cleaned data set for a MLP

network with 200 hidden neurons are shown in Fig. 4.7, where no obvious improvement

over Fig. 4.4, similar experiment on the raw data set, is achieved.

Moreover, there are two pieces of important acoustic-related information missing from

54 Hidden Dynamic Models for Speech Processing Applications

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100

Epochs

M
ea

n
S

qu
ar

ed
 E

rr
or

 (M
S

E
)

Training
Test

Figure 4.8: Training and test errors of a MLP network with 200 hidden neurons on ap-

pended data.

the articulatory measurements: the glottal source and the velum. The status of the glottal

source controls whether a speech sound is voiced or unvoiced, and the lowering of the velum

introduces nasal coupling to produce nasal sounds. One way to infer this information is

from the generated acoustic waveform. Since all the sentences have been hand-labeled,

binary values for the glottal and nasal features are derived based on the phone bound-

aries and identities. The dimensionality of input vectors is thus augmented from 10 to 12

to include these two extra binary variables. It should be pointed out that such a phone

boundary based labeling method is only an approximation due to the well-known vocal-

ization and nasalization phenomena in speech, i.e., the voice and nasal features tend to

spread to neighboring phones. But this is a big improvement over the complete missing of

information and saves extra (and potentially large amount of) manual work to get more

accurate boundaries for the glottal and nasal features. Again a MLP network with 200

hidden neurons is used and the training and test errors on this appended data set is shown

in Fig. 4.8. Considerable improvement over Fig. 4.4 is obtained this time, with almost 20%

reduction on the test error (16.97 versus 20.34), and it confirms that the glottal and velum

Data Analysis 55

features are quite important for the prediction of MFCCs.

Result analysis on enhanced input data

Similar analysis is carried out on the MLP network trained on the appended data. First the

test result on the same test sentence is shown in Fig. 4.9, where noticeable improvements

can be observed. Next linear regression analysis on the training and test set are performed

and the results are summarized in Table 4.3. It can be observed that R-values for all the

Features Rtrain Rtest Features Rtrain Rtest

MFCC0 0.8198 0.7374 MFCC12 0.6467 0.5304

MFCC1 0.8658 0.8364 MFCC13 0.7056 0.6320

MFCC2 0.8262 0.7506 MFCC14 0.7096 0.5961

MFCC3 0.8117 0.7206 MFCC15 0.5893 0.4442

MFCC4 0.8856 0.8109 MFCC16 0.6683 0.5284

MFCC5 0.8569 0.7510 MFCC17 0.3924 0.3440

MFCC6 0.7347 0.6343 MFCC18 0.5850 0.4968

MFCC7 0.7921 0.7333 MFCC19 0.4931 0.3875

MFCC8 0.7234 0.5987 MFCC20 0.4685 0.3878

MFCC9 0.6667 0.5412 MFCC21 0.4371 0.2802

MFCC10 0.8016 0.6890 MFCC22 0.2612 0.1407

MFCC11 0.6778 0.5265 MFCC23 0.1246 0.0942

Table 4.3: R-Values of the linear regression analysis for a MLP network with 200 hidden

neurons on the appended data.

MFCCs on both the training and test set are improved noticeably. However, the same

difficulty of predicting higher orders of MFCCs persists. The overall result suggests that

the nonlinear mapping learned by MLP networks may be good enough to predict lower

order MFCCs, which is still quite useful since most practical applications only use lower

order ones, such as the first twelve used in many state-of-the-art speech recognizers.

56 Hidden Dynamic Models for Speech Processing Applications

0 1000 2000 3000
−20

0

20

M
FC

C
0

0 1000 2000 3000
−20

0

20

M
FC

C
2

0 1000 2000 3000
−40

−20

0

20

M
FC

C
4

0 1000 2000 3000
−20

0

20

M
FC

C
6

0 1000 2000 3000
−20

0

20

M
FC

C
8

0 1000 2000 3000
−40

−20

0

20

M
FC

C
10

0 1000 2000 3000
−20

0

20

M
FC

C
12

0 1000 2000 3000
−20

0

20

M
FC

C
14

0 1000 2000 3000
−10

0

10

M
FC

C
16

0 1000 2000 3000
−10

−5

0

5

M
FC

C
18

0 1000 2000 3000
−5

0

5

M
FC

C
20

Time (ms)
0 1000 2000 3000

−0.5

0

0.5

1

M
FC

C
22

Time (ms)

Figure 4.9: True and estimated MFCCs for a test sentence on appended data. Dash blue

line: true MFCCs; solid red line: estimated MFCCs from a MLP network with 200 hidden

neurons.

Data Analysis 57

4.2.3 ATA Mapping Approximated by RBFs

Another popular neural network architecture that has been used to solve difficult nonlinear

regression problems is radial basis functions (RBFs). Despite their very different origin

and mathematical structures, RBFs and MLPs share similar universal function approxi-

mation properties [183, 191]. RBFs also scale nicely with the dimensionality of the input

space [174] so that it is a good candidate for approximating multidimensional input-output

relationships. In this section, Gaussian function is used as the transfer function of the ra-

dial basis neurons, which is one of the most popular choices. Two types of RBF networks,

namely regularization RBFs and generalized RBFs, are studied6. This section runs parallel

to the previous section and also serves as a comparative case study between MLPs and

RBFs for a practical function approximation problem.

Using Regularization RBF Networks

A regularization RBF network has the same number of radial basis (or hidden) neurons as

the number of training samples, each centering at a training sample. It essentially performs

a multi-dimensional interpolation that passes through all the training points. Such a RBF

network will reach zero training error, but typically results in a large number of hidden

neurons (for a large training set), is subjective to numerical problems and also highly

sensitive to noise presented in the training data. Nevertheless, it can be designed very

quickly and the training algorithm is readily available in Matlab. Therefore, it serves as

the first step to apply RBFs for the ATA mapping.

Since the number of hidden neurons and their centers are fixed, the only adjustable

parameter is the width or spread of the Gaussian basis function, which controls the influence

of a training sample on its vicinity and the smoothness of the interpolation. This may be

automatically determined from the training data by some heuristic methods, or simply

tuned by monitoring the error on a validation set or the test set. For the ATA mapping

problem, the spread is adjusted manually from 0.5 to 5 with a step size of 0.1 and test

error is monitored directly. Fig. 4.10 shows the result of such an experiment, where the

6Please note that the terminologies used here is very different from those used in Matlab’s neural

network toolbox but follows typical literatures in the neural network community [108, 191].

58 Hidden Dynamic Models for Speech Processing Applications

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

20.5

21

21.5

22

22.5

23

23.5

24

Spread

M
ea

n
S

qu
ar

ed
 E

rr
or

Figure 4.10: Test error of a regularization RBF network versus the spread of the Gaussian

basis function.

network test error versus the spread of the Gaussian basis function is plotted. The optimal

spread so determined is 1.5, but within a certain range the test error is not very sensitive

to the spread of the basis function.

Next a regularization RBF network with the optimal spread (1.5) for its basis functions

is trained and tested on the raw data set, and similar result analysis as in the MLP case

is performed. Fig. 4.11 shows the test result on the same test sentence as in the MLP

case. The figure shows the same trend: lower order MFCCs can be predicted much more

accurately than higher order ones. The overall result seems to be quite comparable to that

obtained from a MLP network. A linear regression analysis between network output and

the corresponding target values are also performed. Since a regularization RBF network

achieves zero training error, the analysis only needs to be done on the test set. The result

is summarized in Table 4.4, along with the R values of a MLP network with 200 hidden

neurons on the same test set to facilitate comparison. It can be observed that the R-values

of the regularization RBF network is consistently higher than those of the MLP network,

Data Analysis 59

0 1000 2000 3000
−20

0

20

M
FC

C
0

0 1000 2000 3000
−20

0

20

M
FC

C
2

0 1000 2000 3000
−40

−20

0

20

M
FC

C
4

0 1000 2000 3000
−20

0

20

M
FC

C
6

0 1000 2000 3000
−20

0

20

M
FC

C
8

0 1000 2000 3000
−40

−20

0

20

M
FC

C
10

0 1000 2000 3000
−20

0

20

M
FC

C
12

0 1000 2000 3000
−20

0

20

M
FC

C
14

0 1000 2000 3000
−10

0

10

M
FC

C
16

0 1000 2000 3000
−10

0

10

M
FC

C
18

0 1000 2000 3000
−5

0

5

M
FC

C
20

Time (ms)
0 1000 2000 3000

−1

0

1

M
FC

C
22

Time (ms)

Figure 4.11: True and estimated MFCCs for a test sentence on raw data. Dash blue line:

true MFCCs; solid red line: estimated MFCCs from a regularization RBF network.

60 Hidden Dynamic Models for Speech Processing Applications

Features RRBF RMLP Features RRBF RMLP

MFCC0 0.7248 0.6573 MFCC12 0.4805 0.3892

MFCC1 0.7597 0.6720 MFCC13 0.6296 0.5521

MFCC2 0.7190 0.6760 MFCC14 0.6215 0.5393

MFCC3 0.7256 0.6622 MFCC15 0.4894 0.3651

MFCC4 0.8079 0.7642 MFCC16 0.5726 0.4848

MFCC5 0.7437 0.6781 MFCC17 0.4221 0.2579

MFCC6 0.6549 0.5718 MFCC18 0.5473 0.4468

MFCC7 0.6970 0.6456 MFCC19 0.4011 0.3278

MFCC8 0.5741 0.4701 MFCC20 0.4927 0.2697

MFCC9 0.5566 0.4714 MFCC21 0.3473 0.2365

MFCC10 0.6709 0.5896 MFCC22 0.3890 0.0757

MFCC11 0.5386 0.4154 MFCC23 0.3515 0.0104

Table 4.4: R-Values of the linear regression analysis for a regularization RBF network and

a comparable MLP network on raw data.

and the improvement is especially significant for higher orders of MFCCs (although the

absolute value is still quite low). However, these improved R-values don’t translate into

a equally significant MSE reduction on the test set (20.18 for regularization RBF versus

20.34 for MLP), which is a more direct measure on the quality of function approximation.

The regularization RBF network is further trained and tested on the cleaned and ap-

pended data set. The reduction of test error on the cleaned data is negligible but it is

quite significant on the appended data, similar to the MLP case. This can be observed by

carefully examining the testing result on the same test sentence shown in Fig 4.12. Similar

linear regression analysis is also preformed and the result is summarized in Table 4.5, along

with the R values of a MLP network with 200 hidden neurons under the same condition. It

can again be observed that R-values of the regularization network are consistently higher

than those of the MLP network, although the improvement is a bit smaller than that on the

raw data set. Judging by the more direct measure MSE however, MLPs and regularization

RBFs perform very similar on both the raw and appended data set (the actual values are

summarized in Table 4.7 at the end of this section on page 70).

Data Analysis 61

0 1000 2000 3000
−20

0

20

M
FC

C
0

0 1000 2000 3000
−20

0

20

M
FC

C
2

0 1000 2000 3000
−40

−20

0

20

M
FC

C
4

0 1000 2000 3000
−20

0

20

M
FC

C
6

0 1000 2000 3000
−20

0

20

M
FC

C
8

0 1000 2000 3000
−40

−20

0

20

M
FC

C
10

0 1000 2000 3000
−20

0

20

M
FC

C
12

0 1000 2000 3000
−20

0

20

M
FC

C
14

0 1000 2000 3000
−10

0

10

M
FC

C
16

0 1000 2000 3000
−10

0

10

M
FC

C
18

0 1000 2000 3000
−5

0

5

M
FC

C
20

Time (ms)
0 1000 2000 3000

−0.5

0

0.5

1

M
FC

C
22

Time (ms)

Figure 4.12: True and estimated MFCCs for a test sentence on appended data. Dash blue

line: true MFCCs; solid red line: estimated MFCCs from a regularization RBF network.

62 Hidden Dynamic Models for Speech Processing Applications

Features RRBF RMLP Features RRBF RMLP

MFCC0 0.7699 0.7374 MFCC12 0.5505 0.5304

MFCC1 0.8695 0.8364 MFCC13 0.6680 0.6320

MFCC2 0.7771 0.7506 MFCC14 0.6325 0.5961

MFCC3 0.7737 0.7206 MFCC15 0.5255 0.4442

MFCC4 0.8419 0.8109 MFCC16 0.6108 0.5284

MFCC5 0.8072 0.7510 MFCC17 0.4457 0.3440

MFCC6 0.6920 0.6343 MFCC18 0.5851 0.4968

MFCC7 0.7649 0.7333 MFCC19 0.4362 0.3875

MFCC8 0.6478 0.5987 MFCC20 0.5006 0.3878

MFCC9 0.6121 0.5412 MFCC21 0.3932 0.2802

MFCC10 0.7131 0.6890 MFCC22 0.4165 0.1407

MFCC11 0.5752 0.5265 MFCC23 0.4012 0.0942

Table 4.5: R-Values of the linear regression analysis for a regularization RBF network and

a comparable MLP network on appended data.

Using Generalized RBF Networks

A generalized RBF network refers to one that has less (and usually much less) hidden

neurons than the number of training samples. The number of hidden neurons needed is

supposed to represent the internal complexity of the mapping instead of simply growing

with the size of training data as in regularization networks, which is similar to the role

hidden neurons play in a MLP network. When appropriately designed, such a network

can not only represent the desired input-output mapping more efficiently, but also cope

well with noisy input data. However, the number of hidden or basis neurons again have to

be determined from experiments. There are many variants of generalized RBF networks

and many ways to design them accordingly. For example, Matlab supports an iterative

procedure which adds one neuron at a time (centered at one of the training samples) based

on orthogonal least squares criterion [37] until a pre-specified error goal or a maximum

number of neurons is reached. Unfortunately, such an algorithm runs too slow for the size

of the current training set. In this study, a much faster hybrid supervised/unsupervised

Data Analysis 63

training algorithm proposed by Moody and Darken [168] is adopted and implemented in

Matlab. This method first performs a K-means clustering on the training data to determine

the center and spread of the radial basis functions, where the number of clusters K is pre-

selected, then use a supervised learning method to determine the weights and biases of the

output layer by performing a fast linear optimization (essentially a pseudo-inverse on the

outputs of radial basis neurons).

Besides the number of hidden neurons, we also have to determine the spread of the

basis functions as in regularization RBF networks. The K-means clustering algorithm not

only returns centers of the clusters, which will serve as centers of radial basis neurons in the

RBF network, but can also calculate the sample variance of the clusters. Intuitively the

optimal spread of the basis functions should be related to these sample variances somehow.

Here a simple method is adopted to determine the optimal spread: we let all the hidden

neurons have the same spread and assume that the spread is proportional to the average

sample mean of the clusters. The ratio between the spread and the average sample variance,

referred to as the spread ratio hereafter, is determined through experiments. Parameter

tuning to obtain the optimal network architecture is further complicated by the fact that

K-means clustering is a local optimization algorithm and centers of the K clusters returned

are sensitive to the initial values, which are usually picked randomly. Therefore, for a fixed

number of hidden neurons, a number of training and test sessions should be run and the

average test error should be taken as an appropriate measure. However, experiments show

that the effect of initialization is quite minor for this mapping problem. Furthermore, it

also turns out that the test error is not very sensitive to the number of hidden neurons as

long as it is large enough. Networks that have the number of hidden neurons ranging from

500 to 3500 are tried on a fairly coarse scale and it is observed that test errors stay about

the same for networks with 1500 or more hidden neurons (when each network also has its

own optimal spread ratio).

The dependency of test error on the spread ratio is much stronger, however, and exam-

ples of two generalized RBF networks with 1500 and 2000 hidden neurons respectively are

shown in Fig. 4.13 and Fig. 4.14, where the test error versus the spread ration is plotted.

It can be observed that the optimal spread ratio is 10 for a generalized RBF network with

1500 hidden neurons and 12 for one with 2000 hidden neurons. The network that has

64 Hidden Dynamic Models for Speech Processing Applications

5 10 15 20 25
20.5

21

21.5

22

22.5

23

23.5

24
1500 Hidden Neurons

Spread Ratio

M
ea

n
S

qu
ar

ed
 E

rr
or

Figure 4.13: Test error of a generalized RBF network with 1500 hidden neurons as a

function of the spread ratio.

5 10 15 20 25
20

20.5

21

21.5

22

22.5

23

23.5

24
2000 Hidden Neurons

Spread Ratio

M
ea

n
S

qu
ar

ed
 E

rr
or

Figure 4.14: Test error of a generalized RBF network with 2000 hidden neurons as a

function of the spread ratio.

Data Analysis 65

2000 hidden neurons also performs slightly better than the one with 1500 hidden neurons.

Adding more hidden neurons only provide very little gain in terms of test error (if at all),

but with a big price to pay in terms of computational cost: when the number of hidden

neurons is too large, the memory requirement is prohibitive (caused by the pseudo-inverse

of a very large matrix), and the Linux PC used for this experiment (with 1GB RAM and

2GB swap space) can only handle hidden neurons up to 3500. Of course the motivation

of using a generalized RBF network in the first place is to select a RBF network with

the minimum number of hidden neurons that can approximate the desired mapping well.

Therefore, a generalized RBF network with 2000 hidden neurons and a spread ratio of 12

is used in the following experiments.

Training and testing of the generalized RBF network is again performed on raw, cleaned

and appended data sets as before. Test errors on the raw and cleaned data set are very

similar while some gain is achieved on the appended data set. Test results on the same test

sentence are plotted in Fig. 4.15 and Fig. 4.16 for the raw and appended data respectively.

The overall quality is quite similar to those achieved by the MLP networks and regular-

ization networks. Similar linear regression analysis on the test set is also carried out and

the results are summarized in Table 4.6. The R-values are somewhat lower than those ob-

tained from the regularization RBF network but are comparable with those obtained from

the MLP network with 200 hidden neurons. They also show the same trend: in general

R-values of lower order MFCCs are much higher than those of higher order MFCCs. The

overall performance of generalized RBFs is very close to that of MLPs and regularization

RBFs judging by MSEs on the test set.

4.2.4 Further Improvements by Ensemble Learning

In machine learning, ensemble methods [68, 176] refer to learning algorithms that construct

a set of classifiers/regressors and determine the output on test data by taking a (weighted)

vote of their predictions. The original ensemble method is Bayesian averaging, but two

simple yet powerful ensemble methods recently developed are bagging [24] and boosting

[80]. Given the difficulty of ATA mapping, it makes sense to try these ensemble learning

methods to see if further improvements can be made by combining the power of individual

regressors.

66 Hidden Dynamic Models for Speech Processing Applications

0 1000 2000 3000
−20

0

20

M
FC

C
0

0 1000 2000 3000
−20

0

20

M
FC

C
2

0 1000 2000 3000
−50

0

50

M
FC

C
4

0 1000 2000 3000
−20

0

20

M
FC

C
6

0 1000 2000 3000
−20

0

20

M
FC

C
8

0 1000 2000 3000
−50

0

50

M
FC

C
10

0 1000 2000 3000
−20

0

20

M
FC

C
12

0 1000 2000 3000
−20

0

20

M
FC

C
14

0 1000 2000 3000
−10

0

10

M
FC

C
16

0 1000 2000 3000
−10

0

10

M
FC

C
18

0 1000 2000 3000
−5

0

5

M
FC

C
20

Time (ms)
0 1000 2000 3000

−1

0

1

M
FC

C
22

Time (ms)

Figure 4.15: True and estimated MFCCs for a test sentence on raw data. Dash blue line:

true MFCCs; solid red line: estimated MFCCs from a generalized RBF network.

Data Analysis 67

0 1000 2000 3000
−20

0

20

M
FC

C
0

0 1000 2000 3000
−20

0

20

M
FC

C
2

0 1000 2000 3000
−50

0

50

M
FC

C
4

0 1000 2000 3000
−20

0

20

M
FC

C
6

0 1000 2000 3000
−20

0

20

M
FC

C
8

0 1000 2000 3000
−50

0

50

M
FC

C
10

0 1000 2000 3000
−20

0

20

M
FC

C
12

0 1000 2000 3000
−20

0

20

M
FC

C
14

0 1000 2000 3000
−10

0

10

M
FC

C
16

0 1000 2000 3000
−10

0

10

M
FC

C
18

0 1000 2000 3000
−5

0

5

M
FC

C
20

Time (ms)
0 1000 2000 3000

−1

0

1

M
FC

C
22

Time (ms)

Figure 4.16: True and estimated MFCCs for a test sentence on appended data. Dash blue

line: true MFCCs; solid red line: estimated MFCCs from a generalized RBF network.

68 Hidden Dynamic Models for Speech Processing Applications

Features Rraw Rlabel Features Rraw Rlabel

MFCC0 0.6937 0.7467 MFCC12 0.4490 0.5426

MFCC1 0.7398 0.8539 MFCC13 0.6122 0.6492

MFCC2 0.6825 0.7577 MFCC14 0.5993 0.6247

MFCC3 0.6940 0.7435 MFCC15 0.4471 0.4707

MFCC4 0.7881 0.8174 MFCC16 0.5472 0.5632

MFCC5 0.7146 0.7731 MFCC17 0.3934 0.3863

MFCC6 0.6229 0.6755 MFCC18 0.5068 0.5492

MFCC7 0.6953 0.7446 MFCC19 0.3879 0.4082

MFCC8 0.5466 0.5966 MFCC20 0.4274 0.4565

MFCC9 0.5278 0.6248 MFCC21 0.2693 0.3434

MFCC10 0.6136 0.6734 MFCC22 0.3843 0.3946

MFCC11 0.4885 0.5351 MFCC23 0.3401 0.3764

Table 4.6: R-Values of the linear regression analysis for generalized RBF networks with

2000 hidden neurons on raw and appended data.

Generally speaking, bagging is good at variance control but weak at bias control, while

boosting is very effective at bias control and provides some variance control as well. For

MLP networks, since no overfit is observed so far, boosting should be more effective.

Applying boosting to classification problems (especially binary class problems) is very

straightforward, but it is considerably more involved for regression problems. The algo-

rithm implemented here follows closely to the one proposed by Zemel and Pitassi [261],

with a natural extension to vector outputs. An exponentiated squared error of weighted

training distributions replaces the standard MSE to serve as the cost function for MLP

training, where the weighting coefficients (between 0 and 1) are determined by a simple line

search algorithm and the scaled conjugate gradient method is again used for optimization.

Up to 10 training distributions are used to train MLPs with 200 hidden neurons but no

significant reduction on test error has been achieved. Since the algorithm is very expensive

to run (takes more than a week), no further efforts are made along this direction.

For generalized RBF networks, the same boosting algorithm will significantly increase

computational complexity since modification of the cost function will turn the current

Data Analysis 69

linear optimization problem into a nonlinear one, and the computational efficiency enjoyed

by generalized RBFs will be completely lost. Therefore, boosting is not implemented

on RBFs. Instead, bagging as described in [24] is tried on a generalized RBF network

with 3000 hidden neurons and a spread ratio of 14 (the optimal spread ratio for such an

architecture). The reason of choosing 3000 hidden neurons is trying to create a little bit

overfit so that the effect of bagging may be more obvious. Bootstrap replicates up to 25

are tried, but it also fails to provide any significant improvement on the test error over

baseline systems described in the previous two sections.

4.2.5 Summary

A formal and systematic study on the ATA mapping is carried out in this section. Three

neural network architectures (MLP, regularization RBF and generalized RBF) are carefully

applied and ensemble learning methods are also attempted to further improve the result. It

is observed that the added glottal and nasal features are effective at improving the accuracy

of the mapping. However, the final result is still not very satisfactory and this seems to

reveal that the difficulty lies in the intrinsic complexity of the mapping rather than the

technique used to learn it. It could be caused by the lack of information or inaccuracy of

the input data (such as the glottal and nasal features) or the complicated nature of the

acoustic feature (MFCCs) chosen. The considerable amount of effort required to apply

neural networks for this large scale function approximation problem also suggests that an

alternative knowledge-based approach is worth pursuing. Actually, the lessons learned here

has strongly motivated the use of analytical mapping from the VTR domain to the acoustic

domain in Section 7.1.

Among different neural network architectures, the final accuracies they can reach are

quite similar. The mean squared errors on both the raw and appended test set for different

architectures are summarized in Table 4.7. However, there are some practical concerns

when different network architectures are used. MLPs are very expensive to train but very

fast to operate once it is trained. Regularization RBFs are very fast to train (since it essen-

tially remembers all the training examples) but slow and expensive (in terms of memory

requirement) to operate. The generalized RBFs seem to strike a balance between time and

space complexities in both training and testing, but the gain in training is significantly

70 Hidden Dynamic Models for Speech Processing Applications

Network Architecture Raw Data appended Data

MLP with 200 hidden neurons 20.34 16.97

Regularization RBF 20.18 17.38

Generalized RBF with 2000 hidden neurons 20.29 17.12

Table 4.7: Test error (MSE) of different neural network architectures.

reduced due to the tuning of two free parameters instead of one in MLP and regularization

RBF networks. For most speech applications where such a mapping can be trained off-line,

MLPs seem to be an appropriate choice.

4.3 Modeling the Articulatory Dynamics

Due to the highly complicated articulatory movements during speech production, so far no

successful models have been developed in speech science to account for their behavior at a

global level. In this section a simple statistical model aiming at this goal is developed and

tested.

4.3.1 A Functional Articulatory Dynamic Model

As illustrated in Section 4.1, when an articulator is active during the production of a

phoneme, it will move towards or reach one or more well-defined positions. These well-

defined positions are called targets or goals of the active articulators when producing

the phoneme. Most phonemes have a single target for each active articulator, but some

phonemes may have more than one target for an active articulator depending on the con-

text. A well-known example is the two tongue dorsum (TD) targets for phoneme /k/, such

as in words “car” and “can”, where one is relatively backward and the other is relatively

forward. From a statistical point of view, most targets can be modeled by a unimodal

distribution (such as a Gaussian) but some may need a multimodal distribution (such

as a mixture of Gaussians) to be modeled accurately; while the position of the inactive

articulators can be modeled by a relatively flat distribution.

However, accounting for all these complexities at the same time requires a fairly com-

Data Analysis 71

plicated model. As a first attempt to capture key properties of the articulatory dynamics

and their relationship to phoneme production globally, the following simple target-directed

statistical linear dynamic equation is proposed:

z(k) = Φsz(k − 1) + Ψsus + ws(k). (4.2)

The vector z(k), as defined in (3.2), represents the positions of measured articulators at

time k, and will be referred to as the state vector or simply states from time to time.

The phoneme that is currently being realized by the articulators is indexed by s. When

phonemes are produced sequentially, the initial state of the current phone is the last state

of the previous phone, thus imposing a simple continuity constraint across the whole ut-

terance. The key parameters of the model are the quantities Φs, Ψs and us: matrix Φs

encodes the time interaction among the articulatory components; vector us is the target

position of the articulators; and matrix Ψs describes the control effect of the targets on the

articulatory movement. All three quantities are phone dependent, although for implemen-

tation purposes the values Φs and Ψs may each be tied for broader classes of phones. Due

to the well-known forward-anticipatory property of the articulators as illustrated in Section

4.1, the boundaries for these parameters (especially the target us) should be in advance of

the actual acoustic boundaries. The quantitative degree of anticipation is one additional

parameter to be learned from the articulatory data. Finally, ws(k) is a phone-dependent

white Gaussian noise process with time-invariant covariance matrices Qs to account for

model inaccuracy.

By definition, (4.2) must satisfy the assumed asymptotic target-directed property when

no state noise is present, that is, z(k) = z(k−1) → us as k → ∞ if ws(k) = 0 at all times7.

First for z(k) to asymptotically reach a steady state, matrix Φs must be convergent, i.e., all

its eigenvalues must lie within the unit circle. Second if we substitute z(k) = z(k−1) = us

and ws(k) = 0 into (4.2), we have

Ψs = I − Φs, (4.3)

which is the constraint between Φs and Ψs. This indicates that Ψs is not a free parameter

of the model if the asymptotic target-directed property is to be satisfied. Therefore, (4.2)

7When noise is present, the mean of z(k) should converge to us.

72 Hidden Dynamic Models for Speech Processing Applications

can be rewritten as

z(k) = Φsz(k − 1) + (I − Φs)us + ws(k), (4.4)

which is the form used throughout the remaining of the study.

Notice that under noise-free conditions, if z(k) becomes a scalar or more generally Φs

is a diagonal matrix, (4.4) can only generate exponential curves asymptotically reaching

a constant (the target), which is a very simple type of dynamics. When Φs is not re-

stricted to be diagonal, slightly more complicated dynamics can be generated through the

interactions among components of z, or equivalently, among different articulators. There-

fore, the structure of matrix Φs, which represents the interrelationships between z(k) and

z(k + 1) and the interactions among articulators, is of great importance. In particular,

we can identify approximate conditional independencies among articulators: for example

the movement of the upper lip, related to that of the lower lip, is largely independent of

the jaw position. One possible Φs matrix, determined after exploring all such conditional

independence relations, follows:

Φs =









































φ11 φ12 0 0 0 0 0 0 0 0

φ21 φ22 0 0 0 0 0 0 0 0

0 0 φ33 φ34 φ35 φ36 0 0 0 0

0 0 φ43 φ44 φ45 φ46 0 0 0 0

φ51 φ52 φ53 φ54 φ55 φ56 0 0 0 0

φ61 φ62 φ63 φ64 φ65 φ66 0 0 0 0

φ71 φ72 0 0 0 0 φ77 φ78 φ79 φ7,10

φ81 φ82 0 0 0 0 φ87 φ88 φ89 φ8,10

φ91 φ92 0 0 0 0 φ97 φ98 φ99 φ9,10

φ10,1 φ10,2 0 0 0 0 φ10,7 φ10,8 φ10,9 φ10,10









































, (4.5)

and this structure is retained for all phones s. Note that asserting this structure simultane-

ously reduces the number of parameters and makes the parameter estimation more robust.

To facilitate model parameter learning, which will be presented shortly, it is even more

desirable for Φs to be block diagonal. This is approximately achieved through a change of

basis,

z = [Jx, Jy, ULx, ULy, LLx − Jx, LLy − Jy, TTx − Jx, TTy − Jy, TDx − Jx, TDy − Jy]
T , (4.6)

Data Analysis 73

leading to a revised Φs matrix

Φs =









































φ11 φ12 0 0 0 0 0 0 0 0

φ21 φ22 0 0 0 0 0 0 0 0

0 0 φ33 φ34 φ35 φ36 0 0 0 0

0 0 φ43 φ44 φ45 φ46 0 0 0 0

0 0 φ53 φ54 φ55 φ56 0 0 0 0

0 0 φ63 φ64 φ65 φ66 0 0 0 0

0 0 0 0 0 0 φ77 φ78 φ79 φ7,10

0 0 0 0 0 0 φ87 φ88 φ89 φ8,10

0 0 0 0 0 0 φ97 φ98 φ99 φ9,10

0 0 0 0 0 0 φ10,7 φ10,8 φ10,9 φ10,10









































. (4.7)

The model presented here is termed functional since the underlying physiological mech-

anism which governs the movement of articulators is not directly described, although clearly

the model must reflect key constraints imposed by the physiological system. Rather, a

target-oriented, parameterized linear state equation is proposed, where the parameters are

learned automatically from real speech data. Such a model is also strongly motivated by

a similar target-directed model well-developed in speech science [213]. The difference is

that the original model is deterministic, continuous-time and defined in the abstract task

space, where the dynamics is supposed to be quite simple; here the highly complicated

articulatory movement is dealt with directly and a statistical model is indispensable to

account for model inaccuracy. The parameter estimation strategy is presented next.

4.3.2 Model Parameter Learning

First assume that the articulatory phone boundaries, i.e., the boundaries where phone-

dependent model parameters switch values, are known. Suppose we have a set of artic-

ulatory measurements Z = {z(0), z(1), . . . , z(K)} belonging to the same phone, and the

model parameters to be estimated are Θ = {Φ,u,Q}8. The formulas for estimating these

parameters are derived based on the maximum likelihood (ML) criterion.

8The dependency of model parameters on phone index s is dropped for notational clarity: the derived

results apply to all phones.

74 Hidden Dynamic Models for Speech Processing Applications

Observe that the state equation (4.4) implicitly encodes a Markov property on z(k),

and the total log likelihood of the time series Z can be expressed as

L(Z | Θ) , log p(Z) = log

{

K
∏

k=1

p[z(k) | z(k − 1)] · p[z(0)]

}

. (4.8)

Assume z(0) is known and does not contribute to the maximization of L, and define the

more compact notation zk , z(k), we have

L =
K
∑

k=1

{

1

2
log

∣

∣

∣

∣

1

2πQ

∣

∣

∣

∣

−
1

2
[zk − Φzk−1 − (I − Φ)u]TQ−1[zk − Φzk−1 − (I − Φ)u]

}

=
K
∑

k=1

{

1

2
log

∣

∣

∣

∣

Q−1

2π

∣

∣

∣

∣

−
1

2
[zk − Φzk−1 − (I − Φ)u]TQ−1[zk − Φzk−1 − (I − Φ)u]

}

.

(4.9)

Taking derivatives of L w.r.t. all the parameters,

∂L

∂Φ
=

K
∑

k=1

Q−1[zk − Φzk−1 − (I − Φ)u](zk−1 − u)T , (4.10)

∂L

∂u
=

K
∑

k=1

(I − Φ)TQ−1[zk − Φzk−1 − (I − Φ)u], (4.11)

∂L

∂Q−1
=

K
∑

k=1

{

Q − [zk − Φzk−1 − (I − Φ)u][zk − Φzk−1 − (I − Φ)u]T
}

. (4.12)

ML estimates of the parameters are obtained by setting the above three partial deriva-

tives to zero and solving for the parameters. After some careful algebraic manipulation

Data Analysis 75

(especially for Φ and u), the following results can be obtained

Φ =

(

1

K

K
∑

k=1

zk

K
∑

k=1

zT
k−1 −

K
∑

k=1

zkz
T
k−1

)

·

(

1

K

K
∑

k=1

zk−1

K
∑

k=1

zT
k−1 −

K
∑

k=1

zk−1z
T
k−1

)−1

,

(4.13)

u =
1

K
(I − Φ)−1

(

K
∑

k=1

zk − Φ
K
∑

k=1

zk−1

)

, (4.14)

Q =
1

K

K
∑

k=1

{

[zk − Φzk−1 − (I − Φ)u][zk − Φzk−1 − (I − Φ)u]T
}

. (4.15)

A few further notes follow the above derived results:

1. ML parameter estimation typically can only achieve local optimum. However, since

the likelihood function L of this simple linear dynamic model has a quadratic form,

its local optimum is the same as its global optimum. Therefore, the estimated pa-

rameters are also globally optimal for this particular model.

2. The above result applies to estimating a general, unconstrained matrix Φ. In the

block-diagonal case (4.7) the above estimator can be applied separately to each block.

Notably, the above estimator does not apply to the more interesting constrained case

(4.5); such a case forces us to work on elements of Φ explicitly and the much more

complicated result cannot be expressed in a succinct, closed form. Therefore, the

block-diagonally structured Φ is studied first.

3. The same linear dynamic model has been proposed and used in related work by

previous group members under different contexts [64, 158, 237]. However, the closed

form solution as presented in (4.13) and (4.14) was not obtained in those previous

publications due to less careful derivations; such a result first appeared in a previous

publication of the author [151].

4. The above derivation assumes that there is only one training example for a given

phone. In practice multiple training examples (popularly termed tokens in the speech

community, especially for speech recognition) are available for each phone and the

76 Hidden Dynamic Models for Speech Processing Applications

above formulas need to be slightly modified by adding one more summation over the

training tokens. For example, if there are M training tokens for a phone, each repre-

sented by a time series of length Km (m = 1, . . . ,M), then the modified parameter

estimation formulas for Φ and u are

Φ =

[

1
∑M

m=1 Km

(

M
∑

m=1

Km
∑

k=1

zk

)(

M
∑

m=1

Km
∑

k=1

zT
k−1

)

−
M
∑

m=1

Km
∑

k=1

zkz
T
k−1

]

·

[

1
∑M

m=1 Km

(

M
∑

m=1

Km
∑

k=1

zk−1

)(

M
∑

m=1

Km
∑

k=1

zT
k−1

)

−
M
∑

m=1

Km
∑

k=1

zk−1z
T
k−1

]−1

, (4.16)

u =
1

∑M

m=1 Km

(I − Φ)−1

(

M
∑

m=1

Km
∑

k=1

zk − Φ
M
∑

m=1

Km
∑

k=1

zk−1

)

. (4.17)

The estimated matrix Φ also has to satisfy the further constraint of being convergent.

This is done by checking the eigenvalues of the estimated matrix Φ and project it to the

closest convergent matrix if it is not already one. u and Q are reestimated by (4.14) and

(4.15) using the new value of Φ if necessary. The actual projection step of Φ is carried out

as follows. First do a eigenvalue decomposition of Φ and collect its eigenvectors in matrix

V and eigenvalues in a diagonal matrix D, such that

D = V−1 · Φ · V, (4.18)

i.e., D is obtained from Φ via a change of basis. Clamp each diagonal elements of D to

have a modulus less than one (the value 0.99 is used in the actual implementation) but

keep the original angle. Call this new matrix D′ and the projected Φ′ is obtained via

another change of basis

Φ′ = V · D′ · V−1. (4.19)

Typically we don’t know the articulatory phone boundaries where the targets and other

parameters switch values, as assumed in deriving the estimation formulas. In many cases

the acoustic phone boundaries may be available, such as in the TIMIT database to be

described in the next chapter or the two hand-labeled speakers in UW-XRMB, or they can

be estimated by the forced-alignment procedure as mentioned in Section 3.3.2. Since each

articulatory boundary typically lies within neighboring acoustic boundaries (especially for

Data Analysis 77

tongue, but less so for lips), we can search through all frames within two adjacent acoustic

boundaries µp−1 and µp for the optimal articulatory boundary νp by maximizing the total

likelihood of the data given all the model parameters. However, jointly optimizing all the

articulatory boundaries under such a constraint is still an intractable problem: basically

we have to enumerate all the possible combinations of articulatory boundaries for each

phone to achieve the global maximum of the total likelihood. A reasonable approximation

is to sequentially adjust one articulatory boundary at a time and choose the optimal one

while fixing all others in an utterance. Such a heuristic approximation is adopted in the

experiments of this study for simplicity.

Notice that the estimation of articulatory phone boundaries will affect the values of

estimated model parameters and vice versa, so iterations between estimating model pa-

rameters and phone boundaries need to be performed until the total likelihood converges

(or a fixed number of iterations may be preformed in practice). Admittedly, the current

heuristic approximation of optimizing articulatory phone boundaries and the associated

model parameters iteratively can be quite crude, but more rigorous treatment presents a

big challenge. Such a problem is tackled later and rigorous treatment of the more general

switching dynamics problem is the central topic of Chapter 9.

4.3.3 Articulatory Trajectory Fitting Experiments

A number of articulatory fitting experiments are performed in this section to see how effec-

tive the proposed statistical linear dynamic model is at capturing articulatory dynamics.

In all experiments, model parameters (including articulatory phone boundaries) are first

learned according to the above described algorithms on some training sentences, then some

predicted or fitted articulatory trajectories are generated based on the learned model pa-

rameters to compare with measured ones. The fitted trajectories are generated by running

the linear dynamic equation (4.4) under a noise-free mode, using the learned model pa-

rameters (including the articulatory phone boundaries) and starting with the true initial

position of the articulators. Such a fitted trajectory is the same as the time evolution of

E[zk] given the true initial value z0. If the model can capture articulatory dynamics per-

fectly, then the fitted trajectory E[zk] will exactly match the measured trajectory and the

noise covariance matrix Qs will be zero. However, if the model is very poor at capturing

78 Hidden Dynamic Models for Speech Processing Applications

the true dynamics, then E[zk] will show little resemblance to the measured trajectory while

most variabilities of the articulatory movements will be accounted for by the noise process

sk. In the latter case, time correlation among articulatory positions is totally lost since the

noise process is white, and this is highly undesirable.

A trajectory fitting experiment is first performed on a single sentence, where it serves as

both the training and test set. The fitted and measured articulatory trajectories, as well as

the estimated articulatory boundaries, are plotted in Fig. 4.17. It can be observed that the

overall fitting quality is quite good, especially considering that the model, containing about

500 degrees of freedom (parameters), is being used to fit more than 12,000 articulatory data

points. The model has the biggest trouble of capturing jaw movement, where two obvious

model-data mismatches happen during the production of phones /b/ and /ae/9. These

mismatches demonstrate the inherent limitations of the proposed simple linear model.

Since the jaw moves independently of all other articulators, the trajectories we can get

from (4.4) are only target-directed exponential curves, and these exponential curves may

be quite far from the true dynamics of the articulators. This is exactly the case in regions of

/b/ and /ae/ of the jaw movement, and similar mismatches can be observed in the fitted

trajectories of other articulators as well, such as the tongue tip movement during /iy/,

although to a much lesser degree. It can also be observed that the fitted trajectory shows

jumps at some phone boundaries. These jumps stem from the fact that equation (4.4)

only imposes zeroth-order (continuity) constraints on zk, rather than having constraints

on higher order derivatives as well. Nevertheless, the overall quality of this initial fitting

seems to suggest that the model is promising at reflecting true dynamics of articulatory

movements at a global level during speech production.

The true power of the model needs to be evaluated on a large training and test set,

since the model will only be useful if it can capture systematic variations of articulatory

dynamics under different contexts. Therefore, as the next step, a 50 sentence training

set and a 10 sentence test set of one speaker, which are the same sets used in the study

of ATA mapping, are used in the experiment here as well. An example of trajectory

fitting and estimated articulatory phone boundaries on a training sentence is plotted in

Fig 4.18. It is clear that the model fails to capture the true dynamics well under this

9Notice the very small range of Jx movement: the mismatch is exaggerated by the scale of the plot.

Data Analysis 79

0 200 400 600 800 1000 1200
−5

−4

−3

−2

−1

0

Jx
(m

m
)

0 200 400 600 800 1000 1200
−20

−15

−10

−5

0

Jy
(m

m
)

0 200 400 600 800 1000 1200
10

15

20

U
Lx

(m
m

)

0 200 400 600 800 1000 1200
10

15

20

U
Ly

(m
m

)

0 200 400 600 800 1000 1200
5

10

15

20

LL
x−

Jx
(m

m
)

0 200 400 600 800 1000 1200
−15

−10

−5

0
LL

y−
Jy

(m
m

)

0 200 400 600 800 1000 1200
−20

−15

−10

−5

TT
x−

Jx
(m

m
)

0 200 400 600 800 1000 1200
−10

0

10

20

TT
y−

Jy
(m

m
)

0 200 400 600 800 1000 1200
−60

−55

−50

−45

−40

TD
x−

Jx
(m

m
)

Time (ms)
0 200 400 600 800 1000 1200

0

10

20

30

TD
y−

Jy
(m

m
)

Time (ms)

p uh sp dh iy z t uw b ae k

Figure 4.17: Articulatory trajectory fitting for: Put these two back. Solid red line: real

trajectory; dash blue line: fitted ones.

80 Hidden Dynamic Models for Speech Processing Applications

0 500 1000 1500
−2

−1

0

1

Jx
(m

m
)

0 500 1000 1500
−6

−4

−2

0

Jy
(m

m
)

0 500 1000 1500
10

15

20

U
Lx

(m
m

)

0 500 1000 1500
12

14

16

18

U
Ly

(m
m

)

0 500 1000 1500
5

10

15

20

LL
x−

Jx
(m

m
)

0 500 1000 1500
−15

−10

−5

0
LL

y−
Jy

(m
m

)

0 500 1000 1500
−30

−20

−10

0

TT
x−

Jx
(m

m
)

0 500 1000 1500
−10

0

10

20

TT
y−

Jy
(m

m
)

0 500 1000 1500
−55

−50

−45

TD
x−

Jx
(m

m
)

Time (ms)
0 500 1000 1500

−10

0

10

20

TD
y−

Jy
(m

m
)

Time (ms)

sil dh ih ah dh er w ah n ih z t uw b ih g

Figure 4.18: Articulatory trajectory fitting for: The other one is too big. Solid red line:

real trajectory; dash blue line: fitted ones.

Data Analysis 81

more challenging situation. Although at some regions the fitted trajectory shows some

tendency of following the real trajectory, most of the time it simply moves around the initial

position of the articulators with a very small amplitude comparing to the true trajectory.

This is caused by the large variations of articulatory movement when producing the same

phoneme under different contexts combined with the inability of this simple first-order

linear model to describe the rather complicated articulatory dynamics. As a compromise,

E[zk] simple moves around some mean positions of the articulators while leaving most of

the uncertainties to be handled by the process noise sk. The performance of articulatory

trajectory fitting shown in Fig 4.18 is typical for all training and test sentences, and it

demonstrates that our proposed simple linear dynamic model is inadequate in capturing

the complicated articulatory dynamics.

4.3.4 Further Observations and Possible Improvements

This section provides some further observations and suggestions on how to model the artic-

ulatory dynamics and their relationship with the intended acoustic entities more accurately.

First it is sensible to increase the order of the model so that it can capture more

complicated dynamics, such as using second or third-order difference equations instead of

the simple first order one used in trajectory fitting examples. But how to choose the order

of the model or how many orders are enough? This can be empirically determined by

examining the derivatives (with respect to time) of the measured articulatory trajectories.

For example, for a first order system, the second derivative of the articulatory trajectory

should be zero, or behave like white noise when measurement error is taken into account.

This has been carefully examined on the articulatory data and two typical examples, on

the measurement of TTy and TDy of an utterance, are shown in Fig. 4.19 and Fig. 4.20

respectively. It can be observed in both figures that there are fair a number of nonrandom

structures up to the third derivative of the trajectories while the fourth derivative acts more

or less like white noise. Therefore, a third-order system is necessary to faithfully model

the articulatory dynamics.

Second it has been assumed that different articulators share the same articulatory

boundaries where model parameters (especially the targets) switch values according to

phone identities. However, this is not the case in real speech production. As can be

82 Hidden Dynamic Models for Speech Processing Applications

0 3000
−20

−10

0

10

20
The original TTy trajectory

0 3000
−0.2

0

0.2

0.4

0.6
The first derivative

0 3000
−0.01

−0.005

0

0.005

0.01
The second derivative

0 3000
−5

0

5
x 10−4 The third derivative

0 500 1000 1500 2000 2500 3000
−1

−0.5

0

0.5

1
x 10−4 The fourth derivative

Time (ms)

Figure 4.19: The original and derivatives of TTy trajectory for the sentences: The coat

has a blend of both light and dark.

Data Analysis 83

0 3000
−10

0

10

20
The original TDy trajectory

0 3000
−0.2

0

0.2

0.4

0.6
The first derivative

0 3000
−5

0

5
x 10−3 The second derivative

0 3000
−2

0

2
x 10−4 The third derivative

0 500 1000 1500 2000 2500 3000
−5

0

5

10
x 10−5 The fourth derivative

Time (ms)

Figure 4.20: The original and derivatives of TDy trajectory for the sentence: The coat has

a blend of both light and dark.

84 Hidden Dynamic Models for Speech Processing Applications

observed from Fig. 4.17 and 4.18, articulatory dynamics can switch targets asynchronously.

These observations are also consistent with past work on overlapping articulatory features

[57, 58, 66, 230]. A more accurate model should allow the articulatory boundaries to be

learned separately for each articulator, or for groups of closely coupled articulators.

Third, targets of each phoneme should really be modeled as having a multi-variant prior

distribution to better account for compensatory articulation, context-dependent targets

and the behavior of inactive articulators. Using only a deterministic unknown variable as

in the simple linear dynamic model is a big simplification.

Finally, since the true articulatory dynamics are highly involved, some transformation

of the original measurements may have simpler dynamics. A good candidate could be

the task dynamics, which is the dynamics of the vocal tract constriction variables widely

used in speech science [27, 28, 29, 213]. However, it may be hard to find such a desired

transformation, or for task dynamics, it may be difficult to learn or describe the mapping

from a few point measurements of the articulators to vocal tract constriction variables.

All the above suggested improvements either add considerable complexity to the original

linear target-directed dynamic model or may be difficult problems themselves. As a result,

none of them are seriously pursued in this thesis, and for a good reason: the goal of

the thesis is not to preform a purely scientific study on speech, e.g., to study the detailed

behavior of articulatory movements during speech production, rather it is to derive insights

and experience from scientific studies to benefit speech technology. When computational

issues for practical applications, especially for speech recognition, are taken into account,

even the simple linear dynamic model presents a huge challenge, which will become clear in

Part III of the thesis. Therefore, the thesis proceeds by seeking alternative forms of internal

dynamics of speech that exhibits simpler dynamic behaviors, which leads to Part II of the

thesis. But before that happens, a unified modeling and computational framework is first

presented in the next section to demonstrates how to use the articulatory dynamics (as

well as other internal dynamics of speech) for practical speech applications.

Data Analysis 85

4.4 An Articulatory Speech Production Model

The previous two sections studied the articulatory dynamics and articulatory-to-acoustic

(ATA) mapping separately. This section describes how these two studies can be combined

to formulate a novel and powerful model of human speech production towards practical

applications.

Mathematically, they are combined via the following state-space model:

zk = Φszk−1 + (I − Φs)us + wk, (4.20)

ok = Hs[zk] + vk. (4.21)

The state equation (4.20) is the same as the linear dynamic model used for fitting articula-

tory trajectories in Section 4.3, and has been described in detail previously. The observation

equation (4.21) describes the relationship between observable acoustic features ok and the

(usually) hidden articulatory movement zk, where Hs can be any suitable function charac-

terizing the mapping, such as the neural network architectures used in Section 4.2, and vk

is a white Gaussian noise process accounting for inaccuracy of the mapping. In general Hs

can be a function depending on the phone index s, although in practical implementations

it may be phone-independent or only depend on broad phone classes.

A block diagram of how such a state space model can be used in speech synthesis is

shown in Fig. 4.21. A time aligned phoneme sequence is used to drive the state equation to

produce realistic articulatory trajectories and to provide extra velum and glottis features

(which are not modeled in the state equation but important for generating acoustic sig-

nals). Both the articulatory trajectories and the velum and glottis features are fed into the

observation equation to generate MFCCs or other acoustic features. Finally the acoustic

feature vectors can be converted to speech waveforms as a separate step [86].

The inverse problem of speech synthesis is speech recognition. Conceptually we only

have to invert the above process to get the desired phoneme sequence (and subsequently

words or sentences), although careful thinking will reveal that the inverse problem is much

harder. When such a model is used for speech recognition, it belongs to a family of models

termed hidden dynamic models (HDMs) [25, 148, 206], which have been proposed recently

to overcome inherent limitations of the state-of-the-art HMMs. The name deduces from

the fact that these models all describe some form of unobservable internal dynamics of

86 Hidden Dynamic Models for Speech Processing Applications

Input: Time Aligned Phoneme Sequence

State Equation

Velum and Glottis

Features

Articulatory

Trajectories

Observation Equation (ATA Mapping)

MFCCs or Other Acoustic Features

Output: Speech Waveform

Figure 4.21: Articulatory dynamic model used in speech synthesis.

Data Analysis 87

speech, either physically meaningful or abstract, besides the measurable acoustic features.

The topic of speech recognition and detailed descriptions about how such a model can be

used in speech recognition will be delayed until Part III of the thesis.

4.5 Concluding Remarks

This chapter has described in-depth data analysis on the UW-XRMB database, more

specifically, the ATA mapping and the articulatory dynamics have been studied in detail.

Unfortunately, both problems turn out to be very difficult, and the results are not so

satisfactory. The ATA mapping approximated by neural networks may still provide enough

accuracy for some speech applications, especially for those only need lower order MFCCs.

But the articulatory movements exhibit highly complicated dynamic behavior and are not

subject to simple modeling. However, lots of insights on speech have been gained through

these analyses and by scrutiny of the UW-XRMB data itself, and they are of greater

importance than the results themselves that guide and benefit the remaining thesis work.

A very important observation that leads to the following chapters of the thesis is that,

through numerous spectrogram readings, it is observed that the formant or closely related

vocal-tract-resonance (VTR) dynamics seem to exhibit simple phone-dependent, target-

directed dynamics and have a close relationship to the underlying shape change of the

vocal tract. This naturally leads to the next part of the thesis, where properties of VTR

dynamics and its use for speech applications are studied in detail.

Part II

A Study on VTR Dynamics

89

Chapter 5

Introduction to VTR Dynamics

The concept of vocal-tract-resonance (VTR) and its relationship to formants have been

introduced in Section 2.3. From this chapter on, the thesis will focus on using the time

evolvement of VTRs as the “hidden dynamics” to characterize the continuous aspect of

speech besides its discrete nature.

5.1 Are VTR Dynamics Really Hidden?

In the speech community, it is well accepted that articulatory dynamics or the underlying

continuous shape change of the vocal tract is “hidden”. Not only can they not be directly

observed during normal speech, but they are also very difficult to recover from the acoustic

signal alone. The problem of recovering articulatory movements from acoustic signals,

known as acoustic to articulatory inversion, has attracted many research efforts in both

speech science and speech engineering and is a well-known hard and open problem [73, 218].

However, given the close relationship between VTRs and formants, can VTR dynamics be

regarded as “hidden” as well?

To clarify this point, let us start with the well-known concept of formants. Formants

are usually considered observable during vowel portions of speech. But even under this

ideal situation, how well formants can be observed/estimated still critically depends on

the fundamental frequency F0. Based on the source-filter model of speech, the speech

spectrum can be treated as the product of an excitation spectrum (source) and a vocal tract

91

92 Hidden Dynamic Models for Speech Processing Applications

spectrum (filter). The formants correspond to peak locations of the spectrum envelope,

whose amplitude can only be measured at integer multiples or harmonics of F0, which

can be observed from Fig. 2.2, a narrowband spectrogram example presented earlier in

Section 2.3. When F0 is high, such as in some child or female speech, it may exceed

formant bandwidths and accurate estimation of formant frequencies becomes very difficult

or even impossible based on the observed acoustic signal alone. However, if the underlying

vocal tract shape is known, there will be no difficulty in the accurate calculation of formant

frequencies. Therefore, even in the ideal vowel regions, formants (or equivalently VTRs)

are more directly related to the underlying vocal tract shape than the surface acoustic

signal.

Unfortunately, the exact definition of formants is still far from being unanimous in the

speech community [263], especially for unvoiced sounds. Some researchers define formants

entirely in the acoustic domain and equate them with peaks of the power spectrum. Thus

it is common to talk about the “onset” of F2 following a stop release [231] in the phonetics

literature, and some papers even call the peak frequency of a fricative spectrum its “for-

mant”. A different articulatory based definition is used in formant-based speech synthesis:

systems such as Klattalk [137, 138] assume that every formant frequency is a continuous

function of time, with a defined value even when the corresponding formant resonator is

completely decoupled from the output acoustic signal. This is echoed by Stevens who

defines formants to be the eigenfrequencies of the airway from glottis to lips, bounded

by appropriate termination impedances, regardless of whether or not any given formant

is coupled to the acoustic spectrum [225, 224]. In this thesis, the very purpose of using

and defining a relatively rare term: vocal tract resonance (VTR), is to avoid the potential

confusion about formants used among different speech researchers. The definition of VTR

is very similar to the articulatory based definition of formants, but nasal coupling has also

been explicitly excluded for simplicity1. Of course when nasal coupling is introduced by

lowering of the velum, the resonance of the vocal tract blocking nasal tract becomes an ap-

proximation, but such a simplification also makes VTR dynamics smooth and continuous

across all sound classes, which is a desirable feature that facilitates simple modeling. The

widely used convention F1, F2, . . . , FN and B1, B2, . . . , BN , typically representing formant

1Some researchers do so for formants as well, see [224] for example.

Introduction to VTR Dynamics 93

frequencies and bandwidths, will also be used to denote VTR frequencies and bandwidths

in this thesis.

From the above elaboration, it should be clear that VTR dynamics truly qualify as

the “hidden dynamics” of speech since it is directly defined in the hidden articulatory

domain. Although it is usually much easier to recover VTR dynamics than articulatory

dynamics from acoustic signals, this is still a highly nontrivial problem, demonstrated by

the fact that despite of the availability of a large number of VTR (formant) trackers based

on different techniques, none of them are really satisfactory so far. More comprehensive

review of existing VTR tracking techniques will be provided in the next chapter, where

one of two novel VTR tracking techniques developed in this study is presented.

5.2 Hand Labeling of VTRs

Manual tracking by a human expert based on spectrograms or sometimes aided by other

signal processing techniques remains to be the most accurate way to track formants as well

as VTRs so far. This section first briefly introduces the TIMIT database on which most of

the experimental results in the remaining chapters of the thesis are based, then describes

a convenient GUI tool to facilitate the hand-labeling of VTR frequencies.

5.2.1 The TIMIT Database

The TIMIT corpus of read speech, distributed by the US National Institute of Standards

and Technology (NIST) in 1990, is designed to provide speech data for the acquisition of

acoustic-phonetic knowledge and for the development and evaluation of automatic speech

recognition systems. It contains a total of 6,300 sentences, 10 spoken by each of 630

speakers (438 male and 192 female) from 8 major dialect regions of the United States. Out

of the ten sentences spoken by each speaker, two are dialect “shibboleth” sentences read by

all speakers2, five are phonetically-compact sentences selected from a pool of 450 carefully

designed ones, and the remaining three are phonetically-diverse sentences picked from a

total of 1890 sentences which have appeared in previous speech databases. The utterances

2These sentences are designed to expose the dialect of a speaker.

94 Hidden Dynamic Models for Speech Processing Applications

are recorded under broadband (a sampling rate of 16 kHz with 16 bits per sample) and

ideal (noise-free) laboratory conditions. The database provides not only word-level and

phone-level transcripts but also hand-labeled acoustic phone boundaries for each sentence.

For speech recognition tasks, TIMIT has also been divided into standard training and test

sets to facilitate comparison among different systems. Since its debut, TIMIT has been

widely used in the research community of speech and speaker recognition, and is especially

popular in the academic world for testing new ideas due to the rich information provided

by the database and the moderate computational requirement to work with the relatively

small amount of data.

5.2.2 A VTR Hand-Tracking Tool

A Matlab-based GUI tool has been developed to help manually tracking VTR dynamics

on TIMIT speech data. This tool can be easily modified to work on any other speech

databases as well. The development is based on the segmentation and analysis tool for the

UW-XRMB database and it inherits many convenient features from that tool. A screenshot

of the GUI tool is shown in Fig. 5.1, along with the first three labeled VTR frequencies

of a TIMIT sentence. The hand-labeled phone boundaries provided by the database are

also plotted to provide extra information for manual tracking. This tool works by letting

the user decide on a number of key positions of a VTR (by left-mouse clicks) and do a

spline interpolation to get its dynamics over the whole utterance. Since the position and

number of the labeled points usually need to be adjusted a few times before getting a

satisfactory trajectory, the tool provides a number of convenient features to do so, such as

deleting an undesirable labeled point by right-clicking on it and moving a labeled point

by left-clicking and dragging with the mouse. Comparing to labeling the VTR frequency

at each frame (usually 10 ms apart) of the speech signal, this is substantially less work.

Slightly modified versions of this tool have also been shared with Dr. Roberto Togneri’s

group at the University of Western Australia and researchers at Microsoft Research. This

tool helps to prepare some limited yet accurate data for the initial study and modeling of

VTR dynamics.

Introduction to VTR Dynamics 95

Figure 5.1: A GUI VTR hand tracking tool.

5.3 Modeling VTR Dynamics

This section models the VTR dynamics by target-directed statistical dynamic equations,

and will confirm that the time evolution of VTR frequencies indeed follow simple dynamics,

unlike those of the articulators studied previously.

Properties of VTRs have been well studied both in speech science and speech engi-

neering [178, 224]. Especially well-known are the target values of VTR frequencies during

steady vowel productions [190], where different vowels (in English and also in many other

languages) can be distinguished based on target values of the first three VTR frequencies.

VTR targets of consonants are less well-known, but have also been extensively studied in

formant-based speech synthesizers. Therefore, unlike in the study of articulatory dynam-

ics where target values of the articulators have to be learned from data, target values of

VTR frequencies and bandwidths can be obtained from reliable prior knowledge, i.e., by

the large number of previous studies as well as personal spectrogram reading experiences.

When it is desirable to learn the targets from data, e.g., to better fit the characteristics of

a particular speaker, the values based on prior knowledge can serve as good initial points

96 Hidden Dynamic Models for Speech Processing Applications

for parameter estimation algorithms. For simplicity, these knowledge-based (untrained)

target values are used in this section, and they are listed in Table 5.1 and Table 5.2. These

two tables will also be used in various later parts of the thesis.

The listed targets are mean values of adult male speakers, and are mostly adapted from

Klatt’s formant-based speech synthesizer [4], with slight modifications based on experiences

of spectrogram reading on the TIMIT database. Notice that there are two classes of

phonemes based on the property of their VTR targets: one is context-independent and the

other is context-dependent. Targets of phonemes belonging to the context-independent

class don’t change values according to surrounding phones, while targets of those belonging

to the context-dependent class are conditioned on whether the following phone is a front

vowel, i.e., one of { /ae/, /eh/, /ih/, /iy/, /y/}. For example, VTR frequencies of phoneme

/b/ will assume the targets of [180, 1800, 2300] if the following phone is a front vowel, but

the targets of [180, 1100, 2300] if the following phone is not. This is essentially caused by

the anticipatory tongue positions associated with the following phone. The CMU 39 phone

table is adopted in this thesis, and the phonemes listed in Tables 5.1 and 5.2 (44 in total)

cover most of them, with two noticeable exceptions:

• Diphthongs (including /aw/, /ay/, /ey/, /ow/ and /oy/) are not listed in the table

since they are essentially dynamic vowels that assume two targets sequentially. For

example, the realization of /ay/ can be decomposed as /aa/ → /iy/.

• The phoneme /hh/ is not listed since the main feature of this phone is aspiration

at the glottis while it has no fixed targets for VTR frequencies. It simply takes the

targets of the following phone as its own. Same is true when short pauses (/sp/)

appear in an utterance.

Next we present and test a number of ideas on modeling the time evolvement of VTR

frequencies, which are closely related to the underlying articulatory movements. VTR

bandwidths, on the other hand, are not directly related to the continuous shape change of

the vocal tract and don’t possess true “dynamics” to be modeled. The inclusion of VTR

bandwidths in this study is merely to improve the quality of VTR-to-acoustics (VTA)

mapping to be discussed in Chapter 7.

Introduction to VTR Dynamics 97

Phoneme F1 (Hz) F2 (Hz) F3 (Hz) B1 (Hz) B1 (Hz) B1 (Hz)

aa 730 1090 2440 130 70 160

ae 660 1720 2410 70 130 300

ah 640 1190 2390 80 50 140

ao 570 840 2410 90 100 80

ax 500 1500 2500 80 50 140

ch 300 1700 2400 200 110 270

d 180 1800 2700 70 115 180

dh 250 1300 2500 60 95 185

eh 530 1840 2480 60 90 200

el 450 1000 2700 65 60 80

en 500 1500 2500 120 70 110

er 490 1350 1690 100 60 110

ih 390 1990 2550 50 100 140

iy 270 2290 3010 50 200 400

jh 300 1700 2400 70 110 280

l 450 1060 2640 50 100 280

n 250 1800 2700 40 300 260

r 460 1240 1720 70 100 120

s 250 1900 2700 200 95 220

sh 250 1700 2500 200 110 280

t 180 1800 2700 300 180 220

th 250 1300 2500 225 95 200

uh 440 1020 2240 80 100 80

uw 300 870 2240 65 110 140

w 350 770 2340 50 80 60

y 360 2270 2920 40 250 500

z 250 1900 2700 70 85 190

zh 250 1900 2500 220 140 250

Table 5.1: Context-independent target values for the first three VTR frequencies and

bandwidths.

98 Hidden Dynamic Models for Speech Processing Applications

Phoneme F1 (Hz) F2 (Hz) F3 (Hz) B1 (Hz) B1 (Hz) B1 (Hz)

b 180 1100 2300 65 90 125

bf 180 1800 2300 65 150 125

g 180 1500 2200 70 145 190

gf 180 2200 2800 70 185 190

k 180 1500 2200 280 220 250

kf 180 2200 2800 280 220 250

p 180 1100 2300 300 190 185

pf 180 1800 2300 300 220 185

f 250 1100 2300 225 120 175

ff 250 1800 2300 225 150 175

m 250 1100 2300 40 175 120

mf 250 1800 2300 40 200 120

ng 250 1500 2200 160 150 100

ngf 250 2200 2800 160 170 100

v 250 1100 2300 55 95 125

vf 250 1800 2300 55 100 125

Table 5.2: Context-dependent target values for the first three VTR frequencies and band-

widths. Which one of the two listed target values of the same phoneme will be taken

depends on whether the following phone is a front vowel, where the subscript f denotes

when it is followed by a front vowel. Front vowels include { /ae/, /eh/, /ih/, /iy/, /y/}.

Introduction to VTR Dynamics 99

We again start with the first-order linear dynamic equation (4.4), but with some fur-

ther simplifications to facilitate the development of more delicate yet powerful models to

be presented shortly. Recall that matrix Φs encodes the interaction among different artic-

ulators in (4.4), and now it will represent the inter-dependency among VTR frequencies.

However, we make the simple assertion that Φs is a diagonal matrix as a first step, so that

VTR frequencies are decoupled and each one can be modeled separately by the following

scalar equation3:

zk = φszk−1 + (1 − φs)us + wk. (5.1)

Furthermore, only the dynamics of F2 are studied as an example since it is the most

representative: its value changes the most during speech production thus is the most

difficult one to be modeled accurately.

The quality of the model is again judged by trajectory fitting experiments, where the

fitted or predicted trajectory refers to one generated by running (5.1) at a noise-free mode

given the true initial point, or equivalently E[zk] given the correct initial value. Fig. 5.2 (a)

shows applying equation (5.1) to fit the dynamics of F2 on a typical TIMIT sentence, where

both predicted (dashed blue line) and hand-labeled (solid red line) F2 trajectories are plot-

ted on top of the spectrogram. The predicted F2 trajectory is generated by using untrained

target values taken from Tables 5.1 and 5.2, phone transcript and boundaries provided by

the TIMIT database, and a tied time constant φs = 0.85 for all phones. Considering the

fact that none of the model parameters are directly trained on the sentence (only a tied

φ is slightly adjusted), the figure shows a good fit, in stark contrast with the unsuccessful

modeling of articulatory dynamics in Fig. 4.18. There are a number of obvious mismatches

though, such as those between 2 and 2.5 seconds where the predicted F2 trajectory seems

to “lag behind” of the hand-labeled ones. This is mainly due to the forward-anticipatory

property of VTR dynamics, which is linked to the forward-anticipation of the underlying

articulatory movements. To counter this anticipation effect, the original phone boundaries

are moved 50% forward so that F2 will move towards its next phone target before the

3Notice the change of notations: this thesis typically uses upper case bold letters to represent matrices,

lower case bold letters to represent vectors and normal letters (mostly lower case, but will be upper case

occasionally) to represent scalars; there will be no distinctions between a deterministic variable and a

random variable, but it should be clear from the context.

100 Hidden Dynamic Models for Speech Processing Applications

Time (s)

Fr
eq

ue
nc

y
(H

z)

First order model with no acoustic boundary shift: φ = 0.85

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

4000

Time (s)

Fr
eq

ue
nc

y
(H

z)

First order model with 50% acoustic boundary shift: φ = 0.85

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

4000

(a)

(b)

Figure 5.2: Fitting VTR dynamics (F2) on a TIMIT sentence “She had your dark suit in

greasy wash water all year” by first order models with original (provided by the database)

(a) and 50% forward shifted (b) acoustic phone boundaries. Dashed blue line: fitted F2;

solid red line: manually tracked F2.

Introduction to VTR Dynamics 101

acoustic realization of that phone, and the result is shown in Fig. 5.2 (b), which gives a

even better fit. The successful fitting of this example supports the following two points:

1. The targets obtained from prior knowledge are quite accurate and it can truly reflect

the trend of VTR movements in real speech.

2. The movement of VTR frequencies exhibit simple dynamics and it can be captured

by a first-order linear dynamic system reasonable well.

As an attempt to further improve the fitting, a number of models with increasing

complexity are developed. First it can be observed that due to the first-order nature of

model (5.1), VTR dynamics at phone boundaries are not smooth. A straightforward way

to improve the smoothness is to use a second order model, with the following form

zk = 2γszk−1 + γ2
szk−2 + (1 − γs)

2us + wk, (5.2)

which is a discrete-time second-order critically-damped system described in standard signal

processing textbooks [177]. It has the property of reaching the target us with time constant

γs without overshooting. The time constant γs (0 < γs < 1) plays the same role as φs in

the first order system, where it controls how fast z moves towards its target: the closer γs

(as well as φs) is to zero, the faster zk can change over time.

Secondly it is desirable to parameterize the forward-anticipation behavior of VTR dy-

namics instead of heuristically moving the acoustic phone boundaries forward. One possible

way to parameterize is to have a time-varying target combining the effect of the current

target and the next target. Suppose the current phone has a target of us and starts at

time ls, while the next phone has target us′ and starts at ls′ , the effective target uk at time

k (ls < k ≤ ls′) could be

uk = us +

(

k − ls
ls′ − ls

)ζs

(us′ − us), (5.3)

where ζs is the anticipation parameter. When ζs = 0, uk = us′ which corresponds to the

case of total anticipation; when ζs → ∞, uk = uS and there is no anticipation4. This time-

varying effective target may be incorporated into both the first-order and second-order

4The value of ζs may seem counter-intuitive; alternatively, we can define ζ ′
s = 1

ζs

.

102 Hidden Dynamic Models for Speech Processing Applications

linear dynamic equations, resulting in the following two new models

zk = φszk−1 + (1 − φs)uk + wk, (5.4)

zk = 2γszk − 1 + γ2
szk−2 + (1 − γs)

2uk + wk, (5.5)

where uk is calculated according to (5.3) at each k. Notice that the time-varying targets

not only capture forward-anticipation but also at the same time improve the smoothness

of the predicted trajectories.

All these models are fitted on the same TIMIT sentence and the results are shown in

Fig. 5.3. For simplicity the time constants (φs and γs) and the anticipation parameter ζs are

tied across all phones, and the actual values for each model are listed in the figure. Phone

boundaries of the first and second-order models without anticipatory targets are shifted

forward by 50%, while original boundaries are kept for those with anticipatory targets. It

can be observed that all four models achieve excellent fit: most of the disagreements with

the hand-labeled F2 are within the limit of a bandwidth, and large discrepancies only occur

at consonant regions where the uncertainty of hand-labeling F2 is also high. Looking at the

fitted trajectories carefully, the second-order model does provide a little smoother VTR

trajectory than the first-order one, with more smoothness obtained by using anticipatory

targets. As expected, the anticipatory targets also take care of the forward-anticipation

automatically without artificial boundary shifting. Arguably the most complicated model,

i.e., the second-order model with anticipatory targets as described in (5.5), achieves the

best fit, but the improvement over other models, even the simple first-order model, is quite

small. As a reference, the average absolute differences between the fitted F2 trajectories

and the hand-labeled one are also listed in Table 5.3.

To further demonstrate the power of the proposed models, VTR fitting on a fast speak-

ing sentence is performed5, and the results are plotted in Fig. 5.4. It can be observed

that good fits are once again achieved by all four models: the predicted F2 trajectories

have high agreement with hand-labeled ones in most areas while large discrepancies only

occur in consonant regions. Notice that only a single parameter of each model, i.e., the

time constant (φ or γ) which controls how fast a VTR frequency can reach its target, is

5This sentence is not in the TIMIT database but is from private data collected at Microsoft; notice

that its duration is about the same as the TIMIT sentence but has many more words spoken.

Introduction to VTR Dynamics 103
Fr

eq
ue

nc
y

(H
z)

A. First order model with 50% acoustic boundary shift: φ = 0.85

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

Fr
eq

ue
nc

y
(H

z)

B. Second order model with 50% acoustic boundary shift: γ = 0.75

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

Fr
eq

ue
nc

y
(H

z)

C. First order model with anticipatory targets: φ = 0.75, ζ = 3

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

Time (s)

Fr
eq

ue
nc

y
(H

z)

D. Second order model with anticipatory targets: γ = 0.6, ζ = 1

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

Figure 5.3: Fitting VTR dynamics (F2) on a TIMIT sentence “She had your dark suit in

greasy wash water all year”. Dashed blue line: fitted F2; solid red line: manually tracked

F2.

104 Hidden Dynamic Models for Speech Processing Applications
Fr

eq
ue

nc
y

(H
z)

A. First order model with 50% acoustic boundary shift: φ = 0.75

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

Fr
eq

ue
nc

y
(H

z)

B. Second order model with 50% acoustic boundary shift: γ = 0.65

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

Fr
eq

ue
nc

y
(H

z)

C. First order model with anticipatory targets: φ = 0.65, ζ = 3

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

Time (s)

Fr
eq

ue
nc

y
(H

z)

D. Second order model with anticipatory targets: γ = 0.5, ζ = 1

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

Figure 5.4: Fitting VTR dynamics (F2) on a fast speaking sentence “Proceeds from this

portion of the offering will total about one point three three billion dollars”. Dashed blue

line: fitted F2; solid red line: manually tracked F2.

Introduction to VTR Dynamics 105

Model A B C D

Normal Speech (Fig. 5.3) 109 114 112 104

Fast Speech (Fig. 5.4) 132 123 143 131

Table 5.3: Average absolute differences (in Hz) between hand-labeled and fitted F2 trajec-

tories: the different models are defined in Fig. 5.3 and 5.4.

slightly adjusted to account for the much faster speaking rate. This example demonstrates

the great potential VTR dynamic models hold in describing different styles/rates of speech

under a unified modeling framework. This is one area that the current speech technology,

especially speech recognizers, is having great trouble with while models incorporating VTR

dynamics may excel6. Careful scrutiny may reveal that the fitting quality is slightly worse

than that of the previous normal speaking-rate example, but since fast, casual speech is

known to be much harder to model than formal, read speech, the result achieved here is

quite impressive.

It can also be observed that the improvement on fitting quality provided by more

complicated models is very minor, as in the previous normal-rate speaking example, judging

from the visual inspection as well as the fitting errors listed in Table 5.3. Overall, the simple

first-order linear dynamic model seems to be sufficient in capturing key characteristics of

VTR dynamics. As an early effort to incorporate VTR dynamics in speech modeling, the

remaining chapters of this thesis will concentrate on the simple first-order model of (5.1),

which simplifies model evaluation and algorithm development comparing to other more

complicated models proposed in this section.

6Again, this topic will be revisited and elaborated in Part III of the thesis.

Chapter 6

VTR Tracking by Active Image

Contours

To successfully apply VTR dynamics in machine speech processing, they have to be au-

tomatically extracted from acoustic signals somehow, either directly or indirectly. The

problem of VTR (or formant) tracking is not new; on the contrary, it has been an impor-

tant topic for speech processing since the early days of speech research and many different

techniques exist [1, 5, 61, 144, 219, 257, 264]. However, it has remained to be a difficult

problem and none of the automatic methods give satisfactory results under all conditions.

This and the next chapter present two novel VTR tracking methods that suit our purpose

of obtaining smooth VTR trajectories across the whole utterance. Both methods extract

VTR dynamics directly from acoustic signals, without any other extra information (such

as word or phone transcripts). The first method, to be described in this chapter, is to

mimic the way human experts track VTR dynamics. It treats VTR tracking completely

as an image processing problem based on the spectrogram, with prior speech knowledge

properly incorporated during the tracking. The second method is based on setting up a

state-space model for the hidden VTR dynamics and will be described in the next chapter.

107

108 Hidden Dynamic Models for Speech Processing Applications

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 6.1: VTR tracking of a UW-XRMB sentence: She is about two or three. Solid red

lines: VTR tracking by waves+; dash blue lines: manually tracked VTR.

6.1 Existing VTR Tracking Methods

Basic VTR tracking methods are based on LPC analysis [5, 163, 219, 223]. One way of

obtaining VTR candidates at a frame level is to solve for the complex roots of a N th order

LPC polynomial (real roots are discarded), and each root can be expressed as

zi = exp(−πBi + j2πFi), (6.1)

where Fi and Bi are the VTR frequency and bandwidth associated with the ith root.

Another common method consists of finding the peaks on a smoothed spectrum at each

frame, where the smoothed spectrum is also usually obtained through an LPC analysis.

These frame-level VTR candidates are then heuristically adjusted, such as imposing some

kind of continuity constraint and discarding roots with large bandwidths (which indicates

a weak spectrum peak), before generating the VTR trajectories of the whole utterance.

Fig. 6.1 shows tracked VTR frequencies (solid red lines) of a typical sentence based on the

traditional LPC analysis methods, which are computed by waves+, a popular commercial

speech processing software. As a reference, manually tracked VTR trajectories for the

VTR Tracking by Active Image Contours 109

same sentence are also plotted (dash blue lines). In spite of the fact that VTR frequencies

at vowel regions (where they are visible as dark bands in the spectrogram) are generally

well tracked, two serious problems can be observed from this example.

1. Estimated VTR trajectories at unvoiced regions are highly rugged and inaccurate.

This is not surprising since VTR frequencies are largely decoupled from the acous-

tic output in these regions. The hidden VTR frequencies can only be inferred by

carefully examining the VTR dynamics at neighboring vowel regions and performing

a smooth interpolation/extrapolation (or maybe obtained with a higher accuracy if

the underlying phone identity is known).

2. When two VTR frequencies are very close to each other (or merge together), e.g.,

around 1.6 sec in the sample sentence, they can be mistakenly regarded as one.

Therefore, the automatic VTR tracker will track a wrong VTR (F4 as F3 in this

example) at least for a short period.

Many improvements and alternative techniques have been developed to overcome the

limitations of traditional LPC-based methods [30, 101, 201, 257], usually to fit a specific

purpose. A common theme is to impose stronger global constraints, such as by using a ex-

tended Kalman filter [207], a hidden Markov model (HMM) [1, 141] or even extra phonetic

information [152]. This chapter looks at the VTR tracking problem from a different angle,

i.e., by treating it as an image processing problem as human spectrogram readers would

do. Methods appeared in the literature with a spirit closest to the current approach is the

work of Laprie and Berger [144], where image processing techniques have been used as a

regularization step after VTRs are tracked by a standard LPC based method1. A VTR

tracking problem so formulated is also a very interesting image processing problem in its

own right.

1Unfortunately their work was not noticed by the author when the current method was first developed.

110 Hidden Dynamic Models for Speech Processing Applications

6.2 Problem Formulation and Algorithm Develop-

ment

From an image processing point of view, the task of VTR tracking is simply to detect

image features of interest subject to certain constraints imposed by prior knowledge of the

problem. Snakes, also known as active contours, which is introduced by Kass et al. [128]

as energy minimizing deformable curves guided by external and internal forces, fit this

purpose well.

The detection of basic image features, such as lines and edges, has been the subject of

research for image processing since its early days [95]. Snakes also serve the same purpose

but differ from many low-level methods in one important aspect: instead of completely rely-

ing on the image itself to provide information about interesting features, prior knowledge is

directly built into snakes from the very beginning of problem formulation. A careful review

of the existing VTR tracking methods convince us that the incorporation of prior knowl-

edge is also crucial to realize accurate and robust VTR tracking, which is why snakes or

active contours are applied to solve this problem. Snakes have enjoyed wide acceptance and

great successes in many difficult image processing problems since its debut [21, 20, 43, 87],

and is especially popular in biomedical image processing applications [74, 200]. As a first

attempt to solve the VTR tracking problem by image processing methods, the algorithm

developed in this section follows closely to the original idea of Kass et al., which is easy to

understand even for people with little background in image processing.

The first step of using snakes to solve a practical problem is to establish the energy

function of snakes. The energy function of a snake usually consists of two parts:

Esnake = Eint + Eext, (6.2)

where Eint is the internal energy that incorporates prior knowledge of the problem, and

Eext is the external energy provided by the input image. In the VTR tracking problem,

two simple yet important properties of VTRs are treated as prior knowledge:

1. VTR frequencies have strict ordering (F1 < F2 < F3 etc) so that they never cross

each other.

2. VTR trajectories are continuous and smooth across the whole utterance.

VTR Tracking by Active Image Contours 111

This breaks the internal energy of each VTR snake (for each VTR trajectory) into three

terms:

Eint = Econtinue + Esmooth + Econs, (6.3)

where Econtinue reflects the continuity constraint, Esmooth reflects the smoothness constraint,

and Econs imposes a potential energy to penalize VTR snakes from crossing each other.

In general, N snakes are needed to track N VTR trajectories, denoted by

Y =
[

y1,y2, . . . ,yN
]

, (6.4)

and each term of the internal energy can be represented as

Econtinue =
N
∑

n=1

[

w1

T
∑

t=2

(yn
t − yn

t−1)
2

]

=
N
∑

n=1



























w1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













1 −1 0 · · · 0

0 1 −1
. . .

...
...

. 0

0 · · · 0 1 −1













yn

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2


























,

(6.5)

Esmooth =
N
∑

n=1

[

w2

T
∑

t=3

(yn
t − 2yn

t−1 + yn
t−2)

2

]

=
N
∑

n=1



























w2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. 0

0 · · · 0 1 −2 1













yn

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2


























,

(6.6)

Econs =
N
∑

n=2

[

w3

T
∑

t=1

V(yn
t , yn

t−1)

]

. (6.7)

The repulsive potential energy V between two adjacent VTR snakes is intuitively defined

by

V(x, y) =











0, when |x − y| > 0.2 kHz
1

|x−y|
, when ε ≤ |x − y| ≤ 0.2

1
ε
, when |x − y| < ε

(6.8)

112 Hidden Dynamic Models for Speech Processing Applications

where ε is used to clamp the potential energy from going to infinity (ε = 10−6 in the actual

implementation).

The external energy represents information provided by the image itself and is simply

taken to be the image intensity for this problem

Eimage = −w4

N
∑

n=1

[

T
∑

t=1

I (t, yn
t)

]

, (6.9)

where I is the intensity at pixel position (t, yn
t) of the spectrogram. Notice that the weights

of different energy terms w1, w2, w3, w4 need to be adjusted by experiments.

In order to use efficient optimization algorithms to minimize the energy of the snakes

and do VTR tracking, analytical gradient (partial derivative with respect to Y) of the en-

ergy function Esnake is highly desirable. The gradient of each term of Eint can be calculated

directly and formulated as matrix operation for the ease of implementation, e.g.,

∂Econtinue

∂Y
= 2w1

N
∑

n=1







































































1 −1 0 · · · · · · 0

1 −2 1
. . .

...

0
.

...
...

. 0
...

. . . 1 −2 1

0 · · · · · · 0 −1 1

























yn















































. (6.10)

However, I as taken directly from the input image is discrete in nature (only defined for

discrete pixel positions) and is troublesome for most optimization algorithms if Y is taken

as continuous. Therefore I is first turned into a continuous function by interpolation. A

piece-wise cubic spline interpolation which provides C1 continuity is adopted here. An

extra benefit of doing so is that gradient of I can also be analytically calculated from

the interpolated cubic splines and used in the optimization algorithm. The optimization

algorithm used is the well-established Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

[67, 194], readily available from Matlab.

VTR Tracking by Active Image Contours 113

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 6.2: VTR tracking of a UW-XRMB sentence: She is about two or three. Solid red

lines: VTR tracking by snakes; dash blue lines: manually tracked VTR.

6.3 VTR Tracking Experiments

Appropriate weights are first determined by trying various small scale experiments. The

four weights {w1, w2, w3, w4} are fixed to be {2, 15, 5, 3} for examples in this section.

Fig. 6.2 shows a preliminary run of applying snakes to track the first three VTR fre-

quencies of the same sentence as in Fig. 6.1. The three VTR snakes are initialized to be at

[500 Hz, 1500 Hz, 2500 Hz] throughout the whole utterance respectively, and results after

energy minimization are shown in the figure. It can be observed that the tracked VTR

trajectories are a lot smoother comparing to Fig. 6.1, especially in the unvoiced regions,

as to be expected. VTR trajectories are also correctly tracked in most vowel regions.

However, some serious mistakes also occur: F3 is mistracked at a number of places, e.g.,

the tracked F3 falsely merges with F2 shortly before 0.4 sec while follows F4 around 1.4

and 1.6 sec. This is most likely due to the crude initialization of VTR snakes and local

convergence nature of the optimization algorithm used. To confirm such a guess, small

scale experiments focusing on the mistracked regions with more careful initializations are

carried out, and two such examples are shown in Fig. 6.3 and Fig. 6.4. In both figures,

114 Hidden Dynamic Models for Speech Processing Applications

Time (ms)

(a)

Fr
eq

ue
nc

y
(k

H
z)

300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (ms)

(b)

Fr
eq

ue
nc

y
(k

H
z)

300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 6.3: VTR (F2 and F3) tracking by snakes focusing on a small region, example 1:

(a) initial values of VTR snakes; (b) after energy minimization.

Time (ms)

(a)

Fr
eq

ue
nc

y
(k

H
z)

1000 1100 1200 1300 1400 1500 1600 1700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (ms)

(b)

Fr
eq

ue
nc

y
(k

H
z)

1000 1100 1200 1300 1400 1500 1600 1700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 6.4: VTR (F2 and F3) tracking by snakes focusing on a small region, example 2:

(a) initial values of VTR snakes; (b) after energy minimization.

VTR Tracking by Active Image Contours 115

correct tracking results of F3 are obtained by doing a slightly more careful initialization.

The simple experiments above convince us that the active image contour framework is

promising at achieving robust and accurate VTR tracking for all sound classes. However,

the preliminary implementation as presented here also suffers from a number of serious

limitations and practical problems:

1. Adjusting the position of a snake pixel by pixel results in a very large scale optimiza-

tion problem and it is computational very expensive. For example, minimizing the

energy of VTR snakes for the sample sentence in Fig. 6.1 takes almost one day on a

Pentium 4 2.4 GHz PC. Therefore, succinct parametrization of snake positions are

required for such a method to be practical.

2. Snakes can easily get stuck into a local optimum if not initialized properly, and such

local optimum points seem to be prevalent in a real spectrogram, especially for noisy

speech. Therefore, good and automatic initialization schemes or global optimization

methods are needed for the current method to perform robustly.

3. It is also desirable to have a region dependent (or adaptive) weighting between the

internal and external energy so that image intensity can strongly influence VTR

snakes in vowel regions while internal energy may prevail when the spectrogram

doesn’t provide enough information to guide the snakes. This may help to remove

spurious movements of VTR snakes in some unvoiced regions shown in Fig. 6.2.

Some of these issues will be addressed in the next section.

6.4 Further Improvement by B-Spline Snakes and

Simulated Annealing

This section offers two significant improvements over the simple active contour implemen-

tation developed in the previous sections: it provides a succinct parametrization form of

VTR snakes and adopts a global optimization method.

The high complexity and slow convergence of snakes as originally proposed by Kass

et al. have been noticed shortly after its appearance, and there have been many research

116 Hidden Dynamic Models for Speech Processing Applications

efforts to render the snakes more stable and to yield faster convergence since then. Among

them one of the most successful approach is to represent the original deformable curve by

a parametric B-spline form [51], which is referred to as B-spline snakes in the literature

[26, 76, 166, 243]. A simple B-spline curve that fits the purpose of our VTR tracking

problem is the 1-D cubic B-spline. Such a curve s(t) is completely specified by a set

of control points y = {y−1, y0, . . . , yJ , yJ+1}. Suppose these control points are uniformly

spaced with interval τ , the corresponding B-spline curve s(t) is constructed by:

s(t) =
J+1
∑

j=−1

yj · B
3

(

t

τ
− j

)

, (6.11)

where B3(u) is the cubic B-spline basis function

B3(u) =











2
3

+ |u|3

2
− u2, |u| ≤ 1,

(2−|u|)3

6
, 1 < |u| ≤ 2,

0, otherwise.

(6.12)

Fig. 6.5 plots the B3 basis function and a sample B-spline curve s(t) generated by a

set of control points. Notice that the generated spline does not pass through the control

points but merely plots a smooth course among them, which is generally true for B-splines.

When applied to VTR tracking, it is sufficient to place a control point every 10-20 pixels,

which reduces the number of parameters by an order of magnitude comparing to the pre-

vious pixel-by-pixel implementation. Cubic B-splines are also intrinsically smooth, having

continuous first and second order derivatives, which is another desirable property for VTR

tracking.

The second improvement involves applying simulated annealing to solve the energy

minimization problem of VTR snakes. Simulated annealing [33, 88, 135] is a powerful op-

timization method originated in statistical physics, inspired by the real-world phenomenon

that a slow cooling process in metallurgy will alow the annealed material to approach its

energy minimizing ground state. A distinctive feature of this method is that it is guar-

anteed to reach the global optimum when correctly implemented. It is most effective at

solving large-scale problems with many local optima, where an energy function can be

appropriately defined by some “local” interactions. All these conditions are true for our

VTR Tracking by Active Image Contours 117

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

B
3 (u

)

(a)

−1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

s(
t)

(b)

Figure 6.5: The B3 basis function (a) and a sample B-spline curve (b) generated by a set

of control points denoted by asterisks.

VTR tracking problem: a spectrogram usually has many local optima (especially when

noise is present) and is a fairly large scale problem for image processing. It is especially

natural to integrate simulated annealing with snake-based VTR tracking: they both share

the same notion of energy, and when B-spline snakes are used, the “locality” condition is

obvious since the position of one control point only affects the shape of B-spline curve over

a small neighborhood. Most of the detailed study and implementation of applying simu-

lated annealing to the VTR tracking problem, which is under a continuous Gibbs sampling

scheme, belongs to fellow group member Michael Jameison’s master work [118, 119], and

the details will not be repeated in this thesis. Only a number of examples and the results

are presented and discussed.

Fig. 6.6 shows two examples of VTR tracking by B-spline snakes and simulated anneal-

ing. It can be observed that the VTR trajectories tracked by snakes are very smooth and

agree very well with the manually labeled ones throughout the utterance. Large differences

only occasionally occur at leading and trailing silences of the utterance and a few consonant

regions, where the accuracy of manual tracking is also low. The average absolute distance

(excluding silence periods) between the automatically and manually tracked VTR for one

speaker’s data in the TIMIT database is [58 Hz, 87 Hz, 76 Hz] for F1, F2, F3 respectively.

118 Hidden Dynamic Models for Speech Processing Applications

(a)

Time (seconds)

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

(b)

Time (seconds)

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

Figure 6.6: VTR tracking by B-spline snakes and simulated annealing for two typical

TIMIT sentences: (a) Don’t ask me to carry an oily rag like that; (b) He’d not only told

me so, he’d proved it. Solid red lines: VTR tracking by B-spline snakes; dash blue lines:

manually tracked VTR.

VTR Tracking by Active Image Contours 119

Since manual tracking can only achieve an accuracy of about ±40 Hz in voiced regions

[178], the accuracy of the automatically tracked VTR frequencies by B-spline snakes is

very close to human performance.

As a summary, we have developed a VTR tracker that almost rivals human performance

by applying advanced active image contour estimation methods. However, our method is

indeed much more complicated than the standard LPC based methods and requires a

considerable amount of computation. While the computational time of tracking VTR

dynamics for a typical sentence by LPC based methods is almost negligible on modern

computers, it takes half an hour to an hour when B-spline snakes are used. Another

limitation of such an image processing based approach is that VTR bandwidths can not

be directly estimated, unlike in most LPC based methods. As will be seen shortly, VTR

bandwidths are important in predicting acoustic features from VTR dynamics and thus

highly desirable when building a speech model with VTR dynamics acting as the hidden

dynamics underlying acoustic measurements. Both limitations will be addressed in the next

chapter when the VTR dynamics are recovered under such a hidden dynamics modeling

framework.

Chapter 7

VTR Tracking with a Hidden

Dynamic Model (HDM)

As opposed to the previous chapter, where VTR dynamics are extracted based on image

processing techniques, a different approach is undertaken in this chapter: to recover VTR

dynamics based on formulating a hidden dynamic model (HDM) of speech. It starts by

deriving an analytical formula that maps the VTR dynamics to the acoustic space, and

carefully linearize the original mapping with high accuracy to facilitate further computa-

tion. Then a HDM is formulated that describes both the VTR dynamics and the mapping.

The standard Kalman smoother is applied to track the underlying VTR frequencies and

bandwidths accurately and efficiently. And finally as an example of application, VTR

residual is used as a new acoustic feature to improve TIMIT phone recognition accuracy

over a well-trained HMM baseline system.

7.1 The VTR-to-Acoustic Mapping

It is possible to learn the VTR-to-acoustic (VTA) mapping by data-driven methods as in

the study of ATA mapping in Section 4.2. Indeed MLPs and mixture linear models have

been applied in related previous work [157, 236], although no formal evaluation on the

quality of these approximations has been carried out. However, lessons learned from using

data-driven methods in Section 4.2 suggests that a knowledge-based method can be of great

121

122 Hidden Dynamic Models for Speech Processing Applications

advantage if it is possible to be carried out. It has the potential of being more accurate

with less computation (if the knowledge itself is accurate), and also completely eliminates

the need of learning extra parameters when such a mapping is included in a speech model.

Even if the knowledge is incomplete, it can be supplemented by data driven methods

and may still dramatically reduces the number of learnable parameters comparing to a

completely data driven approach. Fortunately due to the close relationship between VTRs

and acoustics, such a knowledge-based approach is possible under reasonable assumptions.

The difficulty of deriving such a relationship depends on the acoustic feature desired, and

a particular convenient choice is LPC-cepstra, where such a mapping can be expressed in

closed-form. This derivation is carried out first.

7.1.1 VTR to LPC-cepstra Nonlinear Mapping

Here we assume an all-pole vocal tract model as introduced in Section 2.2, and represent

each pole by a VTR frequency-bandwidth pair (Fn, Bn). The corresponding conjugate

complex roots of the denominator in (2.1) are

pn = exp(−π
Bn

Fs

+ j2π
Fn

Fs

),

p∗n = exp(−π
Bn

Fs

− j2π
Fn

Fs

),

(7.1)

where Fs is the sampling frequency. The vocal tract transfer function with N pairs of such

poles and a gain of G can be expressed as

H(z) =
G

∏N

n=1(1 − pnz−1)(1 − p∗nz
−1)

. (7.2)

Taking logarithm on both sides

log H(z) = log G −
N
∑

n=1

log(1 − pnz
−1) −

N
∑

n=1

log(1 − p∗nz
−1), (7.3)

VTR Tracking with HDM 123

and further use the well-known Taylor series expansion log(1 − x) = −
∑∞

i=1
xi

i
, we have

log H(z) = log G −
N
∑

n=1

∞
∑

m=1

pm
n z−m

m
−

N
∑

n=1

∞
∑

m=1

p∗mn z−m

m

= log G −
∞
∑

m=1

[

N
∑

n=1

pm
n + p∗mn

m

]

z−m

= log G −
∞
∑

m=1

[

N
∑

n=1

2

m
exp(−πm

Bn

Fs

) cos(2πm
Fn

Fs

)

]

z−m. (7.4)

LPC cepstra are the inverse z-transform of the above equation. By adopting a one-sided

or unilateral definition of the z-transform, it is obvious that

C0 = log G,

Cm =
N
∑

n=1

2

m
exp(−πm

Bn

Fs

) cos(2πm
Fn

Fs

), m > 0.
(7.5)

Notice that (7.5) not only gives a closed-form relationship between VTR frequency-

bandwidth pairs and a mth order LPC-cepstrum coefficient, but also demonstrates an

important decomposition property: each VTR frequency-bandwidth pair contributes inde-

pendently to a LPC-cepstrum, and the total contribution is just the summation of indi-

vidual ones. Such a property greatly facilitates the efficient use of this mapping in VTR

tracking and other related applications, as will become clear soon. The derivation pre-

sented here is not new, basic ideas can be found in standard speech processing textbooks

[52, 197]. Under the context of VTR or formant tracking, it appeared in closely related

previous work [61], and a slight variation (and extension) also appeared in [264]. However,

the method of how such an approximate (under the all-pole model assumption) analytical

nonlinear mapping can be used in VTR tracking and beyond is completely novel due to

this thesis.

7.1.2 A Piecewise Linear Approximation

In order to effectively use the above derived nonlinear analytical mapping (7.5), a piecewise

linear approximation is carefully constructed in this section. The actual process, to be

124 Hidden Dynamic Models for Speech Processing Applications

described in detail below, is relatively straightforward but the resulting piecewise linear

mapping is the key leading to computational efficiency.

Let us consider the following nonlinear function

h(f, b) =
2

m
exp(−πm

b

Fs

) cos(2πm
f

Fs

), (7.6)

which represents the contribution of a specific VTR frequency-bandwidth pair (f, b) on the

mth order LPC-cepstrum. Notice that in order to construct a piecewise linear approxima-

tion to the analytical nonlinear mapping (7.5), we only have to construct a piecewise linear

approximation for h(f, b), since contributions from different VTR frequency-bandwidth

pairs are already linear due to the decomposition property indicated by (7.5). However,

constructing a piecewise linear approximation for h(f, b) is a straightforward task, and can

be completed in two steps: we first linearize f and b separately while fixing the other vari-

able, then combine the results. h(f, b) is a cosine function of f and an exponential function

of b, both can be linearized to high accuracy by carefully choosing linearization points. For

a cosine function, six nonuniformly-spaced linearization points are used in every half cycle,

e.g., {0, 1
8
π, 1

4
π, 3

4
π, 7

8
π, π} are selected as the linearization points for the range of [0, π],

and such a range is divided into five linear regions by these linearization points. For the

exponential function on b, the linearization points are uniformly placed every 50 Hz.

This linearization process and its effect can be clearly visualized by plotting an example,

which is shown in Fig. 7.1 for m = 6 and Fs = 8000 Hz. It can be observed that the

linearized functions are almost indistinguishable from the original nonlinear ones for both

f and b, indicating a high accuracy fit by our choice of linearization points. When both f

and b vary according to their valid range (0 to 4000 Hz for f and 0 to 500 Hz for b), the same

set of linearization points are used and the original nonlinear 2D surface is approximated

by a set of triangular planes defined by these linearization points. Again a picture may

worth a thousand words to illustrate the linearization process and an example for m = 5

and Fs = 8000 Hz is plotted in Fig. 7.2. It can be observed that the piecewise-linearly

approximated 2D surface (c) is virtually the same as the original nonlinear surface (a), and

the very small approximation errors (d) are only visible by an enlarged scale.

Under such a linearization scheme, a piecewise linear approximation to the analytical

nonlinear mapping (7.5) is pre-calculated and stored, including the valid range of each

VTR Tracking with HDM 125

0 500 1000 1500 2000 2500 3000 3500 4000
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
m = 6, F

s
 = 8000Hz

VTR Frequency (Hz)

h

0 50 100 150 200 250 300 350 400 450 500
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

VTR Bandwidth (Hz)

h

(b) f = 1500 Hz

Analytical Nonlinear Function
Piecewsie Linear Approximation

(a) b = 200 Hz

Figure 7.1: Linearization of h(f, b) on f (a) and b (b) separately while fixing the other

variable; the linearization points are denoted by crosses.

126 Hidden Dynamic Models for Speech Processing Applications

Figure 7.2: Piecewise linear approximation to an analytical 2D nonlinear function h(f, b) =
2
m

exp(−πm b
Fs

) cos(2πm f

Fs
).

VTR Tracking with HDM 127

linearization region i (of the shape of a triangular plane) and the linear function li(f, b)

associated with each region, which is of the form

li(f, b) = αi · f + βi · b + γi. (7.7)

When assessing such a piecewise linear mapping, it is only necessary to decide which

linearization region to use based on the input value (f, b). Therefore such a carefully con-

structed, highly accurate piecewise linear mapping, which will be denoted as P [·] hereafter,

can also be used conveniently and efficiently.

7.1.3 How About Other Acoustic Features?

It is natural to ask whether similar high accuracy piecewise linear mappings can be con-

structed for other acoustic features of interest as well. Carefully examining the procedure

of constructing the piecewise linear approximation in the previous section reveals that two

important properties of the original VTA mapping are needed for such a procedure to be

successful:

1. The acoustic features of interest must be able to be predicted from an all-pole vocal

tract model.

2. It is crucial for the decomposition property, i.e., each VTR frequency-bandwidth pair

contributing independently, to hold so that simple linearization can be carried out.

The first property holds for almost all acoustic features, although the difficulty of obtaining

such a prediction varies, and typically a closed-form solution such as (7.5) is impossible.

The second property is shared by all LPC-based features, popular ones including line

spectral frequencies (LSF, widely used in speech coding) and perceptual linear prediction

(PLP) coefficients (popular for speech recognition). A notable exception is MFCCs, which

has been used in the study of ATA mapping in Section 4.2 and is a popular acoustic feature

for speech recognition. The decomposition property of VTR frequencies and bandwidths

does not hold for MFCCs and a piecewise linear mapping from VTR to MFCCs can not be

constructed efficiently. For simplicity, the remaining of the thesis will use LPC-cepstrum

feature wherever the VTA mapping is desired.

128 Hidden Dynamic Models for Speech Processing Applications

7.2 The HDM for VTR Tracking

A general hidden dynamic modeling framework has been set up in Section 4.4, where

the hidden state (or hidden dynamics) is articulatory dynamics. This section adapts this

general framework to use VTR dynamics as the hidden state in speech modeling.

7.2.1 A HDM Using VTR Dynamics

Two slight modifications are made comparing to the state-space model described in Section

4.4: first we replace the articulatory dynamics by VTR dynamics; second we replace the

nonlinear ATA mapping by the above constructed piecewise linear VTA mapping. After

these modifications, the state-space model (or HDM) is expressed as

zk = Φszk−1 + (I − Φs)us + wk, (7.8a)

ok = P [zk] + rs + vk. (7.8b)

Note that the state equation (7.8a) stays the same as before, we merely define a new

state vector

z = [F1, F2, F3, F4, B1, B2, B3, B4]
T , (7.9)

to use VTR dynamics instead of articulatory dynamics in the state equation. The form of

the observation equation (7.8b) has been slightly changed to take advantage of the phone-

independent piecewise linear mapping P [·]. A learnable, phone-dependent deterministic

residual vector rs is also introduced to account for the inaccuracy of P [z], in addition to

the use of zero-mean white Gaussian noise vk. The state vector z itself deserves further

explanations as well:

• VTR bandwidths have been included in the state vector, even though it has been

mentioned previously (in Section 5.3) that they don’t possess true dynamics, or in

another word, they do not have physically meaningful time-correlations. When pro-

ducing acoustic waveforms, VTR bandwidths can change rapidly, but there is still

a well-defined bandwidth target for each phone (as listed in Tables 5.1 and 5.2).

The behavior of VTR bandwidths can be adequately captured by the state equation

(7.8a) as well, e.g., if we set Φs = 0, then the time correlation between subsequent

VTR Tracking with HDM 129

state vectors will be completely removed and zk will behave as a Gaussian noise with

a mean at the target position, roughly corresponding to the bandwidth behavior

described above. In practice, some weak time correlation between subsequent band-

width values can still be beneficial and a small time constant (0.1, for example) may

be used to reflect this.

• F4 and B4 have been included in the state vector even though there are no target

values listed for them in Tables 5.1 and 5.2. The reason to include F4 and B4 is

mainly to better account for the acoustic observation after some comparative studies

with models only include VTR frequencies and bandwidths up to F3 and B3. This is

equivalent to increasing the order of an all-pole model. Although phone-dependent

target values of F4 and B4 are not revealed by previous research, their approximate

range is known. Here phone-independent target values of 3500 Hz and 300 Hz are

used for F4 and B4 respectively.

We will start with the diagonal assumption on Φs, motivated by the success of VTR

trajectory fitting in Section 5.3. For simplicity, we also assert diagonal structures for the

noise covariance matrices Qs and Rs. It is insightful to count the number of learnable

parameters when the above proposed HDM (7.8) is used for speech modeling under such

a simple setup. Suppose we use a phone table containing 50 phones and a 16 × 1 acoustic

feature vector1, then the total number of trainable model parameters is (8+8+8+16+16)×

50 = 2800. This is in stark contrast to state-of-the-art HMM speech recognition systems

which typically have a few million trainable parameters [64]. Of course the number of

learnable parameters will increase if further model improvement is carried out, such as

making Φs to be a block diagonal or full matrix to better account for correlation among

different VTR frequencies and bandwidths, or to split a phone into two sub-phones to

model transient phones more accurately (such as /b/ which involves two distinct stages

during production: a complete closure followed by a subsequent release). But the HDM

as described in this section will still be able to hold a clear edge over traditional HMM

based systems in terms of model parameters that need to be learned. Again, more in-depth

1One choice could be 15 LPC-cepstrum coefficient plus energy, where the energy will not be predicted

by P[·] but completely characterized by the trainable residue vector rs.

130 Hidden Dynamic Models for Speech Processing Applications

discussion of what this implies to speech recognition will be presented in Part III of the

thesis.

7.2.2 A Simplified HDM for VTR Tracking

The full-fledged HDM incorporating VTR dynamics described above has most model pa-

rameters phone-dependent. In practical VTR tracking scenarios, phone transcripts are

typically not known, nor do we want to recover them2. This section describes a simpli-

fied HDM with pre-determined model parameters to facilitate VTR tracking without extra

phonetic knowledge.

The first step of setting up the simplified model is to remove model parameter de-

pendency on the underlying speech unit. After doing so, the state-space model can be

rewritten as

zk = Φzk−1 + (I − Φ)u + wk, (7.10)

ok = P [zk] + r + vk. (7.11)

Next the model parameters need to be determined so that the model can be used for VTR

tracking without learning its parameters on the fly. This is accomplished based on the

author’s experience and small scale tuning experiments, and the details are as follows.

Notice that if we set Φ = I, the state equation (7.10) becomes

zk = zk−1 + wk, (7.12)

which is a random walk process that provides some continuity constraint for VTR fre-

quencies between consecutive frames while the targets play no role. This is also a common

continuity constraint that has been used in a number of previously-developed VTR trackers

[61, 207]. However, we believe that it is still important to use a phone-independent mean

target value to limit the valid range of VTR frequencies and provide a prior nominal value

for them, especially when the acoustic signal is weak. This is confirmed by experiments,

2This is essentially the goal of speech recognition, which is a far more difficult problem.

VTR Tracking with HDM 131

and after some tuning, Φ and u are fixed to be:

Φ = diag([0.95, 0.95, 0.95, 0.95, 0.1, 0.1, 0.1, 0.1]), (7.13)

u = [0.5 kHz, 1.5 kHz, 2.5 kHz, 3.5 kHz, 0.2 kHz, 0.3 kHz, 0.3 kHz, 0.3 kHz]T , (7.14)

where Φ is a diagonal matrix. Some weak time correlation (a time constant of 0.1) between

consecutive bandwidth values is also provided. For simplicity, we set r = 0 to totally rely

on the piecewise linear mapping P [·] to predict LPC-cepstra from VTR frequencies and

bandwidths. The relative magnitude of the covariance matrices Q and R (of the state and

observation noises respectively) reflects the relative importance of the state and observation

equation in estimating ẑk and this is again set by empirical tuning. Diagonal structures

are adopted for both Q and R: R has been set to some sample variance of LPC-cepstra

calculated from a small set of TIMIT sentences and Q is tuned to be

Q = diag([0.04, 0.04, 0.04, 0.04, 0.01, 0.01, 0.01, 0.01]). (7.15)

To track VTR frequencies and bandwidths of an utterance, the standard Kalman

smoother [165, 220, 221] can be directly applied after the LPC-cepstra is first computed

from the speech waveform. The detailed equations and implementation steps of a Kalman

smoother are omitted in this section3. An important point to make is that the efficient

use of Kalman smoother is made possible by the pre-design of the piecewise linear map-

ping P [·], otherwise we will have to resort to the computationally much more expensive

(and possibly also less accurate) extended Kalman smoother. The speed of this Kalman

smoother based VTR tracker is comparable to standard LPC based methods: it takes less

than a second to track a typical sentence on a modern PC with codes written in Matlab.

7.3 VTR Tracking Results and Analysis

VTR tracking has been performed on the whole TIMIT database, which contains a total

of 6,300 sentences. For all sentences, the state vector z is initialized to be the same as the

phone-independent target value u.

3They are listed in Section 9.2, although for a different purpose.

132 Hidden Dynamic Models for Speech Processing Applications

Fig. 7.3 (a) shows the tracking result on a typical TIMIT sentence, where the four solid

red lines are trajectories of F1 to F4, and the two dashed blue lines above and below each

solid line show the Fi + Bi and Fi − Bi tracks. The overall trajectories are quite smooth,

especially comparing to typical results of standard LPC-based methods such as the one

shown in Fig. 6.1. All major resonance frequencies that can be identified by eyes have been

tracked correctly, and the estimated bandwidths also appear to be reasonable. Another

typical example of VTR tracking is provided in Fig. 7.3 (a), where similar tracking quality

has been obtained, although careful scrutiny can reveal some minor errors, e.g., the F2 and

F3 merge around 1.5 sec hasn’t been tracked accurately. Spot-checked results indicate that

tracking quality similar to Fig. 7.3 (a) and Fig. 7.4 (a) has been obtained on all sentences.

The Kalman smoother tracked VTR frequencies have also been compared to manually

tracked ones, and the absolute distance between these two sets of VTR frequencies is

[83 Hz, 124 Hz, 117 Hz] for F1, F2, F3 respectively, for one speaker’s data which has been

hand-labeled. This result is not as good as the one obtained by B-spline snakes in the

previous chapter on page 117, but is offset by the computational efficiency of the current

method.

Since manual VTR tracking is not able to provide reliable bandwidth estimate, an al-

ternative method is used to further analyze the quality of Kalman smoother based tracking

besides visual inspection. Here we first compute predicted LPC-cepstrum features from the

estimated VTR frequencies and bandwidths via equation (7.5), then calculate the differ-

ence between the predicted LPC-cepstra and the true one obtained from speech waveforms.

This difference vector will be referred to as the residual feature from now on. All three fea-

tures (the true LPC-cepstra, the predicted one and the residual) are calculated for the two

example sentences and visually displayed as spectrograms in Fig. 7.3 and Fig. 7.4 (b)-(d).

If our VTR tracker can estimate VTR dynamics accurately, we will expect to see most of

the true dynamics, which can be inferred from the true spectrogram, to be reflected in the

predicted spectrogram. Furthermore, if the estimated VTR frequencies and bandwidths

can predict acoustic well, most of the speech energy below 4 kHz should be removed (this

is roughly the frequency range F1–F4 and B1–B4 can predict) while high energy should

only appear at high frequencies in the residual spectrogram. Both expectations are met in

the spectrogram displays of Fig. 7.3 & 7.4, where Fig. 7.3 & 7.4 (c) show that all speech

VTR Tracking with HDM 133

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
(a)

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

2

4

6

−0.2

−0.1

0

0.1

0.2

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

2

4

6

−0.2

0

0.2

0.4

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

2

4

6

−0.5

0

0.5

(b)

(c)

(d)

Figure 7.3: TIMIT VTR frequency and bandwidth tracking example 1: (a) tracked VTR

frequency (solid red lines) ± bandwidth (dash blue lines); (b) original spectrogram with a

color scale; (c) predicted spectrogram from tracked VTRs; (d) residual spectrogram.

134 Hidden Dynamic Models for Speech Processing Applications

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
(a)

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

2

4

6

−0.2

0

0.2

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

2

4

6

−0.2

0

0.2

0.4

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

0 0.5 1 1.5 2 2.5
0

2

4

6

−0.4

−0.2

0

0.2

0.4

(b)

(c)

(d)

Figure 7.4: TIMIT VTR frequency and bandwidth tracking example 2: (a) tracked VTR

frequency (solid red lines) ± bandwidth (dash blue lines); (b) original spectrogram with a

color scale; (c) predicted spectrogram from tracked VTRs; (d) residual spectrogram.

VTR Tracking with HDM 135

dynamics below 4 kHz have indeed been well captured and the residual spectrogram in (d)

only have substantial energy at frequencies higher than 4 kHz.

The above results and analysis confirm that the Kalman smoother based VTR tracker

has performed quite well. Besides applicable to speech analysis in general, such a fast and

accurate VTR tracker also plays an important role in the next part of the thesis when

efforts are made to develop a full-fledged HDM based speech recognizer. It can provide

much needed good initialization when variational training and decoding algorithms are

applied, which will be further discussed in Chapter 10. It can be further observed that

the residual spectra exhibit different characteristics for different phones or phone classes,

e.g., prediction is generally better in vowel regions than consonant regions (this is to be

expected since VTR dynamics is mostly observable from acoustics in vowel regions). This

is one reason that leads to the use of residual features in a traditional HMM-based phone

recognizer, to be presented in the next section.

7.4 Using VTR Residual Feature in a HMM Speech

Recognizer

This section describes the use of VTR residual to improve a high performance HMM

based TIMIT phone recognizer. Readers without a background in speech recognition are

encouraged to read the friendly introduction provided in Chapter 8 (the next chapter) or

at least the first section of that chapter before reading this section. It should be admitted

from the outset that improving a high performance HMM baseline system by merely using a

different feature is very difficult4, and typically involves lots of empirical tuning. However,

our focus is not on the performance gain itself but rather to see if the residual feature can

provide any gain at all, as a simple way to demonstrate the discriminability of the HDM

besides its accuracy.

4Many similar attempts in the literature have a much worse baseline system so that performance gain

may be larger.

136 Hidden Dynamic Models for Speech Processing Applications

7.4.1 Description of the Baseline System

Some technical details about the baseline HMM phone recognizer which is to be further

improved are presented first.This is mostly intended as a reference for people who already

know how to build a HMM based speech recognizer. Unfamiliarity with these details will

in no way hinder understanding the main points of this section, nor any remaining parts

of the thesis.

The goal of this particular speech recognizer is to decode the correct phoneme sequences,

opposed to word sequences or sentences, on the TIMIT database. Therefore it will be more

specifically referred to as a phone recognizer. The baseline system uses triphone mixture-

of-Gaussian HMMs as the acoustic model, and is developed under HTK, a popular HMM

toolkit freely available from the University of Cambridge [259]. A bigram phone language

model is also used and trained on the TIMIT training set. The acoustic feature used

as the input to the phone recognizer is 12 perceptual linear prediction (PLP) coefficients

plus energy, appended by delta and acceleration coefficients, which results in a 39 × 1

acoustic feature vector. The phone recognizer is trained on a 48 phone table (merged from

the original 64) and tested on a further merged 39 phone table, which is the standard of

evaluating TIMIT phone recognition performances established after Lee and Hon [145]. It

reaches a phone recognition error rate of 27.28% with 10 Gaussian mixture components.

Since the best error rate ever reported by a similar system is 27.1% [143], our system

qualifies as a very high performance one.

7.4.2 Why Use VTR Residual?

The use of VTR residual in a HMM phone recognizer is motivated by the following two

characters of the residual vector:

1. Since most speech dynamics have been accounted for by the spectra predicted from

estimated VTR frequencies and bandwidths and hence be removed in the residual

feature, the HMM assumption, which assumes inter-frame independence given the

underlying states, will be appropriate for the residual feature.

2. As mentioned previously, different phones or phone classes tend to have different

VTR Tracking with HDM 137

residual spectra. Therefore the residual feature may aid in discriminating different

phones.

To compensate for the lost phonetic information contained in the predicted LPC-cepstra,

the residual feature has been appended to the original full feature (PLP plus energy) used

in the baseline HMM system. This so formed new “super” feature set is used as the input

to train and test a HMM phone recognizer.

7.4.3 TIMIT Phone Recognition Results

It is shown that the HMM phone recognizer with the new super feature set consistently

outperforms the baseline system under all conditions, although the relative improvement

is small. The actual phone recognition error rates are listed in the following table. These

No. of Gaussian mixtures 8 10 12 14

PLP feature (baseline) 28.00 27.28 27.50 28.10

PLP + residual 27.60 26.99 27.45 27.80

Table 7.1: TIMIT phone recognition error rates (%) of two triphone HMM systems.

results confirm the effectiveness of the residual feature in discriminating different phones.

The small improvement is likely due to the high performance already achieved by the

baseline system. Further discussions on this result, under a much broader context, is

provided in the next section.

7.5 Conclusions and Discussions

This section concludes the study on VTR dynamics with some insightful discussions:

• First the detailed studies carried out in this part have verified that a HDM using

VTR dynamics as proposed in Section 7.2.1 is a quite accurate model of speech. The

accuracy of the state equation (7.8a) is verified by the VTR trajectory fitting experi-

ments in Section 5.3, and supported by the author’s (and many others’) spectrogram

reading experience. The accuracy of the observation equation (7.8b) is verified by the

138 Hidden Dynamic Models for Speech Processing Applications

performance of the VTR frequency and bandwidth tracker developed in this chapter.

Since the state equation (7.10) only provides some weak global constraint in VTR

tracking, it is the observation equation (7.11) that provides most of the power to

enable high accuracy tracking and acoustic prediction.

• Second there is a straightforward enhancement that can be made on the Kalman

smoother based VTR tracker. Recall that we have set the phone-independent residual

vector r = 0 for simplicity in the current VTR tracker. However this is unnecessary

and the residual vector can be trained either on a pre-selected training set or on-

the-fly to further improve the VTA mapping and the quality of the VTR tracker

simultaneously. The phone independent r may be further modeled as a random

variable (thus subsumes the Gaussian noise v) with a Gaussian mixture distribution

to facilitate high-accuracy training. Such an improvement has indeed been carried

out at Microsoft Research after the author’s original work and appears in [63].

• Third it has been hinted a few times that the ultimate goal of this thesis is to use HDM

towards speech recognition, the most difficult and comprehensive speech processing

application so far. However, this also involves huge difficulty and complexity, as will

become clear in the next part of the thesis dedicated to such a challenge. Such a

difficulty is another factor motivating the use of VTR residual in a HMM based phone

recognizer described in Section 7.4. The goal is more to resort to a relatively easy

way to demonstrate some power of the HDM for speech recognition rather than plain

uses of VTR related features to improve HMM based speech recognition systems as

has been previously attempted [111, 217, 246]. Notice that the residual feature is the

result of a simplified HDM used for VTR tracking. The fact that it can still provide

some improvement over a high performance HMM baseline system makes us strongly

believe that a full-fledged HDM based speech recognizer may provide considerable

improvement over state-of-the-art HMM systems.

Therefore, in spite of the huge challenge, it is with great anticipation and excitement

to proceed to the next and final part of the thesis where efforts are made to develop HDM

based speech recognition systems.

Part III

Algorithm Development of HDM

towards ASR

139

Chapter 8

Introduction to Automatic Speech

Recognition (ASR)

This chapter introduces the speech recognition problem, reviews the hidden Markov model

(HMM) which is at the core of current speech recognition systems, and motivates the use

of hidden dynamic models (HDMs) as a promising new approach.

8.1 The Formulation of ASR Problem

Obviously the goal of automatic speech recognition (ASR) is to let a machine recognize

what a person is saying, i.e., given the speech signal as input, we want to have the content

of speech (typically sentences) as output. It may also be thought of as a machine acting

as a voice-actuated “typewriter”. It is necessary to formulate the problem mathematically

before a computer can solve it. There could be a number of different ways to formulate the

speech recognition problem, but the most successful and by far the most popular one is to

treat the speech signal as a stochastic pattern and adopt a statistical pattern classification

approach [69, 82].

Suppose a sequence of acoustic observations (feature vectors) O = {o1,o2, . . . ,oT}

is available, in order to recover the underlying word string W = {w1, w2, . . . , wN}, the

141

142 Hidden Dynamic Models for Speech Processing Applications

recognizer picks up the most likely word string given the observed acoustic evidence, i.e.,

Ŵ = argmax
W∈Ω

P (W | O), (8.1)

where Ω is the set of all possible word sequences. The well-known Bayes’ formula in

probability theory allows us to re-write the right hand side of (8.1) as

P (W | O) =
P (W)P (O | W)

P (O)
∝ P (O | W)P (W). (8.2)

The last part of the above equation follows since P (O) is irrelevant to the maximization

procedure. After this simple manipulation, (8.1) can be rewritten as

Ŵ = argmax
W∈Ω

P (W)P (O | W), (8.3)

which is sometimes referred to as the fundamental equation of speech recognition. This

important equation also indicates what processes and components are of concern in the de-

sign of a speech recognizer. The key components of a speech recognizer is briefly described

as follows.

8.1.1 Speech Preprocessing

Speech preprocessing refers to the computation of acoustic feature vectors O, which serve

as input to the statistical pattern classifier (8.3). For speech recognition, and many other

speech applications, it is not a good idea to work with raw speech waveforms directly. The

speech waveform simply contains too much (mostly redundant) information with a very

high variability (even for repetitions of the same utterance spoken by the same speaker un-

der identical acoustic environment) so that it is very difficult to extract useful information

for the purpose of speech recognition (or other applications). Therefore, the goal of speech

preprocessing is to keep the application-dependent, relevant information while removing

as much redundant information as possible, and hopefully also achieve good robustness

under different acoustic environment. Most preprocessing methods are based on some un-

derstanding of the human speech production and perception mechanism, and important

ideas (such as short-time analysis) have been introduced in Chapter 2. For speech recog-

nition in particular, LPC-derived cepstral coefficients (LPC-cep) account for early success

Introduction to ASR 143

of speech recognizers; more recently mel-frequency cepstral coefficients (MFCCs) become

the dominant choice in state-of-the-art speech recognizers, and very recently perceptual

linear prediction (PLP) coefficients have also been demonstrated to have similar or slightly

better performance than MFCCs in many speech recognition tasks. This area is still under

active research to find more suitable acoustic features for speech recognition applications.

Section 7.4, where VTR residual is used as an appended feature to improve a HMM phone

recognizer, is an example of research work in this direction.

8.1.2 Acoustic Modeling

The fundamental equation of speech recognition (8.3) naturally breaks a speech recognizer

into two parts. One is to calculate the prior probability of word strings P (W), the other

is to calculate the probability of a word string given the acoustic evidence P (W | O). The

first quantity P (W) is obtained by a language model, to be described shortly; the second

quantity P (W | O) is obtained by an acoustic model. Arguably, acoustic modeling is the

central part of a speech recognizer. The dominant choice for acoustic modeling today is

hidden Markov model (HMM) and its extensions. An overview of HMM and its use as an

acoustic model in speech recognition will be provided in Section 8.2.

Besides HMM, template-based dynamic time warping [198] has been used in the early

days and performed well for simple applications, such as isolated-word recognition under

small-vocabulary and speaker-dependent constraints. But it was abandoned later due to

the difficulty of generalizing this method for large-vocabulary speech recognition tasks.

Artificial neural networks (ANN) are a relatively new approach (comparing to HMM) that

started catching people’s interest in late 1980’s [23, 241]. Such an approach has yielded

good performance for small-vocabulary speech recognition tasks, and even out-performed

HMM for short, isolated speech units [208], but it remains problematic to apply neural

networks to large-vocabulary continuous speech recognition tasks. The main challenge is

how to incorporate the dynamic behavior of speech into a (usually static) neural network

structure without introducing prohibitive computational requirements. So far the most

effective solution seems to be integrating neural nets with HMMs [170, 260], such as re-

placing the Gaussian mixture densities in standard HMMs with a neural net, and such an

approach essentially becomes another extension of HMM. More recently there has been a

144 Hidden Dynamic Models for Speech Processing Applications

growing body of research [17, 59, 86, 91, 169, 267] to go beyond the conventional HMMs,

and an important family of them is hidden dynamic models (HDMs) [206, 148], which is

the focus of this thesis. More comprehensive review and detailed algorithm development

of HDMs for speech recognition will be presented in the following sections and chapters.

8.1.3 Language Modeling

Language models are intrinsically language-specific, quite often they are also domain or

application specific. There are two main routes to take in building a language model, one

is knowledge or rule based and the other is data-driven.

The rule-based approach is rooted in linguistics, such as Chomsky’s formal language

theory [38] for English. The most popular one is the context free grammar (CFG) [127] due

to its good balance of expressing capacity and parsing efficiency. These rule-based language

models typically either accept or reject a hypothesized utterance based on the parsing

result, but sometimes the output can be probabilistic as well. When used in a limited-

domain with well-defined semantics, rule-based language models can be very powerful, but

they are typically inadequate for large-vocabulary spontaneous speech recognition tasks

due to their limited coverage.

On the other hand, data-driven language models unexceptionally adopt a probabilistic

view and need to be trained from data, just like acoustic models. However, unlike training

acoustic models, no speech data is needed; text (written material) alone is sufficient. To

calculate P (W), we first use Bayes’ formula to decompose it in a sequential order:

P (W) =
N
∏

i=1

P (wi | w1, . . . , wi−1). (8.4)

Of course it is unnecessary and computationally infeasible for the current word to depend on

the entire past history, and the popular n-gram language models make the approximation

that the current word only depends on the identity of its previous n words. The most

popular and surprisingly powerful language model for large-vocabulary speech recognition

is the trigram language model [120], which makes the approximation

P (wi | w1, . . . , wi−1) ≈ P (wi | wi−2, wi−1). (8.5)

Introduction to ASR 145

Bigram and unigram (or monogram) language models are also used when there is no

sufficient data to train a trigram language model or efficient hypothesis search (to be

presented next) is required. The main drawback of n-gram language models is that long-

span dependencies in sentence structures cannot be efficiently captured (large n typically

enforces prohibitive computational cost).

There are also active research efforts to unify the knowledge-based and data-driven

language models to combine their strengths while overcoming their respective limitations

[35, 244].

8.1.4 Hypothesis Search

Finally we need to search over all possible word strings to find the most likely one, which

is commonly known as the decoding problem in speech recognition. A little thought would

convince the reader that brute force approach is impossible: the space of W is astronom-

ically large even for a small task, and in general the possible number of word strings is

infinite. Therefore, the framework under which the acoustic model and language model

are constructed must allow efficient search algorithms to be carried out. This is again

greatly facilitated by the state-of-the-art HMM framework, where the powerful and ef-

ficient Viterbi decoding algorithm (to be presented shortly) provides the basis for most

sophisticated searching algorithms used in today’s speech recognizers. An alternative ap-

proach rooted in artificial intelligence, known as stack decoding or A* search [105, 173],

has also been successfully applied in some speech recognizers. Any new developments in

either acoustic modeling or language modeling must also take into account the decoding

problem seriously.

8.2 Overview of the Hidden Markov Model (HMM)

This section reviews the hidden Markov model (HMM) from two different aspects. The

first one is a classic view that fueled the widespread adoption of HMM in speech recognition

since 1980’s [195, 196, 197]. The second one is under the general framework of graphical

models [16, 18, 123], which succinctly summarizes the probabilistic features of HMM and

conveniently relates it to many other statistical models, including the hidden dynamic

146 Hidden Dynamic Models for Speech Processing Applications

model (HDM) which is at the heart of this thesis. The somewhat detailed description of

HMM algorithms is to facilitate later comparison with HDM algorithms, to be developed

in the next chapter.

8.2.1 A Classic View of HMM

A HMM is a stochastic function of a first-order discrete-time Markov chain1. It is composed

of two components: a Markov process on the hidden (or latent or unobservable) states s

and a set of output probabilities associated with each state. A HMM is fully characterized

by

• A finite alphabet S = {1, 2, . . . , N} on which the hidden states take values. The total

number of possible states is N , while there is also an unique starting state s0 = 0,

which is included for implementation convenience to be explained shortly.

• A time-invariant transition matrix Π, where

πij = p(st+1 = j | st = i). (8.6)

• A set of output distributions

p(y | st = s), s ∈ S, (8.7)

associated with each state, where p(·) can be any valid probability distributions,

typically vector-valued. Popular choices include discrete distributions, Gaussian dis-

tribution and mixtures of Gaussian distributions.

Some authors also include an initial state distribution in specifying a HMM, but such a

need is eliminated by making use of the special non-emitting state s0 that doesn’t output

any observable data y. The model always starts in s0 and never returns. Hence, the entire

first column of Π is filled with zeros while the first row stores the probabilities of starting

in a “real” state sj. Another advantage of using a special starting state is that it facilitates

the concatenation of HMMs (as is commonly done in speech recognition), where the last

1First-order Markov chains are covered in standard statistics textbooks, such as [181, 209].

Introduction to ASR 147

state of the previous HMM can just serve as the special starting state for the current HMM.

The length T of the generated samples of time series Y1:T = {y1,y2, . . . ,yT} can either be

fixed, or more generally, be a random variable itself. For example, one way to generate a

variable length observable sequence is to choose one of the possible states (usually the last

one N) as the ending state. Usually the number of hidden states N is predetermined while

the remaining model parameters, collectively denoted as Θ which include the transition

matrix Π and parameters associated with the output distributions, are learned from data.

Given the form of a HMM, there are three basic problems that have to be solved before

applying it in statistical modeling. The solution to these problems leads to three elegant

and well-known algorithms in speech recognition and beyond, which are first developed by

Baum and colleagues in the late 1960s and early 1970s [11, 12, 13, 14]. The problems and

their solutions are described as follows [196, 197]:

Problem 1: Given an observation sequence Y1:T = {y1,y2, . . . ,yT} and all the model

parameters Θ, how to efficiently calculate P (Y1:T | Θ), the probability of the observation

sequence?

This is essentially to calculate the total likelihood of the data, or commonly known as the

likelihood score or simple the score in speech recognition. The brute-force way to solve this

problem is by first enumerating all the possible state sequences with length T (there are

NT such sequences), and then calculate the probability of the observation sequence coming

from every possible state sequence. This approach can be expressed as

p(Y1:T | Θ) =
∑

all s

p(Y1:T , s1:T | Θ)

=
∑

s1,s2,··· ,sT

p(s1|s0)p(y1|s1)p(s2|s1)p(y2|s2) · · · p(sT |sT−1)p(yT |sT),
(8.8)

where statistical independence among observations given the states is asserted. A little

thought would reveal that such a brute-force approach will lead to a computational load

exponential in T (on the order of 2T · NT), which is infeasible in practice. However, huge

computational savings can be gained by carefully making use of the conditional indepen-

dence relationships suggested by the model. For example, when T = 2, the total likelihood

148 Hidden Dynamic Models for Speech Processing Applications

of the data can be calculated as

p(Y1:2 | Θ) =
∑

s1,s2

p(s1|s0)p(y1|s1)p(s2|s1)p(y2|s2)

=
∑

s2

p(y2|s2) ·

[

∑

s1

p(s1|s0)p(y1|s1)p(s2|s1)

]

. (8.9)

This simple idea of “pushing” the sums in as far as possible so that only relevant terms get

summed up lies at the heart of the forward-backward algorithm, which efficiently computes

the total likelihood (8.8) linearly in T (on the order of N 2T). Moreover, it is also the

trick behind efficient exact inference algorithms for graphical models in general, including

the junction tree algorithm [45, 121, 187], the generalized distributive law [3] and the

sum-product algorithm [142].

The complete forward-backward algorithm is described as follows [197]. We first define

the forward variable αt(i)

αt(i) = p(Y1:t, st = i | Θ), (8.10)

and compute it inductively as follows.

1. Initialization:

α1(i) = π0i · p(y1 | s1 = i), 1 ≤ i ≤ N. (8.11)

2. Induction: for t = 2, . . . , T

αt(j) =

[

N
∑

i=1

αt(i)πij

]

p(yt | st = j), 1 ≤ j ≤ N. (8.12)

3. Termination:

p(Y1:T | Θ) =
N
∑

i=1

αT (i). (8.13)

Notice how the idea of pushing sums in has been applied in the induction step. The forward

variable αt(i) also has a neat explanation: it is the probability of observing the partial

sequence Y1:t and being in state i at time t. Although the likelihood evaluation problem

Introduction to ASR 149

is completely solved by this forward pass alone, it is convenient to define a symmetric

backward pass to be used later. The backward variable βt(i) is defined as

βt(i) = p(Yt+1:T | st = i,Θ), (8.14)

and also computed inductively.

1. Initialization:

βT (i) = 1, 1 ≤ i ≤ N. (8.15)

2. Induction: for t = T − 1, . . . , 1

βt(i) =
N
∑

j=1

πijp(yt+1 | st+1 = j)βt+1(j), 1 ≤ j ≤ N. (8.16)

βt(i) has a clear meaning too: it is the probability of observing the partial sequence Yt+1:T

given the system is in state i at time t. Both the forward pass and backward pass require

computation linear in T , on the order of N 2T .

Problem 2: Given an observation sequence Y1:T and the model Θ, how to choose an

optimal state sequence that best explains the observation?

Different criteria of optimality will lead to different solutions. For speech recognition,

the most sensible criteria is to choose the state sequence that maximizes the posterior

probability p(s | Y1:T ,Θ), i.e., we want to find the state sequence ŝ such that

ŝ = max
all s

p(s | Y1:T ,Θ) = max
all s

p(Y1:T , s1:T | Θ)

= max
s1,s2,··· ,sT

p(s1|s0)p(y1|s1)p(s2|s1)p(y2|s2) · · · p(sT |sT−1)p(yT |sT).
(8.17)

Notice the similarity between equations (8.8) and (8.17): the only difference is that the

summation operation in (8.8) has been replaced by the maximization operation in (8.17).

Due to many properties shared by both the summation and maximization operation, condi-

tional independence relationships can be explored similarly: instead of pushing the “sum”

in, we push the “max” in this time. This results in the efficient Viterbi algorithm with

computational cost linear in T , which is stated below.

150 Hidden Dynamic Models for Speech Processing Applications

To apply the Viterbi algorithm to find the optimal state sequence (or the best path),

we first define

δt(i) = max
s1:t

p(Y1:t, s1:t−1, st = i | Θ), (8.18)

which is the highest likelihood ending in state i at time t. This quantity as well as the best

path is computed inductively as follows.

1. Initialization:

δ1(i) = π0i · p(y1 | s1 = i), 1 ≤ i ≤ N, (8.19a)

φ1(i) = 0, 1 ≤ i ≤ N. (8.19b)

2. Induction: for t = 2, . . . , T

δt(j) = max
1≤i≤N

[δt−1(i)πij] p(yt | st = j), 1 ≤ j ≤ N, (8.20a)

φt(j) = argmax
1≤i≤N

[δt−1(i)πij] , 1 ≤ j ≤ N. (8.20b)

3. Termination:

p̂ = max
1≤i≤N

[δT (i)] , (8.21a)

ŝT = argmax
1≤i≤N

[δT (i)] . (8.21b)

4. Backtracking: for t = T − 1, . . . , 1

ŝt = φt+1(ŝt+1). (8.22)

The Viterbi algorithm may also be viewed as an instance of applying dynamic programming

technique [44] to HMM. A further note is that in practice, typically both the forward-

backward algorithm and the Viterbi algorithm are implemented in the log domain to avoid

numerical underflow, because we need to multiply a (potentially very long) sequences of

small numbers (the probabilities) in both cases.

Introduction to ASR 151

Problem 3: Given a set of observation sequences Y1:T , how to adjust the model param-

eters Θ to maximize P (Y1:T | Θ)?

This is also known as the training problem, which is by far the most difficult. It has

been shown that there is no optimal way of globally optimizing all the parameters given

a finite observation sequence [196]. However, there exists an iterative procedure known

as the Baum-Welch algorithm, which is a special case of the more general Expectation-

Maximization (EM) algorithm [54, 164, 245], to find the local optima of HMM parameters.

The rather involved formal description of the Baum-Welch algorithm will not be presented,

only basic ideas are sketched here. However, a formal and insightful description of the

EM algorithm, under a very general context, will be presented in the next chapter when

developing algorithms for HDM.

The basic idea of Baum-Welch algorithm (as well as the more general EM algorithm) is

to start with some initial guess of model parameters and use the forward-backward algo-

rithm to calculate sufficient statistics from the data (E step). The model parameters are

then reestimated from the calculated sufficient statistics based on the maximum likelihood

criterion (M step). For example, the state transition probability πij is estimated by

πij =

∑T−1
t=1 ξt(i, j)
∑T−1

t=1 γt(i)
, (8.23)

where

ξt(i, j) = p(st = i, st+1 = j | Y1:T ,Θ)

=
αt(i)πijp(yt+1|st+1 = j)βt+1(j)

∑N

i=1

∑N

j=1 αt(i)πijp(yt+1|st+1 = j)βt+1(j)
,

(8.24)

and

γt(i, j) = p(st = i | Y1:T ,Θ)

=
αt(i)βt(i)

∑N

i=1 αt(i)βt(i)
,

(8.25)

are both quantities that can be directly calculate based on the forward-backward algorithm.

Parameter estimation formulas for the output distribution will depend on the functional

form of the output distribution used in the model and the details are omitted.

152 Hidden Dynamic Models for Speech Processing Applications

Next, iterations are carried out between the E step and M step. It has been proven that

both the E step and the M step guarantee to improve (or not to decrease) total likelihood

of the data. Iteration stops when the total likelihood converges, or may do so after a fixed

number of iterations in practice. Although the Baum-Welch algorithm can only reach a

local optimum, experiences show that it is very effective at training HMMs: it usually

requires only a few iterations to converge and the final result (in terms of the modeling

power, or more specifically for speech recognition, in terms of word error rates) is largely

insensitive to parameter initialization.

The solutions to the above three basic problems allow the highly efficient use of HMM

as a generic statistical model in time series analysis, both for speech recognition and other

applications, such as modeling DNA sequences in bioinformatics [72].

8.2.2 HMM as a Probabilistic Graphical Model

This section recasts HMM in the general framework of graphical models [123]. Probabilistic

graphical models are graphs where nodes represent random variables and the (lack of) arcs

represent conditional independence assumptions. They generally offer a compact repre-

sentation of joint probability distributions, as will become clear shortly. Graphical models

are the result of a merge between probability theory and graph theory: the probability

theory provides the glue whereby nodes and substructures are combined, ensuring that the

system as a whole is consistent; the graph theory provides both an intuitively appealing

interface where humans can visualize interactions among different model components as

well as a data structure that lends itself naturally to the design of efficient general-purpose

algorithms. Almost all statistical models of practical interest can be put under the general

graphical model formalism in a straightforward manner, and graphical models are playing

an increasingly important role in the design and analysis of machine learning algorithms.

There are two main kinds of graphical models based on the use of arcs: undirected

and directed. Undirected graphical models, also known as Markov random fields [36], are

more popular in physics and image processing. Directed graphical models, also known

as Bayesian networks [121], are more popular with the artificial intelligence and machine

learning community. This thesis only concerns directed graphical models or Bayesian

networks. In a Bayesian network, an arc from node A to B can be informally interpreted

Introduction to ASR 153

as “A causing B”, thus directed cycles are disallowed.

Figure 8.1: A simple Bayesian network.

Fig. 8.1 shows a simple Bayesian network. The graph encodes the conditional inde-

pendence statement “B is conditionally independent of C given A” because of the lack of

an arc between nodes B and C. This is usually written as B ⊥⊥ C | A. Based on this

conditional independence relationship, the joint probability of the model can be expressed

as

p(A,B,C) = p(A) · p(B | A) · p(C | A). (8.26)

In general, a given graphical model is equivalent to a list of conditional independence state-

ments, and a graph represents all distributions for which all these independence statements

are true. A central task in applying statistical models is to perform probabilistic inference,

i.e., to compute the probability of a subset of random variables given values (or samples

or data) of another subset. Inference is essential both to make predictions/decisions based

on the model and to learn model parameters under the EM framework. It turns out that

the difficulty of performing exact inference for a particular statistical model is determined

by its underlying conditional independence structure, or equivalently, its representation as

a graphical model.

With the above quick introduction to graphical models, it may be easily verified that

a HMM can be represented as a Bayesian network in Fig. 8.2. Following conventions

in graphical models, the observable random variables y1,y2, . . . ,yT have been drawn as

shaded nodes. Note that Fig. 8.2 is not a complete representation of a HMM, e.g., there

is no way to represent the transition matrix Π or any special structures associated with

it (such as the upper triangular structure typically used in speech recognition). In fact,

Fig. 8.2 can represent more than a HMM. For example, if we allow the states s0:T to

be continuous random variables, Fig. 8.2 can also represent a state-space model (SSM),

154 Hidden Dynamic Models for Speech Processing Applications

Figure 8.2: HMM represented as a Bayesian network.

also known as a stochastic linear dynamic system. Therefore, a graphical model usually

represents no more than conditional independence relationships within a statistical model.

However, this is not a disadvantage but an advantage instead in using graphical models

since it is the conditional independence structure that largely determines the internal

complexity of a statistical model. For example, the fact that efficient inference algorithms

exist for both HMM and SSM (forward-backward for the former and Kalman smoother for

the latter) is not a coincidence, it is because they share the same underlying graphical model

representation. Therefore, we see how graphical model representations allow connections

and insights to be gained when comparing different statistical models.

8.3 From HMM to HDM

HMM is a very flexible model. Without limit on the number of hidden states, the family

of observation distributions, and the amount of training data from which model parame-

ters are learned, it can account for practically any time series (or signals) arbitrarily well.

However, this generality does not imply that it is a good model for a particular applica-

tion. On the contrary, it suggests that by properly integrating domain-specific knowledge,

alternative models may perform a lot better, achieving high accuracy with inherent parsi-

mony and robustness. Previous chapters of the thesis establish HDM as such an example

for speech modeling, and this is further illustrated in this section by comparing it to the

HMM .

There is no doubt that an HMM adequately captures the discrete or symbolic nature of

Introduction to ASR 155

speech, but it is inherently weak at capturing the continuous or dynamic nature of speech,

e.g., the coarticulation phenomena. This can be observed from a number of HMM modeling

assumptions that are incompatible with the human speech production mechanism. For

example, HMM assumes that successive observations within a state are independent and

identically distributed (IID), each state has a constant mean and the states themselves

only have a very short time correlation demanded by the Markov property. All these

assumptions are not true for speech since the production of speech is actually driven by a

highly time-correlated, continuous and smooth movement of the articulators. In fact, most

recent improvements upon HMM have been dedicated to enhancing its ability to model

speech dynamics, and a number of them are listed here.

• To relax the IID assumption between adjacent frames, delta and acceleration features,

which are the first and second order differences of the original acoustic feature, are

unexceptionally appended to the original feature in state-of-the-art HMM based ASR

systems. Although this is reasonable in a sense and indeed effective at reducing

recognition error rates, it is only a crude and heuristic way to model speech dynamics

and also introduces additional problems [93].

• To better account for the coarticulation phenomena, current HMM systems adopt

context-dependent phones as the basic speech unit, e.g., the popular tri-phone unit

is a phoneme conditioned on its immediate left and right phonemes [259]. However,

there are some well-known long span context dependencies in speech that cannot be

efficiently captured in such a manner.

• There are also a number of efforts to relax the constant mean assumption within a

state, such as modeling it with a polynomial or an auto regressive function [56, 60,

203]. However, besides considerably increasing the complexity of training and test

algorithms, the temporal dynamics at the surface acoustic level is also very noisy and

difficult to extract.

There is a common theme underlying the above improvements of HMMs (and many others

that are not listed): to improve model accuracy by increasing the number of learnable

parameters. However, there are some practical limitations to this, e.g., the computations

156 Hidden Dynamic Models for Speech Processing Applications

associated with HMMs grow quadratically with the number of states N (recall both the

forward-back algorithm and Viterbi algorithm have time complexity on the order of N 2T),

so while increasing the number of states is simple, such as moving from tri-phone to quin-

phone etc, there is an appreciable associated computational cost, not to mention the need

for more training data. In contrast, HDM takes a different route: it enriches the underlying

model structure instead of simply increasing the number of model parameters. By modeling

the internal dynamics of speech motivated by studies and insights from speech science,

both short term and long term context dependencies are naturally incorporated within

the continuous and smooth trajectories of the hidden dynamics. This is why we are able

to achieve model accuracy and parsimony at the same time, as demonstrated by previous

chapters of the thesis.

It should be further pointed out that, although model accuracy has been emphasized

throughout the thesis and the above discussion, this is not the correct criterion to use

when judging model quality for speech recognition2. The true criterion should be model

discriminability, i.e., how well a model can discriminate among different speech units,

as is generally the case for any pattern recognition problems. This is also the reason

why the most recent speech recognition systems have moved away from the traditional

training criterion of ML or MAP (maximum a posterior) while using others that can

directly improve model discriminability, such as minimum classification error (MCE) [40,

126, 125] and maximum mutual information (MMI) [7, 239, 256]. However, without a deep

understanding of speech itself, it is hard to know what really constitutes the discriminable

part of speech. Because most of the recent improvements on speech recognition have been a

result of increasing model accuracy, and arguably HDM can provide more discriminability

than HMM since HMM can be treated as a special case of HDM when used for ASR

(will be illustrated in the next chapter), we strongly believe that HDM is a very viable

approach for speech recognition, although such a claim needs to be further backed up by

experiments. Another advantage of using a more accurate generative or internal model for

speech recognition (such as HDM versus HMM) is the ability of having a better confidence

measure on the recognition results, which is also an important practical issue in deploying

speech recognition technologies.

2It is if we were to perform speech synthesis.

Introduction to ASR 157

Having established HDM as a more accurate and parsimonious model of human speech

and a promising model for speech recognition, another equally important (if not more)

question is whether efficient inference and model parameter learning algorithms can be

developed for HDM similar to those of HMM. The remaining chapters of the thesis present

original and fruitful efforts along this line.

Chapter 9

Algorithm Development for HDM

This chapter thoroughly describes the novel and powerful variational inference and param-

eter learning algorithms developed for a linear switching state space model (SSSM), which

is formulated from the HDM proposed for speech applications, and backs them up with

extensive simulation results.

9.1 A SSSM Formulated from HDM

To facilitate algorithm development, the following linear switching state space model

(SSSM),

xt = Asxt−1 + as + ws, (9.1a)

yt = Csxt + cs + vs, (9.1b)

based on the proposed HDM for speech described in Section 7.2.1, is formulated and focused

in this chapter. Here, As, as, Cs and cs are s-dependent deterministic parameter while ws

and vs are Gaussian white noises whose covariance matrices are also s-dependent.

This SSSM has a couple of small differences compared to the HDM of equation (7.8).

First the piecewise linear mapping P [·] has been replaced by a pure linear mapping. This is

mostly done for simplicity and the implication of using a piecewise linear mapping instead

of a pure linear one with the variational algorithms to be developed will be discussed in

the next chapter. Second the effect of target us is embedded within the bias term as of the

159

160 Hidden Dynamic Models for Speech Processing Applications

state equation. This is mathematically equivalent as long as matrix As is convergent, and

we can recover us by: us = (I−As)
−1 ·as. We may further simplify the appearance of (9.1)

to get rid of as and cs by augmenting the continuous state vector xt and observation vector

yt. However, this is not done since both as and cs have clear and significant meanings in the

original speech model (as embeds the target while cs corresponds to the residual vector).

A further note is that both s and x are termed “states” in this model; when we need to

distinguish between them, we refer to s as the discrete state and x as the continuous state.

The remainder of this section will first offer some further illustrations on model structure

and applications of the model, then review algorithms previously developed for the model

(including some closely related variants) and motivate the development of new algorithms.

9.1.1 Detailed Model Description

The most complete and accurate way of describing a statistical model is by writing down

its (joint) probability distributions, which is also the most convenient form to use when

deriving statistical algorithms. The probability distributions associated with the SSSM are

p(Y1:T ,X0:T , s0:T) = p(Y1:T ,X1:T , s1:T) · p(x0, s0)

=
T
∏

t=1

p(yt | xt, st)p(xt | xt−1, st)p(st | st−1) · p(x0 | s0)p(s0),
(9.2)

where

p(yt | xt, st = s) = N (yt | Csxt + cs,Ds), (9.3a)

p(xt | xt−1, st = s) = N (xt | Asxt−1 + as,Bs), (9.3b)

p(st = j | st−1 = i) = πij, (9.3c)

with initial conditions,

s0 = 0, (9.4a)

p(x0 | s0 = 0) = N (x0 | a0,B0), (9.4b)

and

N (x | ρ,Γ) =

∣

∣

∣

∣

Γ

2π

∣

∣

∣

∣

1

2

exp

[

−
1

2
(x − ρ)TΓ(x − ρ)

]

, (9.5)

Algorithm Development for HDM 161

Figure 9.1: The SSSM represented as a Bayesian network.

denotes a Gaussian distribution with mean ρ and precision matrix Γ, the inverse of the

more commonly used covariance matrix. Note that a unique initial discrete state s0 is

used to facilitate implementation and SSSM concatenation, similar to its use in HMM. The

remaining discrete states take values from a finite alphabet S = {1, 2, . . . , N}, i.e., the total

number of possible discrete states is N . Similarly, a special initial state x0 has also been

defined for the continuous state. For inference purposes, both s0 and x0 can be considered

as known or observed. The model can also be represented as a directed graphical model

or Bayesian network, shown in Fig. 9.1, where the conditional independence relationships

within the model can be easily visualized.

Compared to Fig. 8.2, Fig. 9.1 also clearly demonstrates that the SSSM generalizes

both the hidden Markov model (HMM) and the linear state space model (SSM); it is a

probabilistic dynamic system which combines discrete and continuous dynamics. Whereas

the state space model describes an observed time series in terms of a continuous hidden

state vector whose dynamics is specified by the dependence of the current state on the

previous one, in the SSSM those dynamics depend on additional states which are discrete.

Hence, the dynamics generally vary with time, producing a structurally-rich and powerful

model for time series analysis with a broad range of applications. Besides speech, the

SSSM (including a number of variants that are slightly different than the one defined here)

162 Hidden Dynamic Models for Speech Processing Applications

has been applied in diverse domains such as control [8, 9], machine vision [185, 186], fault

diagnosis [154], financial analysis [99, 132] and other signal processing applications [202].

In the machine learning community, the SSSM belongs to a class of models termed

conditional linear Gaussian (CLG) models [153, 155], which has also been attracting re-

search interest recently. CLG models are probabilistic models consisting of discrete and

continuous variables (or nodes in the context of graphical models), where a discrete node

may have both discrete and continuous children, but a continuous node may only have

continuous children. Each continuous node in a CLG is a Gaussian conditioned on its

parent nodes, i.e., its mean and covariance matrix depend on the discrete parents, with

the mean being linear in the continuous parents. The SSSM formulated here can also be

viewed under the Bayesian framework even without putting prior distributions on model

parameters1 (and we will not do so in this thesis). Our model implicitly forces a continuity

constraint on X1:T , and it may serve as a smoothness prior for Y1:T [89, 136, 140].

9.1.2 Review of Previously Developed Algorithms

Whereas inference and parameter estimation in HMM and the state space model can be

done exactly using the EM algorithm (known as Baum-Welch for the former and Kalman-

Rauch for the latter), it is well known that inference in SSSM is computationally intractable

[90]. If x0 starts with a single Gaussian, then the exact posterior p(xt | Y1:t) at time t

will be a mixture of Gaussians having N t components, i.e., the number of mixtures grows

exponentially with the length of the time series T . More generally, it has been shown that

inference in CLG models is NP-hard; moreover, unless P=NP, approximate inference with

a guaranteed nontrivial accuracy is also intractable [153, 155]. Therefore, although the use

of SSSMs may seem natural in many applications, the computational challenge is huge.

Nevertheless, there have been fair a number of approximate inference and/or parame-

ter estimation algorithms developed in the past. Most of the earlier algorithms are based

on heuristically collapsing the exact posterior, which follows a mixture of Gaussians dis-

tribution, into a single Gaussian at each time step [2, 34, 132, 222], thus avoiding the

exponential growth of the number of mixtures. Besides being heuristic, most of these

1Please be cautioned that the name “Bayesian network” has nothing to do with Bayesian inference.

Algorithm Development for HDM 163

algorithms also don’t provide an efficient solution to recover the optimal sequence of dis-

crete hidden states, i.e., the decoding problem in speech recognition. Variational methods

have been introduced to SSSMs recently [90, 184], which are also based on collapsing the

Gaussian mixtures of the state posterior into a single Gaussian at each time step, but in a

more principled way. The new variational approximation developed in this thesis aims to

achieve the following two goals:

1. To preserve the multi-modality of the exact posterior on hidden continuous states x,

but to keep the number of mixtures from growing exponentially.

2. To develop a set of efficient algorithms which are parallel to those of HMM, including

one for the highly challenging decoding problem, to facilitate the use of SSSM in

speech recognition.

Since variational methods are relatively new in machine learning and may not be familiar

to many readers, an introduction to these methods is first provided in the next section,

before presenting our new variational approach for SSSM.

9.2 Introduction to Variational Methods

The term “variational methods” can mean different things, but in this thesis it is restricted

to the scope of inference and learning for probabilistic graphical models. Under such a con-

text, the basic idea is first introduced to machine learning by Saul et al. [215, 216], with a

root in statistical physics [116, 182]. Variational methods offer a powerful and elegant tool

to tackle otherwise intractable problems, and can significantly outperform other approxi-

mation techniques, such as sampling based methods, in some situations. However, current

understanding of this method is still quite limited in general, and very often there is as

much “art” as there is “science” when applying it to solve a specific problem [124, 242].

Therefore, this self-contained tutorial will mainly focus on helping the readers understand

the techniques used in solving our problem at hand, rather than discussing its general use

for graphical models. To achieve this goal, an insightful comparison between variational

EM and exact EM algorithms is first presented, then a simple but interesting example is

described to help readers develop more insight into variational approximations.

164 Hidden Dynamic Models for Speech Processing Applications

9.2.1 Variational EM versus Exact EM

The EM algorithm [54, 164, 212] provides a powerful and general framework to estimate

model parameters with the presence of incomplete data or hidden variables, usually in a

ML sense. It can be applied using both exact inference and variational inference.

For an arbitrary statistical model, let us denote the observed data by Y, the hidden

variables by X, and the model parameters to be estimated by Θ. Our goal is to estimate

model parameters by maximizing the likelihood of the data

L(Θ) = log p(Y | Θ) = log

∫

X

p(X,Y | Θ) dX, (9.6)

where X has been assumed to be continuous random variables in general. For discrete

random variables, the integral in the above equation (9.6) will be replaced by a sum.

A lower bound of L can be obtained using any distribution over the hidden variables

X:

log

∫

X

p(X,Y | Θ) dX = log

∫

X

q(X)
p(X,Y | Θ)

q(X)
dX

≥

∫

X

q(X) log
p(X,Y | Θ)

q(X)
dX. (9.7)

To obtain the above lower bound (9.7), the concavity of the log function as well as Jensen’s

inequality, widely used in information theory [160], have been applied. We define this lower

bound to be a functional2 F :

F(q,Θ) =

∫

X

q(X) log
p(X,Y | Θ)

q(X)
dX

=

∫

X

q(X) log p(X,Y | Θ) dX −

∫

X

q(X) log q(X) dX. (9.8)

Note that F is the negative of the Kullback-Leibler (KL) distance or relative entropy

between q and p. In statistical physics, F is also the negative of a quantity known as free

energy: the expected energy under q minus the entropy of q [172].

Generally speaking, the EM algorithm alternates between maximizing F with respect

to the distribution q and model parameters Θ while fixing the other. Starting with some

initial parameters Θ0:

2Since it is a “function” of the function q(X).

Algorithm Development for HDM 165

E-step:

qk = argmax
q

F(q,Θk−1), (9.9)

M-step:

Θk = argmax
Θ

F(qk,Θ). (9.10)

Although in general we have to resort to calculus of variations [258] to find the optimal

function q in the E-step, it is easy to verify by substitution that the maximum is reached

when q is the posterior distribution of X, i.e., qk(X) = p(X | Y,Θk−1). In such a case the

lower bound becomes an equality: F(qk,Θk−1) = L(Θk−1)
3. Maximizing F in the M-step

only involves maximizing the first term of (9.8), since the second term (entropy of q) does

not depend on Θ, i.e., the modified M-step becomes:

M-step:

Θk = argmax
Θ

∫

X

p(X | Y,Θk−1) log p(X,Y | Θk−1) dX. (9.11)

This is the expression which appears most commonly in the EM literature, and the quantity

to be maximized is popularly referred to as the Q function. Therefore, the exact EM

algorithm consists of computing the conditional distribution (or posterior) p(X | Y,Θk−1)

(or its moments, also know as sufficient statistics) in the E-step and maximizing the Q

function in the M-step. As a result, the likelihood of the data will be increased (or more

accurately, not decreased) at each E step and M step.

But what if the conditional distribution p(X | Y,Θk−1) is intractable? This is where the

variational approximation comes into the play. Even if the exact posterior is intractable,

we may approximate it by a variational posterior q(X | Y,Θk−1) that has a pre-designed

tractable structure, i.e., by asserting additional conditional independence relationships

among the hidden variables (but not the functional form of q). In the E-step, q needs

to be maximized in a true sense of calculus of variations to determine its functional form

and parameters simultaneously4. It also turns out that such a free form optimization of q

3It is nevertheless possible to show by variational principles that the exact posterior indeed maximizes

F ; such a proof is provided in Appendix A.1, where it will also become clear that optimizing F subsumes

the famous Bayes’ rule.
4If X solely contains discrete random variables, regular calculus suffices.

166 Hidden Dynamic Models for Speech Processing Applications

can be successfully carried out without computing the exact posterior or the exact joint

distribution p(X,Y | Θk−1) explicitly. The M-step is again to maximize F , or equivalently,

only its first term,

F ′(Θ) =

∫

X

q(X) log p(X,Y | Θ) dX. (9.12)

Therefore, the variational EM algorithm is guaranteed to increase a lower bound of the data

likelihood instead of the exact likelihood itself (which is also intractable to compute) at

each EM iteration. Such a property constitutes the “science” part of variational methods.

The “art” part is how to choose a sensible structure of q to achieve a tight lower bound

(which indicates a good approximation) yet maintain computational efficiency. This is

model-dependent and may require lots of experiences and insights into the problem.

The actual use of variational methods is further demonstrated by a simple example,

where exact inference is also possible so that detailed comparisons can be made. Since

variational EM and exact EM share essentially the same M step (only a slight difference

in the objective function), the following example will focus on the inference or E step only.

9.2.2 An Illustrative Example

Here we develop a variational inference method for the linear state-space model (SSM),

where exact inference is tractable and is well-known as the Kalman smoother. Therefore,

detailed comparison between the variational inference and exact inference can be made

to gain valuable insights on the use and effects of variational approximation. Similar

approximation will also be used when developing variational inference for the switching

state space model (SSSM), where exact inference is intractable.

Derivation of the Variational Smoother

We start with the model description, and the SSM is specified by the following equations:

xt = Axt−1 + a + w, (9.13a)

yt = Cxt + c + v, (9.13b)

where w and v are zero mean Gaussian white noises.

Algorithm Development for HDM 167

To facilitate the derivation of variational inference, the model is further represented in

terms of probability distributions:

p(Y1:T ,X0:T) = p(Y1:T ,X1:T) · p(x0)

=
T
∏

t=1

p(yt | xt)p(xt | xt−1) · p(x0),
(9.14)

where

p(yt | xt) = N (yt | Cxt + c,D), (9.15a)

p(xt | xt−1) = N (xt | Axt−1 + a,B), (9.15b)

p(x0) = N (x0 | a0,B0). (9.15c)

Although the exact posterior p(X1:T | Y1:T) is tractable, we may still design a varia-

tional posterior q(X1:T | Y1:T) to approximate it. More specifically, we adopt the com-

pletely factorized form for the variational posterior

q(X1:T) =
T
∏

t=1

q(xt). (9.16)

For notational simplicity the dependence of q on the complete observation or data Y1:T

will be omitted from now on, but whenever we use q it is always implied. The SSM

and its variational posterior used in this example are also shown graphically in Fig. 9.2.

At first glance it may seem that we have made a very crude approximation since all the

correlations among x’s have been dropped. However, such a view is somewhat misleading

since the correlation will be indirectly accounted for by the variational approximation: the

variational posterior q(xt) at each time step will be determined by all the data. We will

come back to this point when simulation results are analyzed.

The detailed derivation of variational inference is presented first. For this model, the

168 Hidden Dynamic Models for Speech Processing Applications

Figure 9.2: A Bayesian network representation of the SSM (a) and its variational posterior

(b).

Algorithm Development for HDM 169

functional F as defined in (9.8) becomes

F(q) =

∫

dX1:T q(X1:T) [log p(Y1:T ,X1:T) − log q(X1:T)]

=

∫

dX1:T

T
∏

t=1

q(xt)

[

T
∑

t=1

log p(yt | xt) +
T
∑

t=1

log p(xt | xt−1)

−
T
∑

t=1

log q(xt)

]

=
T
∑

t=1

∫

dxt q(xt) log p(yt | xt) −
T
∑

t=1

∫

dxt q(xt) log q(xt)

+
T
∑

t=1

∫

dxt dxt−1 q(xt) q(xt−1) log p(xt | xt−1).

(9.17)

By taking functional derivatives with respect to each q(xt), we have (for t 6= T),

δF(q)

δq(xt)
= log p(yt | xt) +

∫

dxt−1 q(xt−1) log p(xt | xt−1)

+

∫

dxt+1 q(xt+1) log p(xt+1 | xt) − log q(xt) − 1

= log p(yt | xt) + Et−1 [log p(xt | xt−1)] + Et+1 [log p(xt+1 | xt)]

− log q(xt) − 1, (9.18)

where we define the notation

Et [f(·)] ,

∫

dxt q(xt)f(·). (9.19)

Setting (9.18) to zero we obtain:

log q(xt) = Et−1 [log p(xt | xt−1)] + Et+1 [log p(xt+1 | xt)] + log p(yt | xt) − 1

= Et−1

[

1

2
log

∣

∣

∣

∣

B

2π

∣

∣

∣

∣

−
1

2
(xt − Axt−1 − a)TB(xt − Axt−1 − a)

]

+ Et+1

[

1

2
log

∣

∣

∣

∣

B

2π

∣

∣

∣

∣

−
1

2
(xt+1 − Axt − a)TB(xt+1 − Axt − a)

]

+
1

2
log

∣

∣

∣

∣

D

2π

∣

∣

∣

∣

−
1

2
(yt − Cxt − c)TD(yt − Cxt − c) − 1. (9.20)

170 Hidden Dynamic Models for Speech Processing Applications

The right-hand side of (9.20) contains only first and second order terms of xt plus some

constants, so must be the left-hand side log q(xt), which proves that q(xt) follows a Gaussian

distribution. Let’s assume:

q(xt) = N (xt | ρt,Γt), (9.21a)

or equivalently,

log q(xt) =
1

2
log

∣

∣

∣

∣

Γt

2π

∣

∣

∣

∣

−
1

2
(xt − ρt)

TΓt(xt − ρt). (9.21b)

From (9.20):

∂ log q(xt)

∂xt

= CTD(yt − Cxt − c) + Et−1 [−B(xt − Axt−1 − a)]

+ Et+1

[

ATB(xt+1 − Axt − a)
]

= −(CTDC + B + ATBA)xt + CTD(yt − c)

+ Ba − ATBa + BAρt−1 + ATBρt+1. (9.22)

From (9.21b):
∂ log q(xt)

∂xt

= −Γtxt + Γtρt. (9.23)

Comparing (9.22) and (9.23) we have for t 6= T :

Γt = CTDC + B + ATBA, (9.24)

Γtρt = BAρt−1 + ATBρt+1 + CTD(yt − c) + Ba − ATBa, (9.25)

and similarly for t = T we can obtain:

ΓT = CTDC + B, (9.26)

ΓT ρT = BAρT−1 + CTD(yT − c) + Ba. (9.27)

This completes the derivation of variational inference on the SSM. Equations (9.24)-

(9.27) are the ones need to be solved in order to obtain the time-varying mean and precision

matrix of the variational posterior, and will be referred to as the variational smoother

Algorithm Development for HDM 171

hereafter. As a reference, the standard Kalman smoothing equations, which performs exact

inference and gives true estimates of the mean x̂(t | T) and covariance matrix P(t | T) of

the posterior, are also listed as follows. The variational and true estimates of the posterior

distribution (both are Gaussians) will be compared by simulation experiments.

Exact Inference (Kalman Smoothing) of the SSM

Initial condition:

x̂(0 | 0) = a0, (9.28a)

P(0 | 0) = B−1
0 . (9.28b)

Forward pass (t = 1, 2, · · · , T):

x̂(t | t − 1) = Ax̂(t − 1 | t − 1) + a, (9.29)

P(t | t − 1) = AP(t − 1 | t − 1)AT + B−1, (9.30)

ỹ(t | t − 1) = y(t) − Cx̂(t | t − 1) − c, (9.31)

Pỹ(t | t − 1) = CP(t | t − 1)CT + D−1, (9.32)

K(t) = P(t | t − 1)CTPỹ(t | t − 1)−1, (9.33)

x̂(t | t) = x̂(t | t − 1) + K(t)ỹ(t | t − 1), (9.34)

P(t | t) = P(t | t − 1) − K(t)Pỹ(t | t − 1)K(t)T . (9.35)

Backward pass (t = T − 1, · · · , 1):

G(t) = P(t | t)ATP(t + 1 | t)−1, (9.36)

x̂(t | T) = x̂(t | t) + G(t) [x̂(t + 1 | T) − x̂(t + 1 | t)] , (9.37)

P(t | T) = P(t | t) + G(t) [P(t + 1 | T) − P(t + 1 | t)]G(t)T . (9.38)

Simulation Experiments

Now some simple simulations are performed to compare the variational smoother and the

Kalman smoother. We start with the simple scalar-scalar case, i.e., both the state x and

observation y are scalars, and use the following model parameters:

a0 = 1.5, B0 = 108, A = 0.8, a = 0.4, C = 2, c = −1.5.

172 Hidden Dynamic Models for Speech Processing Applications

The parameters of the state equation (9.13a) are chosen to make E[x] asymptotically

reach a target of 2. The noise levels in the state (9.13a) and observation (9.13b) equations

(represented by the precisions B and D) are varied and will be specified for each example.

Fig. 9.3 shows an example where noise levels in both the state and observation equa-

tions are moderate. It can be observed that both the Kalman smoother and the variational

smoother work well: the variance estimate by the approximate variational smoother is

slightly smaller than that by the Kalman smoother while the state estimate, i.e., the esti-

mated mean of the continuous hidden states, appears to be very similar for both smoothers.

Fig. 9.4 shows another example where the noise level in the observation equation is further

increased. As a result, the estimates should rely more on the state equation (model) than

the observation equation (data). The simulation result confirms the expectation and the

variational smoother again works well comparing to the Kalman smoother. The variance

estimate by the variational smoother is smaller than that by the Kalman smoother but the

state estimates appear to be the same. By computing the numerical difference between

the state estimates by the variational and Kalman smoothers in both examples, it turns

out that the largest absolute difference is only about 10−5.

As a further test, xn and yn are both taken to be vectors with the following model

parameters:

a0 =

[

0.5

1.5

]

, B0 =

[

106 0

0 106

]

,

A =

[

0.6 0

0 0.9

]

, a =

[

0.4

0.2

]

,

C =











1 0

0.8 0.2

0.2 0.8

0 1











, c =











−2

−1

0

1











,

and an example is shown in Fig. 9.5. This time the variance estimate by the variational

smoother is not so good: it is considerably larger than that by the Kalman smoother,

but the state estimates by both smoothers still appear to be the same, with the largest

numerical difference being around 10−5.

Algorithm Development for HDM 173

0 20 40 60 80 100
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
Simulation Data

(a)
0 20 40 60 80 100

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10−5 Estimated State Variances

(b)

Kalman
variational

0 20 40 60 80 100
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1
State Estimatation by Kalman Smoother

(c)
0 20 40 60 80 100

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1
State Estimatation by Variational Smoother

(d)

x
y

estimated
simulated
noise−free model

estimated
simulated
noise−free model

Figure 9.3: Comparison of variational and Kalman smoother in scalar-scalar case 1: B =

104, D = 104.

174 Hidden Dynamic Models for Speech Processing Applications

0 20 40 60 80 100
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Simulation Data

(a)
0 20 40 60 80 100

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10−4 Estimated State Variances

(b)

Kalman
variational

0 20 40 60 80 100
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
State Estimatation by Kalman Smoother

(c)
0 20 40 60 80 100

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
State Estimatation by Variational Smoother

(d)

x
y

estimated
simulated
noise−free model

estimated
simulated
noise−free model

Figure 9.4: Comparison of variational and Kalman smoother in scalar-scalar case 2: B =

104, D = 102.

Algorithm Development for HDM 175

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Simulation Data

(a)
0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5
x 10−3 Norm of Estimated State Covariances

(b)

Kalman
variational

0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
State Estimation by Kalman Smoother

(c)
0 20 40 60 80 100

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
State Estimation by Variational Smoother

(d)

x
y

estimated
simulated
noise−free model

estimated
simulated
noise−free model

Figure 9.5: Comparison of variational and Kalman smoother in vector-vector case: B =

104 · I, D = 103 · I.

176 Hidden Dynamic Models for Speech Processing Applications

Analysis and Discussions

Since the exact posterior of a SSM is a Markov chain, i.e.,

p(X1:T | Y1:T) =
∏

p(x1 | x0,Y1:T) · p(x2 | x1,Y1:T) · · · p(xT | xT−1,Y1:T), (9.39)

we know that the completely factorized variational posterior can only be an approximation.

However, the above simulation results seem to suggest that both the variational smoother

and the Kalman smoother give the same estimates on the mean of the states while only

the covariance matrix is different (but the variational approximation to the covariance

matrix could be rather poor in some situations, such as in Fig. 9.5 (b)). The very small

difference between the two state estimates is likely due to rounding errors alone. Such

an empirical result can indeed be judged theoretically. If we write out the full matrix

equation involving all the time steps that exact inference need to solve, where the Kalman

smoother merely serves as an efficient recursive solving method, then it turns out that the

equation for the state mean is exactly the same as what has been derived for the variational

inference expressed in equations (9.25) and (9.27) while only equations for the covariance

(or precision) matrix are different than that of the variational smoother. Details of this

derivation are provided in Appendix A.2 for interested readers.

In conclusion, a completely factorized variational posterior, despite its simple struc-

ture, is able to perform quite well for SSMs: it gives exact estimates on the mean of hidden

states X1:T while approximate estimates on the covariance matrix due to the complete

factorization assumption. It should be further noted that computational efficiency is not

explicitly considered in this illustrative example. While the Kalman smoother runs in com-

plexity linear in T , a brute force solution of equations (9.24)-(9.27) by matrix inversion has

complexity O(T 3), which is impractical for large scale problems. However, computational

efficiency will be seriously considered when deriving variational inference and learning al-

gorithms for SSSMs and it turns out that one of the recursive equation solving methods

developed in the next section, which has complexity linear in T , will subsume solving

equations (9.24)-(9.27) as a special case.

Algorithm Development for HDM 177

Figure 9.6: Variational posterior of the SSSM represented as a Bayesian network.

9.3 Variational Inference for SSSM

Now we are ready to develop the variational inference and parameter learning algorithms

for the SSSM, where exact inference is NP hard. This section describes the variational

inference or E step while the parameter estimation or M step will be described in the next

section.

In variational approaches the exact posterior p(X1:T , s1:T | Y1:T) is approximated by

a distribution with a tractable structure, denoted by q. Here we choose the following

partially factorized structure shown graphically in Fig. 9.6:

p(X1:T , s1:T | Y1:T) ≈ q(X1:T , s1:T | Y1:T)

= q(X1:T | s1:T) · q(s1:T)

=
T
∏

t=1

q(xt | st)q(st | st−1). (9.40)

As is customary to the notation of variational methods, the data dependence of the q’s is

omitted from now on but always implied.

Whereas q is an approximation, it preserves important features of the exact posterior,

and in particular:

178 Hidden Dynamic Models for Speech Processing Applications

1. It incorporates temporal correlations via the Markov chain structure of q(s1:T).

2. It incorporates correlations between the continuous and discrete states.

3. Most significantly, it incorporates multimodality of the continuous states since

q(xt) =
∑

s

q(xt | st = s)q(st = s) (9.41)

is a mixture distribution (with N mixtures), unlike all the previously developed

approximate algorithms on the same model.

On the other hand, it does not directly incorporate temporal correlations among xt’s; those

will be introduced indirectly via the variational equations to be derived shortly. Such a

variational approximation is also similar to the one used in the illustrative example of

SSM in the previous section. Previous work on variational approaches to similar models

[90, 184] uses the factorized form q = q(x1:T)q(s1:T). Whereas that form does incorporate

temporal correlations among the xt’s, it results in a q(x1:T) which is a Gaussian, and thus

unimodal. Nevertheless, such an approximation can also be applied to our model and a

detailed comparison study with this alternative variational approach and other approxi-

mate methods will be carried out in the future. Our own early work [148] also used a more

factorized variational posterior q(s1:T ,x1:T | y1:T) =
∏

t q(xt | st)q(st), which preserves the

multimodality of the exact posterior as well. However, that approach was later abandoned

due to its lack of efficiency as well as accuracy.

To derive the functional form as well as parameters of q, we again start with the

functional defined in (9.8)

F(q) =
∑

s1:T

∫

dX1:T q(X1:T , s1:T)
[

log p(Y1:T ,X1:T , s1:T) − log q(X1:T , s1:T)
]

, (9.42)

and optimize it w.r.t. (with respect to) q, under the restriction that q has the structure of

(9.40). This is done by setting the functional derivative δF/δq(xt | st) and the ordinary

derivative ∂F/∂q(st | st−1) to zero, for each t, and solving the resulting recursive equations,

equivalent to minimizing the KL distance of q to the exact posterior. The derivation steps

are described in detail as follows.

Algorithm Development for HDM 179

Simplification of F

First F can be substantially simplified by utilizing the constrained structure of q

F(q) =
∑

s1:T

∫

dX1:T q(X1:T , s1:T)
[

log p(Y1:T ,X1:T , s1:T) − log q(X1:T , s1:T)
]

=
∑

s1:T

∫

dX1:T

[T
∏

t=1

q(xt | st)q(st | st−1)

]

·

{ T
∑

t=1

log
[

p(yt | xt, st)p(xt | xt−1, st)p(st | st−1)
]

−
T
∑

t=1

log
[

q(xt | st)q(st | st−1)
]

}

=
T
∑

t=1

∑

s1:T

∫

dX1:T

[T
∏

t=1

q(xt | st)q(st | st−1)

]

·

{

log
[

p(yt | xt, st)p(xt | xt−1, st)p(st | st−1)
]

− log
[

q(xt | st)q(st | st−1)
]

}

=
T
∑

t=1

∑

st−1, st

q(st−1)q(st | st−1)

∫

dxt−1 dxt

{

q(xt−1 | st−1)q(xt | st)·

[

log p(yt | xt, st) + log p(xt | xt−1, st) + log p(st|st−1) − log q(xt|st) − log q(st|st−1)
]

}

=
T
∑

t=1

∑

st

q(st)

∫

dxt q(xt | st)
[

log p(yt | xt, st) − log q(xt|st)
]

+
T
∑

t=1

∑

st−1, st

q(st−1)q(st | st−1)

∫

dxt−1 dxt

[

q(xt−1 | st−1)q(xt | st) log p(xt | xt−1, st)
]

+
T
∑

t=1

∑

st−1, st

q(st−1)q(st | st−1)
[

log p(st|st−1) − log q(st|st−1)
]

. (9.43)

In the above formulas, q(st−1) and q(st) are variational marginal posterior probabilities

of the discrete hidden states, e.g., q(st) is defined to be

q(st) =
∑

s¬t

∫

dX1:T q(X1:T , s1:T), (9.44)

where the notation s¬t represents the set of s1:T except st, i.e.,

s¬t , s1:T − {st} = {s1, s2, · · · , st−1, st+1, · · · , sT}. (9.45)

180 Hidden Dynamic Models for Speech Processing Applications

By adopting the variational structure of (9.40), the following relationship holds:

q(st) =
∑

st−1

q(st−1)q(st | st−1). (9.46)

To simplify notation, we use γ to denote this discrete marginal posterior probability, i.e.,

γs,t , q(st = s), (9.47)

and also define the associated forward and backward variational posterior transition prob-

abilities:

ηs′s,t , q(st = s | st−1 = s′), (9.48)

η̄s′′s,t , q(st = s | st+1 = s′′) =
ηss′′,t+1γs,t

γs′′,t+1

. (9.49)

To further simplify notation, we also introduce Es,t, denoting s-conditioned variational

averaging, via

Es,t

[

g(xt)
]

=

∫

dxt q(xt | st = s)g(xt), (9.50)

where g is an arbitrary function.

Solving for q(xt | st)

We take functional derivative of F expressed in (9.43) w.r.t. every q(xt | st = s) and set

them to zero. When t 6= T ,

δF

δq(xt | st = s)
= q(st)

[

log p(yt | xt, st) − log q(xt | st) − 1
]

+
∑

st−1

q(st−1) q(st | st−1)

∫

dxt−1

[

q(xt−1 | st−1) log p(xt | xt−1, st)
]

+
∑

st+1

q(st) q(st+1 | st)

∫

dxt+1

[

q(xt+1 | st+1) log p(xt+1 | xt, st+1)
]

= γs,t

[

log p(yt | xt, st = s) − log q(xt | st = s) − 1
]

+
∑

s′

γs′,t−1 ηs′s,t Es′,t−1

[

log p(xt | xt−1, st = s)
]

+
∑

s′′

γs,t ηss′′,t+1 Es′′,t+1

[

log p(xt+1 | xt, st+1 = s′′)
]

. (9.51)

Algorithm Development for HDM 181

Setting (9.51) to zero, we have

log q(xt|st = s) = log p(yt | xt, st = s) − 1 +
∑

s′

γs′,t−1 · ηs′s,t

γs,t

Es′,t−1

[

log p(xt | xt−1, st = s)
]

+
∑

s′′

ηss′′,t+1 Es′′,t+1

[

log p(xt+1 | xt, st+1 = s′′)
]

= logN (yt | Csxt + cs,Ds) +
∑

s′

η̄ss′,t−1 Es′,t−1

[

logN (xt | Asxt−1 + as,Bs)
]

+
∑

s′′

ηss′′,t+1 Es′′,t+1

[

logN (xt+1 | As′′xt + as′′ ,Bs′′)
]

− 1. (9.52)

Since the right hand side of (9.52) is quadratic in xt, so must be the left hand side,

which indicates that q(xt|st = s) has to follow a Gaussian distribution. In general, we may

assume

q(xt | st = s) = N (xt | ρs,t ,Γs,t) =

∣

∣

∣

∣

Γs,t

2π

∣

∣

∣

∣

1

2

exp

[

−
1

2
(xt − ρs,n)TΓs,t(xt − ρs,t)

]

. (9.53)

Parameters of this time-varying, s-dependent Gaussian distribution can be obtained by

differentiating both (9.52) and (9.53) w.r.t. xt and matching the corresponding coefficients.

From (9.52),

∂ log q(xt | st = s)

∂ xt

= CT
s Ds(yt − Csxt − cs) +

∑

s′

η̄ss′,t−1 Es′,t−1

[

−Bs(xt − Asxt−1 − as

]

+
∑

s′′

ηss′′,t+1 Es′′,t+1

[

AT
s′′Bs′′(xt+1 − As′′xt − as′′)

]

= CT
s Ds(yt − Csxt − cs) +

∑

s′

η̄ss′,t−1

[

−Bsxt + BsAsρs′,t−1 + Bsas

]

+
∑

s′′

ηss′′,t+1

[

AT
s′′Bs′′(ρs′′,t+1 − as′′) − AT

s′′Bs′′As′′xt

]

= −(CT
s DsCs + Bs +

∑

s′′

ηss′′,t+1A
T
s′′Bs′′As′′)xt

+ BsAs

∑

s′

η̄ss′,t−1ρs′,t−1 +
∑

s′′

ηss′′,t+1A
T
s′′Bs′′ρs′′,t+1

+ CT
s Ds(yt − cs) + Bsas −

∑

s′′

ηss′′,t+1A
T
s′′Bs′′as′′ . (9.54)

182 Hidden Dynamic Models for Speech Processing Applications

From (9.53),

∂ log q(xt | st = s)

∂ xt

= −Γs,t(xt − ρs,t) = −Γs,txt + Γs,tρs,t . (9.55)

Comparing (9.54) and (9.54), we arrive at

Γs,t = CT
s DsCs + Bs +

∑

s′′

ηss′′,t+1A
T
s′′Bs′′As′′ , (9.56)

Γs,tρs,t = BsAs

∑

s′

η̄ss′,t−1ρs′,t−1 +
∑

s′′

ηss′′,t+1A
T
s′′Bs′′ρs′′,t+1

+ CT
s Ds(yt − cs) + Bsas −

∑

s′′

ηss′′,t+1A
T
s′′Bs′′as′′ . (9.57)

Similarly when t = T , it is straightforward to derive that

Γs,T = CT
s DsCs + Bs , (9.58)

Γs,T ρs,T = BsAs

∑

s′

η̄ss′,T−1ρs′,T−1 + CT
s Ds(yT − cs) + Bsas . (9.59)

Notice that a brute force solution of equations (9.57) and (9.59) (given model parame-

ters and all the η’s) by matrix inversion has complexity O(T 3N3), where N is the number

of discrete states. Such a computational cost is too high for large scale problems. In the

past we have tried to solve by simple sparse matrix techniques [148] and an approximate

method with overlapping windows [149]. In this thesis an efficient and exact solving method

based on probability propagation, which only has complexity O(TN), is newly developed

and will be presented shortly, after deriving equations to compute q(st | st−1).

Solving for q(st | st−1)

We first digress a bit to point out that unconstrained optimization of F generally leads

to unnormalized probabilities, also known as potential functions [90]. Rigorously speaking

one should optimize F subject to a normalization constraint, as is done in Appendix A.1,

or alternatively, given the factorized structure of q in (9.40), normalize it at each time step

respectively. The normalization problem was not brought into attention when deriving

equations for q(xt | st), since for a Gaussian distribution the normalization constant is

Algorithm Development for HDM 183

irrelevant in obtaining its mean and precision (or covariance) matrix5. However, for discrete

probability distributions q(st | st−1), proper normalization has to be done so that they can

be genuinely interpreted as probabilities. This is achieved by introducing the normalization

factor zs′,t for each time t and state s′, where

zs′,t =
∑

s

q(st = s | st−1 = s′) =
∑

s

ηs′s,t , (9.60)

and ηs′s,t refer to the original unnormalized probabilities.

Next we focus on partial derivatives of the form ∂q(sτ)/∂q(st|st−1), which turns out

to be the central piece in differentiating F(q) w.r.t. q(st|st−1). After working with typical

examples such as

∂q(st)

∂q(st | st−1)
=

∂
[

∑

st−1
q(st | st−1)q(st−1)

]

∂ q(st | st−1)
= q(st−1), (9.61)

∂q(st+1)

∂q(st | st−1)
=

∂
[
∑

st
q(st+1 | st)q(st)

]

∂ q(st | st−1)
= q(st+1 | st)q(st−1), (9.62)

we can summarize in general

∂q(sτ)

∂q(st|st−1)
=



























0, if τ < t,

q(st−1), if τ = t,

q(st+1 | st)q(st−1), if τ = t + 1,
∑

st+2 : sτ

q(sτ | sτ−1) · · · q(st+1 | st)q(st−1), otherwise.

(9.63)

Now we are ready to differentiate F(q) w.r.t. q(st|st−1). First the simplified form of F

is re-presented for the convenience of reference,

F(q) =
T
∑

t=1

∑

st

q(st)

∫

dxt q(xt | st)
[

log p(yt | xt, st) − log q(xt|st)
]

+
T
∑

t=1

∑

st−1, st

q(st−1)q(st | st−1)

∫

dxt−1 dxt

[

q(xt−1 | st−1)q(xt | st) log p(xt | xt−1, st)
]

+
T
∑

t=1

∑

st−1, st

q(st−1)q(st | st−1)
[

log p(st|st−1) − log q(st|st−1)
]

. (9.64)

5Notice that the normalization constant will disappear when taking ∂ log q(xt|st=s)
∂ xt

.

184 Hidden Dynamic Models for Speech Processing Applications

Take partial derivatives w.r.t. every q(st|st−1),

∂F(q)

∂q(st|st−1)
=

T
∑

τ=t

∑

sτ

∂q(sτ)

∂q(st|st−1)

∫

dxτ q(xτ | sτ)
[

log p(yτ | xτ , sτ) − log q(xτ | sτ)
]

+ q(st−1)

∫

dxt−1 dxt

[

q(xt−1 | st−1)q(xt | st) log p(xt | xt−1, st)
]

+
T
∑

τ=t+1

∑

sτ

∂q(sτ−1)

∂q(st|st−1)
q(sτ |sτ−1)

∫

dxτ−1dxτ

[

q(xτ−1|sτ−1)q(xτ |sτ) log p(xτ |xτ−1, sτ)
]

+ q(st−1)
[

log p(st | st−1) − log q(st | st−1) − 1
]

+
T
∑

τ=t+1

∑

sτ

∂q(sτ−1)

∂q(st|st−1)
q(sτ |sτ−1)

[

log p(sτ | sτ−1) − log q(sτ | sτ−1)
]

, (9.65)

where ∂q(sτ)/∂q(st|st−1) is given by (9.63) and zero terms have been removed. In spite of

the highly complicated appearance of (9.65), its structure clearly suggests that we should

seek a recursive formula to express ∂F/∂q(st|st−1) and setting them to zeros to solve for

q(st|st−1).

Start with t = T and use the more compact notations defined in (9.47)–(9.50),

∂F

∂ ηs′s,T

= γs′,T−1Es,T

[

log p(yT | xT , sT = s) − log q(xT | sT = s)
]

+ γs′,T−1Es′,T−1Es,T

[

log p(xT | xT−1, sT = s)
]

+ γs′,T−1

[

log p(sT = s | sT−1 = s′) − log ηs′s,T − 1
]

. (9.66)

Setting the above equation to zero and discarding the trivial solution of γs′,T−1 = 0, we

have

log ηs′s,T = Es,T

[

log p(yT | xT , sT = s) − log q(xT | sT = s)
]

+ Es′,T−1Es,T

[

log p(xT | xT−1, sT = s)
]

+ log πs′s − log zs′,T . (9.67)

Notice how we have inserted the normalization factor introduced in (9.60), absorbing the

original constant “−1”. To further simplify notation, we also define

fs′s,t = Es,t

[

log p(yt | xt, st = s) − log q(xt | st = s)
]

+ Es′,t−1Es,t

[

log p(xt | xt−1, st = s)
]

+ log πs′s , (9.68)

Algorithm Development for HDM 185

and (9.67) simplifies to

log ηs′s,T = fs′s,T − log zs′,T . (9.69)

Subsequently, when t = T − 1

∂F

∂ ηs′′s′,T−1

= γs′′,T−2 Es′,T−1

[

log p(yT−1 | xT−1, sT−1 = s′) − log q(xT−1 | sT−1 = s′)
]

+ γs′′,T−2

∑

s

ηs′s,T Es,T

[

log p(yT | xT , sT = s) − log q(xT | sT = s)
]

+ γs′′,T−2 Es′′,T−2 Es′,T−1

[

log p(xT−1 | xT−2, sT−1 = s′)
]

+ γs′′,T−2

∑

s

ηs′s,T Es′,T−1Es,T

[

log p(xT | xT−1, sT = s)
]

+ γs′′,T−2

[

log p(sT−1 = s′ | sT−2 = s′′) − log ηs′′s′,T−1 − 1
]

+ γs′′,T−2

∑

s

ηs′s,T

[

log p(sT = s | sT−1 = s′) − log ηs′s,T

]

. (9.70)

Set the above equation to zero and use (9.68) and (9.69) for simplification,

log ηs′′s′,T−1 = Es′,T−1

[

log p(yT−1 | xT−1, sT−1 = s′) − log q(xT−1 | sT−1 = s′)
]

+ Es′′,T−2 Es′,T−1

[

log p(xT−1 | xT−2, sT−1 = s′)
]

+ πs′′s′ − log zs′′,T−1

+
∑

s

ηs′s,T (fs′s,T − log ηs′s,T)

= fs′′s′,T−1 − log zs′′,T−1 + log zs′,T . (9.71)

In general, it is a simple matter to show by induction that

log ηs′s,t = fs′s,t − log zs′,t + log zs,t+1 , (9.72)

holds for all t < T . To extend this relationship for t = T , we may simply define zs,T+1 = 1

for all s.

The recursive formula (9.72) enables us to compute all q(st | st−1) (or η’s) efficiently

with the following backward pass:

1. Initialization:

zs,T+1 = 1, 1 ≤ s ≤ N. (9.73)

186 Hidden Dynamic Models for Speech Processing Applications

2. Induction: for t = T − 1, . . . , 1

ηs′s,t =
1

zs′,t

exp(fs′s,t)zs,t+1 , (9.74a)

zs′,t =
∑

s

exp(fs′s,t)zs,t+1 . (9.74b)

It is necessary to compute the marginal posteriors γs,t = q(st = s) as well, which are

needed in computing q(xt | st) and the estimation of model parameters (M-step). They

are obtained by a forward pass:

1. Initialization:

γs,1 = π0s, 1 ≤ s ≤ N. (9.75)

2. Induction: for t = 2, . . . , T

γs,t =
∑

s′

ηs′s,t γs′,t−1 . (9.76)

At each time step t, we also have to calculate fs′s,t in order to apply the backward path.

The s-conditioned averages in fs′s,t as defined by (9.68) are straightforward to compute

analytically, although the exact expression is very lengthy. To do so, we first define the

following “dot product” between two matrices

〈A, B〉 =
∑

i,j

aij · bij, (9.77)

which is a scalar summing over all elements of the element-wise product between two

matrices A and B of the same dimension. Specifically, it is easy to verify that

xTAy = 〈A, xyT 〉 (9.78)

holds for arbitrary vectors x and y of proper dimensions. After some careful algebraic

Algorithm Development for HDM 187

manipulations, it can be shown that

fs′s,t =
1

2
log

∣

∣

∣

∣

Ds

2π

∣

∣

∣

∣

−
1

2
log

∣

∣

∣

∣

Γs,t

2π

∣

∣

∣

∣

+
1

2
log

∣

∣

∣

∣

Bs

2π

∣

∣

∣

∣

+ log πs′s

−
1

2
〈CT

s DsCs, Γ−1
s,t + ρs,tρ

T
s,t〉 +

1

2
〈Γs,t, Γ−1

s,t + ρs,tρ
T
s,t〉

−
1

2
〈Bs, Γ−1

s,t + ρs,tρ
T
s,t〉 −

1

2
〈AT

s BsAs, Γ−1
s′,t−1 + ρs′,t−1ρ

T
s′,t−1〉

+ (yt − cs)
TDsCsρs,t + aT

s Bsρs,t + ρT
s′,t−1A

T
s Bsρs,t − aT

s BsAsρs′,t−1

−
1

2
(yt − cs)

TDs(yt − cs) −
1

2
ρT

s,tΓs,tρs,t −
1

2
aT

s Bsas. (9.79)

Finally, it is also possible to derive a mathematically equivalent forward-backward

algorithm to compute all the η’s and γ’s, which may be more convenient under some

circumstances. This can be achieved by describing the variational posterior by backward

posterior transition probability η̄’s instead of the forward transition probability η’s.

Sparse Matrix Inversion by Probability Propagation

As mentioned previously, brute-forth solution to the coupled linear equations of (9.57)

and (9.59) has complexity O(T 3N3), which is impractical for large scale problems. Here

we further describe a recursive method to solve equations (9.57) and (9.59) exactly with

complexity only linear in (TN), which substantially improve the computational efficiency

of the variational inference algorithm derived above. The key idea is to show that the

solution is the mean of a particular Gaussian distribution with a Markov structure, and

compute that mean by a forward-backward algorithm. Focusing on (9.57), we first rewrite

it as

Γs,t

γs,t

(γs,tρs,t) = BsAs

∑

s′

ηs′s,t

γs,t

(γs′,t−1ρs′,t−1) +
∑

s′′

ηss′′,t+1

γs′′,t+1

AT
s′′Bs′′(γs′′,t+1ρs′′,t+1)

+ CT
s Ds(yt − cs) + Bsas −

∑

s′′

ηss′′,t+1A
T
s′′Bs′′as′′ , (9.80)

where (9.49) has been used in the above manipulation. Now define

χt = [γ1,tρ1,t γ2,tρ2,t · · · γN,tρN,t]
T , (9.81)

188 Hidden Dynamic Models for Speech Processing Applications

and collect all ρ’s at a given time t, we have













Γ1,t

γ1,t

Γ2,t

γ2,t

. . .
ΓN,t

γN,t













χt =













1
γ1,t

B1A1η11,t
1

γ1,t
B1A1η21,t · · · 1

γ1,t
B1A1ηN1,t

1
γ2,t

B2A2η12,t
1

γ2,t
B2A2η22,t · · · 1

γ2,t
B2A2ηN2,t

...
...

...
1

γN,t
BNANη1N,t

1
γN,t

BNANη2N,t · · · 1
γN,t

BNANηNN,t













χt−1

+













1
γ1,t+1

η11,t+1A
T
1 B1

1
γ2,t+1

η12,t+1A
T
2 B2 · · · 1

γN,t+1
η1N,t+1A

T
NBN

1
γ1,t+1

η21,t+1A
T
1 B1

1
γ2,t+1

η22,t+1A
T
2 B2 · · · 1

γN,t+1
η2N,t+1A

T
NBN

...
...

...
1

γ1,t+1
ηN1,t+1A

T
1 B1

1
γ2,t+1

ηN2,t+1A
T
2 B2 · · · 1

γN,t+1
ηNN,t+1A

T
NBN













χt+1

+







CT
1 D1(yt − c1) + B1a1 −

∑

s′′ η1s′′,t+1A
T
s′′Bs′′as′′

...

CT
NDN(yt − cN) + BNaN −

∑

s′′ ηNs′′,t+1A
T
s′′Bs′′as′′






. (9.82)

Therefore, by defining

Ut =













Γ1,t

γ1,t

Γ2,t

γ2,t

. . .
ΓN,t

γN,t













, (9.83a)

Vt =













1
γ1,t+1

η11,t+1A
T
1 B1

1
γ2,t+1

η12,t+1A
T
2 B2 · · · 1

γN,t+1
η1N,t+1A

T
NBN

1
γ1,t+1

η21,t+1A
T
1 B1

1
γ2,t+1

η22,t+1A
T
2 B2 · · · 1

γN,t+1
η2N,t+1A

T
NBN

...
...

...
1

γ1,t+1
ηN1,t+1A

T
1 B1

1
γ2,t+1

ηN2,t+1A
T
2 B2 · · · 1

γN,t+1
ηNN,t+1A

T
NBN













, (9.83b)

et =







CT
1 D1(yt − c1) + B1a1 −

∑

s′′ η1s′′,t+1A
T
s′′Bs′′as′′

...

CT
NDN(yt − cN) + BNaN −

∑

s′′ ηNs′′,t+1A
T
s′′Bs′′as′′






, (9.83c)

we can convert (9.57) to the following general form

Utχt = Vtχt+1 + VT
t−1χt−1 + et, (9.84)

Algorithm Development for HDM 189

where Ut is a block diagonal matrix that is symmetric and positive semi-definite. By

further defining

eT =







CT
1 D1(yT − c1) + B1a1

...

CT
NDN(yT − cN) + BNaN






(9.85)

and χT+1 = 0, (9.59) can also be fit into the general form of (9.84).

Next we focus on solving linear equations of the form (9.84). Observe that the solution

χt = µt to the set of linear vector equations defined by (9.84) is the mean, as well as the

mode, of the joint Gaussian distribution p(X) defined by

p(X) =
1

Z

T
∏

t=1

exp[Φt(χt,χt+1)], (9.86)

where

Φt(χt,χt+1) = −
1

2
χT

t Utχt + χT
t Vtχt+1 + eT

t χt (9.87)

and Z is a normalization constant. This can be easily verified since setting

∂ log p(X)

∂χt

=
∂

∂χt

(

−
1

2
χT

t Utχt + χT
t Vtχt+1 + eT

t χt + χT
t−1Vt−1χt

)

= −Utχt + Vtχt+1 + VT
t−1χt−1 + et = 0

gives equation (9.84). We further observe that the joint Gaussian distribution (9.86) may

arise from the following Markov process

p(X) =
T
∏

t=1

p(χt | χt+1) (9.88)

where

p(χt | χt+1) = exp[Φt(χt,χt+1)] · zt−1(χt) ·
1

zt(χt+1)
, (9.89)

and the normalization constant z’s (functions of χ’s actually) are defined by

z0(χ1) = 1, (9.90a)

zt(χt+1) =

∫

dχt exp[Φt(χt,χt+1)] · zt−1(χt). (9.90b)

190 Hidden Dynamic Models for Speech Processing Applications

It can be shown that the mean µt of the above constructed Gaussian-Markov process

can be computed by an efficient forward-backward procedure. Here we present the result,

with derivation details provided in Appendix A.3. The forward pass is:

1. Initialization:

Ω0 = ω0 = 0. (9.91)

2. Induction: for t = 1, · · · , T

Υt = Ut − Ωt−1, (9.92a)

λt = Υ−1
t (et + ωt−1), (9.92b)

Λt = Υ−1
t Vt, (9.92c)

ωt = VT
t λt, (9.92d)

Ωt = VT
t Λt. (9.92e)

And the backward pass is:

1. Initialization:

µT+1 = 0. (9.93)

2. Induction: for t = T, · · · , 1

µt = λt + Λtµt+1. (9.94)

The Complete E Step

As typical, the variational equations derived in this section are coupled, with the equations

for ρs,t, Γs,t depend on ηs′s,t, γs,t and vice versa. These equations are solved iteratively

starting from a random or more suitable initialization for ρs,t and Γs,t or ηs′s,t and γs,t.

The solution is the set of sufficient statistics

ϕ = {ρs,t,Γs,t, ηss′,t, γs,t} , (9.95)

which are moments of the variational posterior. The appropriate initialization scheme may

be strongly problem-dependent, by using all the problem-specific knowledge available. Fur-

ther discussions on initialization will be presented when describing simulation experiments

in Section 9.6 and discussing the use of variational EM algorithms for speech recognition

in the next chapter.

Algorithm Development for HDM 191

9.4 Model Parameter Learning for SSSM

We denote the learnable parameters of SSSM as Θ = {As, as,Bs,Cs, cs,Ds,Π} and es-

timate them in a maximum likelihood (ML) sense as in classical EM algorithms, while

the only difference is that since the exact likelihood for the SSSM is intractable, the ap-

proximate likelihood F is maximized. The derivation is straightforward but lengthy, and

we only list the final parameter update equations in this section, with derivation details

provided in Appendix A.4.

As =

[

T
∑

t=1

ρs,t

(

∑

s′

ηs′s,tγs′,t−1ρ
T
s′,t−1

)

−
1

∑T

t=1 γs,t

(

T
∑

t=1

γs,tρt

)(

T
∑

t=1

∑

s′

ηs′s,tγs′,t−1ρ
T
s′,t−1

)

]

·

[

T
∑

t=1

∑

s′

ηs′s,tγs′,t−1(Γ
T
s′,t−1 + ρs′,t−1ρ

T
s′,t−1) −

1
∑T

t=1 γs,t

(

T
∑

t=1

∑

s′

ηs′s,tγs′,t−1ρs′,t−1

)(

T
∑

t=1

∑

s′

ηs′s,tγs′,t−1ρs′,t−1

)T

]−1

,

(9.96)

as =
1

∑T

t=1 γs,t

[

T
∑

t=1

γs,tρs,t − As

T
∑

t=1

∑

s′

ηs′s,tγs′,t−1ρs′,t−1

]

, (9.97)

B−1
s =

1
∑T

t=1 γs,t

{

T
∑

t=1

γs,t(Γ
−1
s,t + ρs,tρ

T
s,t) −

[T
∑

t=1

ρs,t

(

∑

s′

ηs′s,tγs′,t−1ρ
T
s′,t−1

)

]

AT
s

−
(

T
∑

t=1

γs,tρs,t

)

aT
s − As

[T
∑

t=1

(

∑

s′

ηs′s,tγs′,t−1ρs′,t−1

)

ρT
s,t

]

+ As

[T
∑

t=1

∑

s′

ηs′s,tγs′,t−1

(

Γ−1
s′,t−1 + ρs′,t−1ρ

T
s′,t−1

)

]

AT
s

+ As

(

T
∑

t=1

∑

s′

ηs′s,tγs′,t−1ρs′,t−1

)

aT
s − as

(

T
∑

t=1

γs,tρt

)T

+ as

(

T
∑

t=1

∑

s′

ηs′s,tγs′,t−1ρs′,t−1

)T

AT
s +

(

T
∑

t=1

γs,t

)

asa
T
s

}

,

(9.98)

192 Hidden Dynamic Models for Speech Processing Applications

Cs =

[

T
∑

t=1

γs,tytρ
T
s,t −

1
∑T

t=1 γs,t

(

T
∑

t=1

γs,tyt

)(

T
∑

t=1

γs,tρ
T
t

)

]

·

[

T
∑

t=1

γs,t

(

Γ−1
s,t + ρs,tρ

T
s,t

)

−
1

∑T

t=1 γs,t

(

T
∑

t=1

γs,tρs,t

)(

T
∑

t=1

γs,tρs,t

)T

]−1

,

(9.99)

cs =
1

∑T

t=1 γs,t

(

T
∑

t=1

γs,tyt − Cs

T
∑

t=1

γs,tρs,t

)

, (9.100)

D−1
s =

1
∑T

t=1 γs,t

{

T
∑

t=1

γs,tyty
T
t −

(

T
∑

t=1

γs,tytρ
T
s,t

)

CT
s −

(

T
∑

t=1

γs,tyt

)

cT
s

− Cs

(

T
∑

t=1

γs,tρs,ty
T
t

)

+ Cs

[T
∑

t=1

γs,t

(

Γ−1
s,t + ρs,tρ

T
s,t

)

]

CT
s

+ Cs

(

T
∑

t=1

γs,tρs,t

)

cT
s − cs

(

T
∑

t=1

γs,tyt

)T

+ cs

(

T
∑

t=1

γs,tρs,t

)T

CT
s +

T
∑

t=1

γs,tcsc
T
s

}

,

(9.101)

πij =
1

∑T

t=1 γi,t−1

·
T
∑

t=1

γi,t−1ηij,t . (9.102)

Also notice that the above equations are only valid for a single training example. If

multiple training examples are present (as in most practical applications), the above for-

mulas need to be modified by adding an extra summation over the training examples in

a straightforward manner, as is done in Section 4.3 on page 76. The very similar update

equations are omitted.

9.5 Hidden State Recovery of SSSM

It is necessary to estimate the hidden state sequences X̂1:T and ŝ1:T from the data, which

is quite often the very goal of applying SSSMs in practice. For the continuous states we

Algorithm Development for HDM 193

use the MMSE estimator, defined w.r.t. the variational posterior, to obtain

x̂t =

∫

dX1:T q(X1:T)xt =
∑

s

γs,tρs,t . (9.103)

For the discrete states the variational MAP estimate is

ŝ1:T = argmax
S1:T

∫

dX1:T q(s1:T ,X1:T)

= argmax
S1:T

T
∏

t=1

q(st | st−1), (9.104)

and it can be computed efficiently by a Viterbi algorithm [115] based on the variational

posterior η’s. The detailed procedure is:

1. Initialization:

V1(s) = π0s, 1 ≤ s ≤ N, (9.105)

W1(s) = 0, 1 ≤ s ≤ N. (9.106)

2. Induction: for t = 2, · · · , T

Vt(s) = max
s′

[Vt−1(s
′)ηs′s,t], (9.107)

Wt(s) = argmax
s′

[Vt−1(s
′)ηs′s,t]. (9.108)

3. Termination:

The best score = max
s

[VT (s)], (9.109)

s∗T = argmax
s

[VT (s)]. (9.110)

4. Backtracking: for t = T − 1, · · · , 1

s∗t = Wt+1(s
∗
t+1), (9.111)

and the most likely sequence is s∗ = {s∗1, s
∗
2, · · · , s∗T}.

194 Hidden Dynamic Models for Speech Processing Applications

9.6 Simulation Experiments

Extensive simulations have been carried out to verify the correctness and effectiveness of

the above derived variational EM algorithm. Here a typical example is presented, which

has four discrete states with the following model parameters:

A1 = 0.7, a1 = 0.6, B1 = 1000, C1 = [0.8 0.3 0.2]T , c1 = −[3 2 1]T ,

A2 = 0.8, a2 = 0.5, B2 = 4000, C2 = [1.0 0.2 0.1]T , c2 = [−1 0 1]T ,

A3 = 0.9, a3 = 0.18, B3 = 694.4, C3 = [0.5 0.4 0.2]T , c3 = [0 1 2]T ,

A4 = 0.6, a4 = 0.88, B4 = 1563, C4 = [0.1 0.7 0.8]T , c4 = [1 2 3]T ,

where D is 100 times the identity matrix for all four states and Π is uniform.

Since the E step is an iterative process itself, we have to initialize ρ and Γ or η and γ,

and a suitable initialization scheme may be very application dependent. In this simulation

experiment we choose to initialize ρ and Γ as follows:

ρs,t = w · (CTC)−1CT (yt − cs) + (1 − w) · (I − As)as , (9.112)

Γs,t = CT
s DsCs + Bs + AT

s BsAs . (9.113)

That is, we initialize ρs,t to be a weighted average of the pseudo-inverse estimation from

yt and the target value of x for each discrete state6, where the weight w is determined by

the ratio of ‖Bs‖ and ‖Ds‖

Fig. 9.7 tests the sensitivity of variational inference (E step) to levels of process and

observation noise, which are measured by the precision matrices B and D. In all cases,

the discrete state sequence (indicated by vertical lines) is recovered correctly by Viterbi

decoding on η’s. The continuous states, more difficult to estimate than the hidden discrete

states for this example since the discrete states are relatively far apart, are recovered well

under moderate noise (a), degraded as expected as the noise levels increase (b,c), and

remain reasonable even in severe noise (d).

Fig. 9.8 tests both the E step and M step. Notice that SSSMs possess a high degree of

degeneracy if all the model parameters are unknown, i.e., different sets of model parameters

6Recall that x will reach a target as long as A is convergent, which is probably the only case of interest

for practical applications.

Algorithm Development for HDM 195

0 20 40 60 80 100
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

(a) Original B and D
0 20 40 60 80 100

1.4

1.6

1.8

2

2.2

2.4

2.6

(b) B/10

0 20 40 60 80 100
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

(c) D/10
0 20 40 60 80 100

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(d) B/10 & D/10

noise−free model
simulated
estimated

Figure 9.7: Hidden state recovery under different noise levels by variational inference.

196 Hidden Dynamic Models for Speech Processing Applications

0 20 40 60 80 100
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

(a) hidden states recovery
0 5 10 15 20 25 30

−300

−250

−200

−150

−100

−50

0

(b) the F function

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) c estimation error

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) D estimation error

noise free model
simulated
estimated

F

state 1
state 2
state 3
state 4

state 1
state 2
state 3
state 4

Figure 9.8: Model parameter estimation by variational EM.

Algorithm Development for HDM 197

can give rise to the same output distributions. To avoid such a problem, we choose to

estimate c and D only while assuming other model parameters are known in this example.

Given initial values c′ = c − 1 and D′ = D/2, it can be seen that the variational EM

procedure works well: the hidden dynamics are recovered well (a) and F is monotonically

increasing and quickly converging (b). The estimates of c and D are accurate, evidenced by

the small error norms (c,d). Model degeneracies of SSSM cause little problem in applying

it for practical applications, although some precautions may need to be taken. In practice,

we may have enough problem-specific constraints so that the model is uniquely identifiable,

or we may mainly care about the explanatory power of the model while the actual values

of some or all model parameters are irrelevant. On the other hand, however, rigorous

theoretical studies on system identifiability of SSSMs seems to be rare7, and the problem

has not been completely solved yet.

In summary, the typical simulation example presented above verifies the effectiveness

and quick convergence of the variational EM algorithm and shows its promise for practical

applications.

7See a recent study by Vidal et al. [240].

Chapter 10

Special Considerations and

Experiments for ASR

This chapter discusses a number of important issues when the variational EM algorithm

developed in the previous chapter is applied to speech recognition, and shows a few pre-

liminary experiments towards developing a full-fledged speech recognizer based on HDM.

10.1 Some ASR Related Issues

Two important issues related to speech recognition are discussed in this section: one is an

alternative decoding scheme of SSSM that is completely parallel to the Viterbi decoding of

HMM; the other is using a piecewise linear mapping, such as the VTR-to-acoustics mapping

developed in Section 7.1, to replace the pure linear mapping of the original SSSM.

10.1.1 An Alternative Decoding Scheme

When SSSMs are applied to speech recognition, the ultimate goal is to recover the un-

derlying discrete state sequence s of an acoustic observation, after properly training the

model. Such a decoding problem is arguably the most challenging component in a speech

recognizer. In the previous chapter we have seen that decoding of SSSM can be done by

a Viterbi algorithm based on the variational posterior η’s. Here we derive an alternative

199

200 Hidden Dynamic Models for Speech Processing Applications

decoding scheme based on f ’s as defined in (9.68), and discuss its importance for speech

recognition.

Recall that we have used the following functional F to lower-bound and approximate

the intractable exact likelihood of SSSM:

F [q] =
∑

s1:T

∫

dX1:T q(X1:T | s1:T)q(s1:T)·

[

log p(Y1:T ,X1:T , s1:T) − log q(X1:T | s1:T) − log q(s1:T)
]

.

(10.1)

Define the expectation over X1:T given s1:T as

f(Y1:T | s1:T) =

∫

dX1:T q(X1:T | s1:T)
[

log p(Y1:T ,X1:T , s1:T) − log q(X1:T | s1:T)
]

, (10.2)

so that

F [q] =
∑

s1:T

q(s1:T)
[

f(Y1:T | s1:T) − log q(s1:T)
]

. (10.3)

Setting ∂F/∂q(s1:T) to zero to maximize F w.r.t. q(s1:T), we have

q(s1:T) ∝ exp
[

f(Y1:T | s1:T)
]

. (10.4)

It is also easy to see that f(Y1:T | s1:T) can be computed as a summation over the frames,

i.e.,

f(Y1:T | s1:T) =
T
∑

t=1

ft(st−1, st), (10.5)

where ft(st−1, st) or fs′s,t is exactly as defined in (9.68). Therefore, the optimal discrete

state sequence ŝ1:T is

ŝ1:T = argmax
S1:T

q(s1:T) = argmax
S1:T

log
[

q(s1:T)
]

= argmax
S1:T

f(Y1:T | s1:T)

= argmax
S1:T

T
∑

t=1

ft(st−1, st), (10.6)

which can be computed efficiently by the following Viterbi algorithm:

Special Considerations and Experiments for ASR 201

1. Initialization:

V1(s) = log π0s, 1 ≤ s ≤ N, (10.7)

W1(s) = 0, 1 ≤ s ≤ N. (10.8)

2. Induction: for t = 2, · · · , T

Vt(s) = max
s′

[Vt−1(s
′) + fs′s,t], (10.9)

Wt(s) = argmax
s′

[Vt−1(s
′) + fs′s,t]. (10.10)

3. Termination:

The best score = max
s

[VT (s)], (10.11)

s∗T = argmax
s

[VT (s)]. (10.12)

4. Backtracking: for t = T − 1, · · · , 1

s∗t = Wt+1(s
∗
t+1), (10.13)

and the most likely sequence is s∗ = {s∗1, s
∗
2, · · · , s∗T}.

Comparing to the standard HMM Viterbi decoding algorithm listed on page 150,

f ′
t = ft − log πs′s plays the same role as the frame-based log likelihood of a HMM, and

may be interpreted as the variational or approximate frame-based likelihood of the SSSM.

Notice that this alternative Viterbi decoding algorithm is completely parallel to the Viterbi

decoding of HMM since ft, similar to the frame-based likelihood in HMM, can be com-

puted in a frame by frame manner. However, unlike the frame-based likelihood of HMM,

ft depends on both the current and previous discrete states, not just the current state, and

the whole observation sequence Y1:T , not just the current observation yt, due to the more

complicated model structure of SSSM.

Although the Viterbi decoding algorithms on ηt and ft are mathematically equivalent,

there is an important difference between them: ft can be broken down into a number

of meaningful terms and computed on the fly while ηt cannot. Such a difference turns

202 Hidden Dynamic Models for Speech Processing Applications

out to be crucial for speech recognition. For example, the state transition matrix Π

of the SSSM, corresponding to the language model when applied to speech recognition, is

typically trained separately and context-dependent (thinking of the n-gram language model

as an example). Such a complex and time-varying transition matrix can not be directly

incorporated when computing ηt, but can be easily absorbed when calculating ft frame by

frame: we simply replace the original time-invariant prior πs′s by this separately trained

context-dependent language model. As a second example, a heuristic insertion penalty is

often needed in practical speech recognizers to penalize frequent switchings among different

discrete states, this can again be simply added as an extra term when computing ft frame

by frame, but difficult to include when computing ηt. In summary, the variational Viterbi

decoding algorithm based on ft effectively turns a SSSM into an equivalent HMM so that

all the practical and efficient decoding techniques developed in the past for HMM based

speech recognizers can be directly ported to SSSM or HDM based speech recognizers.

10.1.2 Effect of Piecewise Linear Mapping

The pure linear mapping from the hidden continuous state xt to the measurement yt

ensures that all the continuous PDFs of the SSSM are Gaussians or mixtures of Gaussians.

When a piecewise linear mapping P [·] is adopted, it introduces a truncating effect, e.g.,

the variational posterior q(xt) will become mixtures of truncated Gaussians. Rigorously

speaking, there is no guarantee that the E step will converge anymore due to this truncating

effect. However, we may seek to minimize the truncating effect in practice. When working

with real speech data, our preliminary experience shows that the convergence problem is not

severe as long as the initialization is done carefully. When the underlying phoneme sequence

and some preliminary segmentations are available, as is typically the case in the training

phase, we choose to initialize η and γ according to the known phoneme sequence and

boundaries. On the other hand, when the underlying phoneme sequence and boundaries

are not known as in the testing or recognition phase, we have used the Kalman smoother

based VTR tracker developed in Chapter 7 to initialize ρ and Γ and obtained desirable

results in the inference step.

Special Considerations and Experiments for ASR 203

Frame (10ms)

Fr
eq

ue
nc

y
(k

H
z)

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Figure 10.1: VTR tracking for a typical TIMIT sentence with variational inference.

10.2 Some Speech Examples

Various implementations towards practical speech applications have been attempted at

different stages of developing the variational EM algorithms. Fig. 10.1 shows a VTR

tracking example of a TIMIT sentence. This example uses the phoneme sequence and

segmentation provided by the TIMIT database to initialize η and γ, and obtained good

VTR tracking results not only in the clear, vocalized regions, but also in the more difficult

consonant regions due to the built-in smoothness constraint of the model. It also verifies

the implementation correctness and effectiveness of our algorithm when applied to real

speech data.

A number of small scale speech recognition experiments have also been preformed on

the Switchboard database, which contains large amount of spontaneous telephone speech

and remains one of the most challenging tasks for ASR so far1. The next example is

commonly known as an N-best rescoring experiment in speech recognition, which is a

quick way to test novel approaches without performing the expensive decoding step. Here

the model is first trained on a small subset of Switchboard data (which only contains 50

1This has mostly been my intern work at Microsoft Research.

204 Hidden Dynamic Models for Speech Processing Applications

Hypothesis #1: no no it doesn’t work on every issue (reference)

Hypothesis #2: knew knew it doesn’t work on every issue

Hypothesis #3: no no it doesn’t work in every issue

Hypothesis #4: no no it doesn’t work on each issue

Hypothesis #5: no no it doesn’t work on every easy

Table 10.1: Five hypotheses of a test sentence, with the correct one marked as reference.

With initial phone boundary With adjusted phone boundary

Hypothesis #1: 793.99 906.89

Hypothesis #2: 664.16 846.44

Hypothesis #3: 767.31 898.09

Hypothesis #4: 757.39 887.56

Hypothesis #5: 734.29 858.99

Table 10.2: Likelihood score of each hypothesis: initial phone boundaries are provided

by HMM forced-alignment while adjusted phone boundaries are obtained by variational

inference.

male utterances), and test on another small subset of utterances by computing the total

likelihood2 on a number of confusing hypotheses for each utterance. It confirms that our

new HDM based recognizer is able to pick up the correct hypothesis for the small test

set, and a typical example is shown in Tables 10.1 and 10.2. Table 10.1 lists the five

hypotheses to be re-scored with the correct one marked as reference and Table 10.2 lists

the likelihood score of each hypothesis under two different conditions, where it can be

observed that the correct hypothesis consistently receive the highest score. A number

of small-scale phone recognition experiments have also been performed on subsets of the

Switchboard database but they failed to produce desirable results. Due to the complexity

and limited information provided by the Switchboard Database and the large number of

implementation details involved in the early-stage development of the HDM based speech

recognizer, it turns out to be very difficult to carry out careful debugging and tuning to

achieve better performance. Therefore, future work on the HDM based speech recognizer

2More accurately, the functional F in our variational approach.

Special Considerations and Experiments for ASR 205

will concentrate on the much simpler TIMIT database, and will be outlined in the next

chapter.

Part IV

Overall Conclusions

207

Chapter 11

Summary and Future Work

This chapter concludes the thesis with summaries and discussions of future work.

11.1 Summary of Contributions

The contributions of this thesis can be summarized as follows:

• A careful study on the articulatory dynamics which reveals that they can not be

captured by simple linear dynamic systems at a global level.

• A careful study on the VTR dynamics which verifies that they can be captured by

simple linear dynamic systems at a global level.

• The design of a highly accurate and efficient piecewise linear mapping from VTR

dynamics to LPC-cepstrum coefficients.

• The development of a novel and highly accurate VTR tracking method based on

active image contours.

• The development of a fast and accurate VTR tracking method based on a simplified

HDM of speech and Kalman smoothing.

209

210 Hidden Dynamic Models for Speech Processing Applications

• Invention of novel and powerful variational EM algorithms that facilitates the use

of HDM in speech recognition applications and also contributes significantly to the

machine learning community in general.

11.2 Future Research Directions

A number of interesting and highly desirable future research directions have been opened

up by the original work performed in this thesis. Most of them are related to Part III of

the thesis and some will be actively pursued after the thesis writing. They are briefly listed

as follows.

• Evaluation of VTR tracking by B-spline snakes and simulated annealing on various

types of speech data, such as those under noisy conditions. Since a global optimiza-

tion method has been applied in our approach, we expect to achieve good robustness

under different conditions, especially those with large number of spurious local op-

tima in the spectrogram, either introduced by noise or other sources.

• Further study on the novel variational EM algorithms developed in this thesis. This

includes detailed comparison study with other existing techniques, such as alternative

variational approaches and sampling based methods, and various possible improve-

ments to better suit practical needs.

• Variational techniques for nonlinear SSSMs. This is a very challenging problem since

in general nonlinearity will introduce non-Gaussian distributions. In fact, this is

a very challenging problem even for nonlinear state-space models without switching

[234]. The success may lie in the integration of domain-specific knowledge to simplify

the problem.

• Solid, step by step implementation and evaluation of HDM based speech recogniz-

ers. Both our past experience and other’s work [210] indicate that although HDM is

promising, lots of careful work must to be done in order to bring it close and possibly

beat the performance of state-of-the-art HMMs. Future research work includes step

Summary and Future Work 211

by step development on the TIMIT phone recognition task and performance com-

parison with increasingly complex HMM structures to gain insights and experience

on how to build high-performance practical HDM based speech recognizers.

• Applying the variational EM algorithms developed in this thesis to other application

domains where SSSMs have been found to be useful, such as in control, machine

vision and financial analysis.

Appendix A

Derivations

A.1 Exact Inference from a Variational Principle

In this section we concentrate on the inference or E step by assuming all the model param-

eters are known, and use variational principles to show that the exact posterior p(X | Y)

maximizes the functional F . By removing dependency on model parameters, F becomes

F(q) =

∫

X

q(X) [log p(X,Y) − log q(X)] dX. (A.1)

In order for q to truly qualify as a probability distribution, it has to further satisfy the

normalization constraint, i.e.,
∫

X

q(X) dX = 1. (A.2)

Therefore, Lagrange multiplier method is adopted to optimize F subject to the normaliza-

tion constriant1, and the new objective function is

O(q, λ) =

∫

X

q(X) [log p(X,Y) − log q(X)] dX + λ

[
∫

X

q(X) dX − 1

]

. (A.3)

1More rigorously, q also has to be nonnegative everywhere; however, such a further constraint turns

out to be unnecessary since the final q resulting from the free form optimization will automatically satisfy

this condition.

213

214 Hidden Dynamic Models for Speech Processing Applications

Take the functional derivative of O w.r.t. q(X) and set it to zero:

δO

δq(X)
= log p(X,Y) − log q(X) − 1 + λ = 0, (A.4)

⇒ q(X) =
p(X,Y)

exp(1 − λ)
. (A.5)

Take ordinary derivative of O w.r.t. λ and set it to zero

∂O

∂λ
=

∫

X

q(X) dX − 1 = 0. (A.6)

Substitute (A.5) into (A.6)

∫

X

p(X,Y)

exp(1 − λ)
dX − 1 = 0, (A.7)

⇒ exp(1 − λ) =

∫

X

p(X,Y) dX. (A.8)

Substituting (A.8) back into (A.5), we finally obtain

q(X) =
p(X,Y)

∫

X
p(X,Y) dX

=
p(X,Y)

p(Y)
= p(X | Y). (A.9)

Equation (A.9) not only shows that the exact posterior p(X | Y) maximizes F under the

normalization constraint, but also indicates that optimizing F subsumes the well-known

Bayes’ rule.

A.2 Full Equation of Exact Inference for SSM

This section derives the full equation for the exact mean of the state posterior distribution

p(X1:T | Y1:T). First notice that the state posterior can be computed by

log p(X1:T | Y1:T) = log p(Y1:T | X1:T) + log p(X1:T) − log p(Y1:T). (A.10)

The right hand side of the above equation is quadratic in X1:T since both log p(Y1:T | X1:T)

and log p(X1:T) are Gaussians while log p(Y1:T) merely serves as a normalization constant,

so must be the left hand side. Hence, p(X1:T | Y1:T) can be nothing but a Gaussian

Summary and Future Work 215

distribution. Second, for a Gaussian distribution, which is unimodal, its mean is the same

as its mode. Therefore, the full equation of the exact mean can be obtained by finding the

maximum of the state posterior p(X1:T | Y1:T), or equivalently, its logarithm.

Ignoring the normalization constant log p(Y1:T), which is irrelevant to maximization,

the logarithm of the exact state posterior becomes

log p(X1:T | Y1:T) = log p(Y1:T | X1:T) + log p(X1:T)

= log
[

T
∏

t=1

p(yt | xt)
]

+ log
[

T
∏

t=1

p(xt | xt−1)
]

=
T
∑

t=1

[

logN (yt | Cxt + c,D) + logN (xt | Axt−1 + a,B)
]

=
T
∑

t=1

[

1

2
log

∣

∣

∣

∣

D

2π

∣

∣

∣

∣

−
1

2
(yt − Cxt − c)TD(yt − Cxt − c) +

1

2
log

∣

∣

∣

∣

B

2π

∣

∣

∣

∣

−
1

2
(xt − Axt−1 − a)TB(xt − Axt−1 − a)

]

. (A.11)

When t 6= T ,

∂ log p(X1:T | Y1:T)

∂xt

=
∂

∂xt

[1

2
(yt − Cxt − c)TD(yt − Cxt − c)

−
1

2
(xt − Axt−1 − a)TB(xt − Axt−1 − a)

−
1

2
(xt+1 − Axt − a)TB(xt+1 − Axt − a)

]

= CTD(yt − Cxt − c) − B(xt − Axt−1 − a)

+ ATB(xt+1 − Axt − a)

= BAxt−1 + ATBxt+1 + CTD(yt − c) + Ba − ATBa

− (CTDC + B + ATBA)xt. (A.12)

Similarly when t = T ,

∂ log p(X1:T | Y1:T)

∂xT

= BAxT−1 + CTD(yT − c) + Ba − (CTDC + B)xT . (A.13)

The exact mean of the state posterior can be obtained by setting (A.12) and (A.13) to

zero for all t, and it is obvious that this results in exactly the same set of equations as the

216 Hidden Dynamic Models for Speech Processing Applications

variational smoother (9.24)-(9.27), which justifies the empirical result that the variational

smoother gives the exact state mean for a SSM.

The full equations for the exact precision matrix of the state posterior can be similarly

obtained by setting the second derivatives of log p(X1:T | Y1:T) to zero. This rather lengthy

derivation is skipped, but to see why the exact precision matrix is different from the

variational approximation, one only needs to note that there are nonzero cross terms in

the form of ∂ log p(X1:T | Y1:T)/∂xt∂xt−1 in the exact precision matrix which cannot be

accounted for by a completely factorized variational posterior.

A.3 A Forward-Backward Algorithm of Probability

Propagation

First it is straightforward to show by induction that log zt(χt+1) is quadratic in χt+1

(although it turns out to be a rather lengthy integral exercise), and we can express it

generally as

log zt(χt+1) =
1

2
χT

t+1Ωtχt+1 + ωT
t χt+1 + εt . (A.14)

The initialization z0(χ1) = 1 implies that Ω0 = ω0 = ε0 = 0, which subsumes (9.91).

Next we define

gt(χt,χt+1) = Φt(χt,χt+1) + log zt−1(χt), (A.15)

so that

zt(χt+1) =

∫

dχt exp
[

gt(χt,χt+1)
]

, (A.16)

p(χt | χt+1) =
1

zt(χt+1)
exp
[

gt(χt,χt+1)
]

. (A.17)

Notice that gt(χt,χt+1) is also quadratic in χt, and we can expand it about its maximum

Summary and Future Work 217

χt = χ̄t by completing a perfect square

gt(χt,χt+1) = Φt(χt,χt+1) + log zt−1(χt)

= −
1

2
χT

t Utχt + χT
t Vtχt+1 + eT

t χt +
1

2
χT

t Ωt−1χt + ωT
t−1χt + εt−1

= −
1

2
χT

t (Ut − Ωt−1)χt + χT
t (Vtχt+1 + et + ωt−1) + εt−1

= −
1

2

[

χt − (Ut − Ωt−1)
−1(et + ωt−1 + Vtχt+1)

]T
(Ut − Ωt−1)

[

· · ·
]

+
1

2

[

(Ut − Ωt−1)
−1(et + ωt−1 + Vtχt+1)

]T
(et + ωt−1 + Vtχt+1) + εt−1

= −
1

2
(χt − χ̄t)

TΥt(χt − χ̄t) + gt(χ̄t,χt+1), (A.18)

where the maximum χ̄t is

χ̄t = (Ut − Ωt−1)
−1(et + ωt−1 + Vtχt+1)

= λt + Λtχt+1, (A.19)

and Υt, λt and Λt are as defined in (9.92a-c). Integrating (A.16) over χt, we obtain

zt(χt+1) =

∫

dχt exp
[

−
1

2
(χt − χ̄t)

TΥt(χt − χ̄t) + gt(χ̄t,χt+1)
]

= exp
[

gt(χ̄t,χt+1)
]

·

∫

dχt exp
[

−
1

2
(χt − χ̄t)

TΥt(χt − χ̄t)
]

= exp
[

gt(χ̄t,χt+1)
]

·

√

|Υt|

2π
, (A.20)

⇒ log zt(χt+1) = gt(χ̄t,χt+1) −
1

2
log

|Υt|

2π

=
1

2

[

(Ut − Ωt−1)
−1(et + ωt−1 + Vtχt+1)

]T
(et + ωt−1 + Vtχt+1)

+ εt−1 −
1

2
log

|Υt|

2π

=
1

2
χT

t+1V
T
t (Ut − Ωt−1)

−1Vtχt+1 +
[

VT
t (Ut − Ωt−1)

−1et + ωt−1)
]T

χt+1

+
1

2
(et + ωt−1)

T (Ut − Ωt−1)
−1(et + ωt−1) + εt−1 −

1

2
log

|Υt|

2π
. (A.21)

218 Hidden Dynamic Models for Speech Processing Applications

Comparing (A.16) and (A.21), we obtain (9.92d-e), and this completes the derivation of

the forward pass.

To derive the backward pass, notice that we have also obtained an expression for the

conditionals p(χt | χt+1):

p(χt | χt+1) =
1

zt(χt+1)
exp
[

gt(χt,χt+1)
]

= N (χt | χ̄t,Υt) = N (χt | λt + Λtχt+1,Υt). (A.22)

From Bayes’ rule, the corresponding marginals are

p(χt) =

∫

dχt+1 p(χt | χt+1)p(χt). (A.23)

For t = T , we have p(χT) = N (χT | λT ,ΥT), which follows a Gaussian distribution. Hence,

the marginals p(χt) at all other times are Gaussians as well. Writing them generally as

p(χt) = N (χt | µt,Γt), (A.24)

the mean µt can be computed recursively by (9.94), and the precision matrix Γt is given

by

Γ−1
t = ΛtΓ

−1
t+1Λ

T
t + Υ−1

t . (A.25)

This completes the derivation of the backward pass.

A.4 Parameter Estimation Formulas of SSSM

This section sketches the derivation of the parameter estimation formulas (9.96)-(9.102).

First we only keep the part of F that depends on model parameters, i.e., the first term in

Summary and Future Work 219

(9.42), define it as F ′ and simplify

F ′(Θ) ,
∑

s1:T

∫

dX1:T q(X1:T , s1:T)
[

log p(Y1:T ,X1:T , s1:T)
]

(A.26)

=
T
∑

t=1

∑

st

q(st)

∫

dxt q(xt | st)
[

log p(yt | xt, st)
]

+

T
∑

t=1

∑

st−1, st

q(st−1)q(st | st−1)

∫

dxt−1 dxt

[

q(xt−1 | st−1)q(xt | st) log p(xt | xt−1, st)
]

+
T
∑

t=1

∑

st−1, st

q(st−1)q(st | st−1)
[

log p(st|st−1)
]

=
T
∑

t=1

N
∑

s=1

γs,t Es,t

[

logN (yt | Csxt + cs ,Ds)
]

+
T
∑

t=1

N
∑

s′=1

N
∑

s=1

γs′,t−1 ηs′s,t πs′s

+
T
∑

t=1

N
∑

s′=1

N
∑

s=1

γs′,t−1 ηs′s,t Es′,t−1Es,t

[

logN (xt | Asxt−1 + as ,Bs)
]

=
T
∑

t=1

N
∑

s=1

γs,t Es,t

[1

2
log

∣

∣

∣

∣

Ds

2π

∣

∣

∣

∣

−
1

2
(yt − Csxt − cs)

TDs(yt − Csxt − cs)
]

+

T
∑

t=1

N
∑

s′=1

N
∑

s=1

γs′,t−1 ηs′s,tEs′,t−1Es,t

[1

2
log

∣

∣

∣

∣

Bs

2π

∣

∣

∣

∣

−
1

2
(xt − Asxt−1 − as)

TBs(xt − Asxt−1 − as)
]

+
N
∑

s′=1

N
∑

s=1

(

T
∑

t=1

γs′,t−1 ηs′s,t

)

· πs′s . (A.27)

The functional form of (A.27) clearly shows that we can estimate the model parameters

separately in three groups: {Cs, cs,Ds}, {As, as,Bs} and {πij}. To estimate {Cs, cs,Ds},

we set the partial derivatives of F ′ w.r.t. these parameters to zero and solve the resulting

equations.

∂F ′

∂Cs

=
T
∑

t=1

γs,t Es,t

[

Ds(yt − Csxt − cs)x
T
t

]

= 0, (A.28)

∂F ′

∂cs

=
T
∑

t=1

γs,t Es,t

[

Ds(yt − Csxt − cs)
]

= 0, (A.29)

220 Hidden Dynamic Models for Speech Processing Applications

∂F ′

∂Ds

=
T
∑

t=1

γs,t Es,t

[1

2
D−1

s −
1

2
(yt − Csxt − cs)(yt − Csxt − cs)

T
]

= 0. (A.30)

From (A.28),

Ds

T
∑

t=1

γs,t

[

ytρ
T
s,t − Cs(Γ

−1
s,t + ρs,tρ

T
s,t) − csρ

T
s,t

]

= 0. (A.31)

From (A.29),

Ds

T
∑

t=1

γs,t (yt − Csρs,t − cs) = 0. (A.32)

Solving for Cs and cs from (A.31) and (A.32) (discarding the trivial solution of Ds = 0),

we arrive at the parameter estimation formulas of {Cs, cs} as in (9.99) and (9.100). From

(A.30), we obtain

D−1
s =

1
∑T

t=1 γs,t

Es,t

[

(yt − Csxt − cs)(yt − Csxt − cs)
T
]

, (A.33)

which simplifies to (9.101) after working out the expectation analytically. Parameter esti-

mation formulas of {As, as,Bs} as in (9.96)-(9.98) are obtained analogously and the details

are omitted.

To obtain the parameter estimation formula of πs′s, we use the following result without

detailed proof.

Suppose ai > 0, xi > 0 for i = 1, . . . , N , then the maximum of

N
∑

i=1

ai · xi, (A.34)

subject to the normalization constraint

N
∑

i=1

xi = 1, (A.35)

is obtained by setting

xi =
ai

∑N

i=1 ai

. (A.36)

Summary and Future Work 221

The above result can be readily shown by solving a standard Lagrange optimization prob-

lem with Lagrange multipliers. Identifying ai with
∑T

t=1 γs′,t−1 ηs′s,t, we obtain the ML

estimate of πs′s as

πs′s =
1

∑N

s=1

∑T

t=1 γs′,t−1 ηs′s,t

·
T
∑

t=1

γs′,t−1 ηs′s,t

=
1

∑T

t=1 γs′,t−1

·
T
∑

t=1

γs′,t−1 ηs′s,t, (A.37)

which is the same as (9.102). Such a formula may also be interpreted based on the concept

of counting event occurrences as in traditional HMMs [196, 197].

Bibliography

[1] Acero, A. (1999), “Formant analysis and synthesis using hidden Markov models”,

in Eurospeech, 1047–1050, Budapest, Hungary.

[2] Ackerson, G. A. and Fu, K. S. (1970), “On state estimation in switching enviro-

ments”, IEEE Trans. Automatic Control, 15(1): 10–17.

[3] Aji, S. M. and McEliece, R. J. (2000), “The generalized distributive law”, IEEE

Trans. Information Theory, 46(2): 325–343.

[4] Allen, J., Hunnicutt, M. S., and Klatt, D. H. (1987), From Text to Speech: The

MITalk System, Cambridge University Press, Cambridge, UK.

[5] Atal, B. S. and Hanauer, L. (1971), “Speech analysis and synthesis by linear

prediction of speech wave”, J. Acoust. Soc. Am., 50: 637–655.

[6] Baer, T., Gore, J. C., Gracco, L. C., and Nye, P. W. (1991), “Analysis of vocal

tract shape and dimension using magnetic resonance imaging: Vowels”, J. Acoust.

Soc. Am., 90(2): 799–828.

[7] Bahl, L. R., Brown, P. E., de Souza, P. V., and Mercer, R. L. (1986), “Maxi-

mum mutual information estimation of hidden Markov model parameters for speech

recognition”, in Proc. ICASSP, vol. 1, 49–52, Tokyo, Japan.

[8] Baltzakis, H. and Trahanias, P. (2002), “Hybrid mobile robot localization using

switching state-space models”, in Proc. IEEE International Conference on Robotics

& Automation, 366–372, Washington, DC.

223

224 Hidden Dynamic Models for Speech Processing Applications

[9] Bar-Shalom, Y. and Li, X.-R. (1993), Estimation and Tracking, Artech House,

Boston.

[10] Barron, A. R. (1993), “Universal approximation bounds for superpositions of a

sigmoidal function”, IEEE Trans. Information Theory, 39(3): 930–945.

[11] Baum, L. E. (1972), “An inequality and associated maximization technique in sta-

tistical estimation of probabilistic functions of Markov processes”, Inequalities, 3:

1–8.

[12] Baum, L. E. and Eagon, J. A. (1967), “An inequality with applications to statis-

tical estimation for probabilistic functions of Markov processes and to a model for

ecology”, Bulletin of American Mathematical Society, 73: 360–363.

[13] Baum, L. E. and Petrie, T. (1966), “Statistical inference for probabilistic functions

of finite state Markov chains”, Annals of Mathematical Statistics, 37: 1554–1563.

[14] Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970), “A maximization

technique occurring in the statistical analysis of probabilistic functions of Markov

chains”, Annals of Mathematical Statistics, 41(1): 164–171.

[15] Bell, A. G. (1906), The Mechanism of Speech, Funk & Wagnalls, New York,

reprinted from the proceedings of the first summer meeting of the American as-

sociation to promote the teaching of speech to the deaf.

[16] Bilmes, J. A. (2002), “What HMMs can do”, Technical Report UWEETR-2002-

0003, Dept of EE, University of Washington, Seattle, WA.

[17] Bilmes, J. A. (2003), “Buried Markov models: A graphical-modeling approach to

automatic speech recognition”, Computer Speech & Language, 17(2-3): 213–231.

[18] Bilmes, J. A. (2004), “Graphical models and automatic speech recognition”, in

Mathematical Foundations of Speech and Language Processing, edited by M. Johnson,

S. P. Khudanpur, M. Ostendorf, and R. Rosenfeld, 191–245, Springer-Verlag, New

York, NY.

Bibliography 225

[19] Bishop, C. M. (1995), Neural Networks for Pattern Recognition, Oxford University

Press, New York, NY.

[20] Blake, A. and Isard, M. (1998), Active Contours, Springer-Verlag, New York, NY.

[21] Blake, A. and Yuille, A. (editors) (1992), Active Vision, MIT Press, Cambridge,

MA.

[22] Borden, G. J. and Harris, K. S. (1984), Speech Science Primer: Physiology, Acous-

tics, and Perception of Speech, 2nd edition, Williams & Wilkins, Baltimore, MD.

[23] Bourlard, H. and Morgan, N. (1994), Connectionist speech recognition : a hybrid

approach, Kluwer Academic Publishers, Boston, MA.

[24] Breiman, L. (1996), “Bagging predictors”, Machine Learning, 24(2): 123–140.

[25] Bridle, J. S., Deng, L., Picone, J., Richards, H. B., Ma, J., Kamm, T., Shuster,

M., Pike, S., and Regan, R. (1998), “An investigation of segmental hidden dynamic

models of speech coarticulation for automatic speech recognition”, in Final Report

for the 1998 Workshop on Language Engineering, 1–61, Center for Language and

Speech Processing, Johns Hopkins University, Baltimore, MD.

[26] Brigger, P., Hoeg, J., and Unser, M. (2000), “B-spline snakes: A flexible tool for

parametric contour detection”, IEEE Trans. Image Process., 9(9): 1484–1496.

[27] Browman, C. P. and Goldstein, L. M. (1986), “Towards an articulatory phonol-

ogy”, Phonology Yearbook, 3: 219–252.

[28] Browman, C. P. and Goldstein, L. M. (1989), “Articulatory gestures as phono-

logical units”, Phonology, 6: 201–251.

[29] Browman, C. P. and Goldstein, L. M. (1992), “Articulatory phonology: An

overview”, Phonology Yearbook, 49: 155–180.

[30] Bruce, I. C., Karkhanis, N. V., Young, E. D., and Sachs, M. B. (2002), “Robust

formant tracking in noise”, in Proc. ICASSP, vol. 1, 281–284, Orlando, FL.

226 Hidden Dynamic Models for Speech Processing Applications

[31] Campbell, J. P. (1997), “Speaker rcognition: A tutorial”, Proc. of the IEEE, 85(9):

1437–1462.

[32] Carlson, R., Granstrom, B., and Karlsson, I. (1991), “Experiments with voice

modeling in speech synthesis”, Speech Communication, 10: 481–489.

[33] Cerny, V. (1985), “Thermodynamical approach to the travelling salesman problem:

An efficient simulation algorithm”, Journal of Optimization Theory and Applications,

45: 1985.

[34] Chang, C. B. and Athans, M. (1978), “State estimation for discrete systems with

switching parameters”, IEEE Trans. Aerospace and Electronic Systems, 14(3): 418–

425.

[35] Chelba, C. and Jelinek, F. (2000), “Structured language modeling”, Computer

Speech & Language, 14(4): 283–332.

[36] Chellappa, R. and Jain, A. (editors) (1993), Markov Random Fields: Theory and

Application, Academic Press, Boston, MA.

[37] Chen, S., Cowan, C. F. N., and Grant, P. M. (1991), “Orthogonal least squares

learning algorithm for radial basis funtion networks”, IEEE Trans. Neural Networks,

2(2): 302–309.

[38] Chomsky, N. (1965), Aspects of the Theory of Syntax, MIT Press, Cambridge,

MA.

[39] Chomsky, N. and Halle, M. (1968), The Sound Pattern of English, Harper & Row,

New York.

[40] Chou, W., Juang, B.-H., and Lee, C.-H. (1992), “Segmental GPD training of

HMM based speech recognizer”, in Proc. ICASSP, vol. 1, 473–476, San Francisco,

CA.

[41] Clements, G. N. and Hume, E. V. (1995), “The internal organization of speech

sounds”, in The Handbook of Phonological Theory, edited by J. A. Goldsmith, 245–

306, Blackwell, Cambridge, UK.

Bibliography 227

[42] Cohen, L. (1995), Time-Frequency Analysis, Prentice Hall, Englewood Cliffs, NJ.

[43] Cohen, L. D. and Cohen, I. (1993), “Finite-element methods for active contour

models and balloons for 2-D and 3-D images”, IEEE Trans. PAMI, 15(11): 1131–

1147.

[44] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001), Introduction

to Algorithms, 2nd edition, The MIT Press, Cambridge, MA.

[45] Cowell, R. (1998), “Introduction to inference for Bayesian networks”, in Learning

in Graphical Models, edited by M. I. Jordan, 9–26, Kluwer Academic Publishers,

Norwell, MA.

[46] Cybenko, G. (1989), “Approximation by superpositions of a sigmoid function”,

Mathematics of Control, Signals, and Systems, 2(4): 303–314.

[47] Dang, J. and Honda, K. (2001), “A physiological model of a dynamic vocal tract

for speech production”, Acoustical Science and Technology, 22(6): 415–425.

[48] Dang, J. and Honda, K. (2004), “Construction and control of a physiological ar-

ticulatory model”, J. Acoust. Soc. Am., 115(2): 853–870.

[49] Dang, J., Sun, J., Deng, L., and Honda, K. (1999), “Speech synthesis using a

physiological articulatory model with feature-based rules”, in Proc. ICPhS, 2267–

2270, San Francisco, CA.

[50] Das, S. K. and Picheny, M. A. (1996), “Issues in practical large vocabulary iso-

lated word recognition: the IBM Tangora system”, in Automatic Speech and Speaker

Recognition: Advanced Topics, edited by C.-H. Lee, F. K. Soong, and K. K. Paliwal,

457–479, Kluwer Academic Publishers, Norwell, MA.

[51] De Boor, C. (2001), A Practical Guide to Splines, 2nd edition, Springer-Verlag,

New York, NY.

[52] Deller, J. R., Proakis, J. G., and Hansen, J. H. (1993), Discrete-Time Processing

of Speech Signals, Prentice Hall, Upper Saddle River, NJ.

228 Hidden Dynamic Models for Speech Processing Applications

[53] Dembowski, J. and Westbury, J. R. (1999), “Contextual influences on stop con-

sonant articulatory postures in connected speech”, in Proc. ICPhS, 2419–2422, San

Francisco, CA.

[54] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum likelihood

from incomplete data via the EM algorithm”, Journal of the Royal Statistical Society

series B, 39(1): 1–38.

[55] Demuth, H. and Beale, M. (2001), Neural Network Toolbox User’s Guide (Version

4), The Mathworks, Natick, MA.

[56] Deng, L. (1992), “A generalized hidden Markov model with state-conditioned trend

functions of time for the speech signal”, Signal Processing, 27: 65–78.

[57] Deng, L. (1996), “Transiems as dynamically defined, sub-phonemic units of speech:

A computational model”, Signal Processing, 49: 25–35.

[58] Deng, L. (1997), “Autosegmental representation of phonological units of speech and

its phonetic interface”, Speech Communication, 22(2): 211–222.

[59] Deng, L. (1998), “A dynamic, feature-based approach to the interface between

phonology and phonetics for speech modeling and recognition”, Speech Communica-

tion, 24(4): 299–323.

[60] Deng, L., Aksmanovic, M., Sun, D., and Wu, J. (1992), “Speech recognition

using hidden Markov model with polynomial regression functions as nonstationary

states”, Signal Processing, 27: 65–78.

[61] Deng, L., Bazzi, I., and Acero, A. (2003), “Tracking vocal tract resonances using

an analytical nonlinear predictor and a target-guided temporal constraint”, in Proc.

Eurospeech, vol. 1, 73–76, Geneva, Switzerland.

[62] Deng, L. and Huang, X. (2004), “Challenges in adopting speech recognition”,

Communications of the ACM, 47(1): 69–75.

Bibliography 229

[63] Deng, L., Lee, L. J., Attias, H., and Acero, A. (2004), “A structured speech model

with continuous hidden dynamics and prediction-residual training for tracking vocal

tract resonances”, in Proc. ICASSP, vol. 1, 557–560, Montreal, QC.

[64] Deng, L. and Ma, J. (2001), “Spontaneous speech recognition using a statistical

coarticulatory model for the vocal-tract-resonance dynamics”, J. Acoust. Soc. Am.,

108(6): 3036–3048.

[65] Deng, L. and O’Shaughnessy, D. (2003), Speech Processing: A Dynamic and

Optimization-Oriented Approach, Marcel Dekker Inc., New York.

[66] Deng, L. and Sun, D. X. (1994), “A statistical approach to automatic speech

recognition using the atomic speech units constructed from overlapping articulatory

features”, J. Acoust. Soc. Am., 95(5): 2702–2719.

[67] Dennis, J. E. and Schnabel, R. B. (1996), Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Soc for Industrial & Applied Math, Philadel-

phia, PA.

[68] Dietterich, T. G. (2000), “Ensemble methods in machine learning”, Lecture Notes

in Computer Science, 1857: 1–15.

[69] Duda, R. O., Hart, P. E., and Stork, D. G. (2001), Pattern classification, 2nd

edition, John Wiley & Sons, New York, NY.

[70] Dudley, H. (1939), “Remaking speech”, J. Acoust. Soc. Am., 11: 169–177.

[71] Dudley, H., Riesz, R. R., and Watkins, S. A. (1939), “A synthetic speaker”, J.

Franklin Inst., 227: 739–764.

[72] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998), Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University

Press, New York, NY.

[73] Dusan, S. V. (2000), Statistical Estimation of Articulatory Trajectories from the

Speech Signal Using Dynamical and Phonological Constraints, Ph.D. thesis, Univer-

sity of Waterloo, Waterloo, ON, Canada.

230 Hidden Dynamic Models for Speech Processing Applications

[74] Eviatar, H. and Somorjai, R. (1996), “A fast, simple active contour algorithm for

biomedical images”, Pattern Recognition Letters, 17(9): 969–974.

[75] Fant, G. (1970), Acoustic Theory of Speech Production, Mouton, The Hague.

[76] Figueiredo, M., Leitão, J., and Jain, A. (2000), “Unsupervised contour represen-

tation and estimation using B-splines and a minimum description length criterion”,

IEEE Trans. Image Process., 9(6): 1075–1087.

[77] Flanagan, J. L. (1972), Speech Synthesis, Analysis and Perception, 2nd edition,

Springer-Verlag.

[78] Foresee, F. D. and Hagan, M. T. (1997), “Gauss-Newton approximation to

Bayesian regularization”, in Proc. ICNN, 1930–1935, Houston, TX.

[79] Fowler, C. A. (1995), “Speech production”, in Speech, Language and Communica-

tion, edited by J. L. Miller and P. D. Eimas, chapter 2, 29–61, Academic Press, San

Diego, CA.

[80] Freund, Y. and Schapire, R. E. (1997), “A decision-theoretic generalization of

on-line learning and an application to boosting”, Journal of Computer and System

Sciences, 55(1): 119–139.

[81] Fujimura, O., Kiritani, S., and Ishida, H. (1973), “Computer-controlled radio-

graphy for observation of the movements of articulatory and other human organs”,

Computers in Biology and Medicine, 3: 371–384.

[82] Fukunaga, K. (1990), Introduction to statistical pattern recognition, 2nd edition,

Academic Press, Boston, MA.

[83] Funahasi, K.-I. (1989), “On the approximate realization of continuous mappings

by neural networks”, Neural Networks, 2(3): 183–192.

[84] Furui, S. (1997), “Recent advances in speaker recognition”, Pattern Recognition

Letters, 18: 859–872.

Bibliography 231

[85] Furui, S. (2002), “Recent progress in spontaneous speech recognition and under-

standing”, in Proc. IEEE Workshop on Multimedia Signal Processing, 253–258, St.

Thomas, US Virgin Islands.

[86] Gao, Y., Bakis, R., Huang, J., and Xiang, B. (2000), “Multistage coarticulation

model combining articulatory, formant and cepstral features”, in Proc. ICSLP, 25–28,

Beijing, China.

[87] Geiger, D., Gupta, A., Costa, L. A., and Vlontzos, J. (1995), “Dynamic pro-

gramming for detecting, tracking, and matching deformable contours”, IEEE Trans.

PAMI, 17(3): 294–302.

[88] Geman, S. and Geman, D. (1984), “Stochastic relaxation, Gibbs distribution, and

the Bayesian restoration of images”, IEEE Trans. PAMI, 6: 721–741.

[89] Gersch, W. (1992), “Smoothness priors”, in New Directions in Time Series Anal-

ysis, edited by D. R. Brillinger, 111–146, Springer-Verlag, New York, NY.

[90] Ghahramani, Z. and Hinton, G. E. (2000), “Variational learning for switching

state-space models”, Neural Computation, 12: 831–864.

[91] Glass, J. R. (2003), “A probabilistic framework for segment-based speech recogni-

tion”, Computer Speech & Language, 17(2-3): 137–152.

[92] Gold, B. and Morgan, N. (2000), Speech and Audio Processing: Processing and

Perception of Speech and Music, John Wiley & Sons, New York.

[93] Goldberger, J., Burshtein, D., and Franco, H. (1999), “Segmental modeling

using a continuous mixture of nonparametric models”, IEEE Trans. Speech Audio

Process., 7(3): 262–271.

[94] Goldsmith, J. A. (1990), Autosegmental and metrical Phonology, Blackwell, Ox-

ford, UK.

[95] Gonzalez, R. C. and Woods, R. E. (2002), Digital Image Processing, 2nd edition,

Prentice Hall, Upper Saddle River, NJ.

232 Hidden Dynamic Models for Speech Processing Applications

[96] Gorin, A. L., Riccardi, G., and Wright, J. H. (1999), “How may I help you?”,

in Computational Models of Speech Pattern Processing, edited by K. M. Ponting,

328–349, Springer-Verlag, Berlin, Germany.

[97] Hagan, M. T., Demuth, H. B., and Beale, M. H. (1996), Neural Network Design,

PWS Publishing, Boston, MA.

[98] Hagan, M. T. and Menhaj, M. B. (1994), “Training feedforward networks with

the Marquardt algorithm”, IEEE Trans. Neural Networks, 5(6): 989–993.

[99] Hamilton, J. D. (1994), “A new approach to the economic analysis of nonstationary

time series and the business cycle”, Econometrica, 57: 357–384.

[100] Hanselman, D. and Littlefield, B. (2001), Mastering Matlab 6: A Comprehensive

Titorial and Reference, Prentice Hall, Upper Saddle River, NJ.

[101] Hanson, H. M., Maragos, P., and Potamianos, A. (1994), “A system for finding

speech formants and modulation via energy seperation”, IEEE Trans. Speech Audio

Process., 2(3): 436–443.

[102] Hardcastle, W. J. (1972), “The use of electropalatography in phonetic research”,

Phonetica, 25: 1977–215.

[103] Hardcastle, W. J. and Hewlett, N. (editors) (1999), Coarticulation: Theory, Data

and Techniques, Cambridge University Press, Cambridge, UK.

[104] Harshman, R., Ladefoged, P., and Goldstein, L. (1977), “Factor analysis of

tongue shapes”, J. Acoust. Soc. Am., 62(3): 693–707.

[105] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968), “A formal basis for the

heuristic determination of minimum cost paths”, IEEE Trans. Systems Science &

Cybernetics, 4(2): 100–107.

[106] Hashi, M., Honda, K., and Westbury, J. R. (2003), “Time-varying acoustic and

articulatory characteristics of American English /r/: A cross-speaker study”, Journal

of Phonetics, 31(1): 3–22.

Bibliography 233

[107] Hashi, M., Westbury, J. R., and Honda, K. (1998), “Vowel posture normaliza-

tion”, J. Acous. Soc. Am., 104(4): 2426–2437.

[108] Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, 2nd edition,

Prentice-Hall, Upper Saddle River, NJ.

[109] Heinz, J. M. and Stevens, K. N. (1964), “On the derivation of aera functions

and acoustic spectra from cineradiographic film of speech”, J. Acoust. Soc. Am., 36:

1037.

[110] Helmholtz, H. L. F. (1954), On the Sensations of Tone as a Physiological Basis

for the Theory of Music, 2nd edition, Dover Publications, New York, translated from

the fourth (and last) German edition of 1877.

[111] Holmes, J. N., Holmes, W. J., and Garner, P. N. (1997), “Using formant fre-

quencies in speech recognition”, in Proc. Eurospeech, 2083–2086, Rhodes, Greece.

[112] Hopkins, W. G. (2000), A New View of Statistics, Internet Society for Sport Sci-

ence, URL http://www.sportsci.org/resource/stats/.

[113] Hornik, K., Stinchcombe, M., and White, H. (1989), “Multilayer feedforward

networks are universal approximators”, Neural Networks, 2(5): 359–366.

[114] Huang, X., Acero, A., Alleva, F., Hwang, M., Jiang, L., and Mahajan, M.

(1996), “From Sphinx-II to Whisper — making speech recognition usable”, in Auto-

matic Speech and Speaker Recognition: Advanced Topics, edited by C.-H. Lee, F. K.

Soong, and K. K. Paliwal, 481–508, Kluwer Academic Publishers, Norwell, MA.

[115] Huang, X., Acero, A., and Hon, H.-W. (2001), Spoken Language Processing: A

Guide to Theory, Algorithm , and System Development, Prentice Hall, Upper Saddle

River, NJ.

[116] Itzykson, C. and Drouffe, J. M. (1991), Statistical Field Theory, Cambridge Uni-

versity Press, Cambridge, UK.

http://www.sportsci.org/resource/stats/

234 Hidden Dynamic Models for Speech Processing Applications

[117] Jakobson, R., Gunnar, C., Fant, M., and Halle, M. (1967), Preliminaries to

Speech Analysis: the Distinctive Features and Their Correlates, 2nd edition, MIT

Press, Cambridge, MA.

[118] Jamieson, M. (2002), A Continuous Gibbs Annealer for Contour Estimation, Mas-

ter’s thesis, University of Waterloo, Waterloo, ON, Canada.

[119] Jamieson, M., Fieguth, P., and Lee, L. J. (2003), “Parametric contour estimation

by simulated annealing”, in Proc. ICIP, vol. 3, 449–452, Barcelona, Spain.

[120] Jelinek, F. (1997), Statistical Methods for Speech Recognition, The MIT Press,

Cambridge, MA.

[121] Jensen, F. V. (1996), An Introduction to Bayesian Networks, UCL Press, London,

UK.

[122] Jolliffe, I. T. (1986), Principal Component Analysis, Springer-Verlag, New York,

NY.

[123] Jordan, M. I. (editor) (1998), Learning in Graphical Models, Kluwer Academic

Publishers, Norwell, MA.

[124] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999), “An

introduction to variational methods for graphical models”, Machine Learning, 37(2):

183–233.

[125] Juang, B.-H., Chou, W., and Lee, C.-H. (1997), “Minimum classification error rate

methods for speech recognition”, IEEE Trans. Speech Audio Process., 5(3): 257–265.

[126] Juang, B.-H. and Katagiri, S. (1992), “Discriminative learning for minimum error

classification”, IEEE Trans. Signal Process., 40(12): 3043–3054.

[127] Jurafsky, D. and Martin, J. H. (2000), Speech and Language Processing : An

Introduction to Natural Language Processing, Computational Linguistics, and Speech

Recognition, Prentice Hall, Upper Saddle River, NJ.

Bibliography 235

[128] Kass, M., Witkin, A., and Terzopoulos, D. (1987), “Snakes: Active contour

models”, International Journal of Computer Vision, 1(4): 321–331.

[129] Katamba, F. (1989), An Introduction to Phonology, Longman, New York.

[130] Kelso, J. A. S., Saltzman, E. L., and Tuller, B. (1986), “The dynamical perspec-

tive on speech production: Data and theory”, Journal of Phonetics, 14: 29–59.

[131] Kent, R. D., Adams, S. G., and Turner, G. S. (1996), “Models of speech produc-

tion”, in Principles of Experimental Phonetics, edited by N. J. Lass, 3–45, Mosby.

[132] Kim, C.-J. and Nelson, C. R. (1999), State-Space Models with Regime Switching:

Classical and Gibbs-Sampling Approaches with Applications, MIT Press, Cambridge,

MA.

[133] King, S. and Wrench, A. (1999), “Dynamical system modelling for articulator

movement”, in Proc. ICPhS, 2259–2262, San Francisco, CA.

[134] Kiritani, S. (1986), “X-ray microbeam method for measurement of articulatory

dynamics: Techniques and results”, Speech Communication, 5(2): 119–140.

[135] Kirkpatrick, S., Gellat, S. D., and Vecchi, M. P. (1983), “Optimization by sim-

ulated annealing”, Science, 220(5): 671–680.

[136] Kitagawa, G. and Gersch, W. (1996), Smoothness Priors Analysis of Time Series,

Springer-Verlag, New York.

[137] Klatt, D. H. (1980), “Software for a cascade/parallel formant synthesizer”, J.

Acoust. Soc. Am., 67(3): 971–995.

[138] Klatt, D. H. and Klatt, L. C. (1990), “Analysis, synthesis and perception of voice

quality variations among female and male talkers”, J. Acoust. Soc. Am., 87(2): 820–

857.

[139] Koenig, R., Dunn, H. K., and Lacy, L. Y. (1946), “The sound spectrograph”, J.

Acoust. Soc. Am., 18: 19–49.

236 Hidden Dynamic Models for Speech Processing Applications

[140] Kohn, R. and Ansley, C. F. (1988), “Equivalence between Bayesian smoothness

priors and optimal smoothing for function estimation”, in Bayesian Analysis of Time

Series and Dynamic Models, edited by J. C. Spall, 393–430, Marcel Dekker, New

York, NY.

[141] Kopec, G. E. (1986), “Formant tracking using hidden Markov models and vector

quantization”, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34(4): 709–729.

[142] Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001), “Factor graphs and

the sum-product algorithm”, IEEE Trans. Information Theory, 47(2): 498–549.

[143] Lamel, L. and Gauvain, J. L. (1993), “High performance speaker-independent

phone recognition using CDHMM”, in Proc. Eurospeech, 121–124, Berlin, Germany.

[144] Laprie, Y. and Berger, M.-O. (1996), “Cooperation of regularization and speech

heuristics to control automatic formant tracking”, Speech Communication, 19(4):

255–269.

[145] Lee, K.-F. and Hon, H.-W. (1989), “Speaker-independent phone recognition using

hidden Markov models”, IEEE Trans. Acoust., Speech, Signal Process., 37(11): 1641–

1648.

[146] Lee, L. J. (1998), “Fast training algorithms for multilayer perceptrons”, SD 675

Project Report, University of Waterloo.

[147] Lee, L. J. (1999), A Two-Dimensional Computational Model for Articulatory Mo-

tions in Speech Production, Master’s thesis, University of Waterloo, Waterloo, ON,

Canada.

[148] Lee, L. J., Attias, H., and Deng, L. (2003), “Variational inference and learning

for segmental switching state space models of hidden speech dynamics”, in Proc.

ICASSP, vol. 1, 872–875, Hongkong.

[149] Lee, L. J., Attias, H., Deng, L., and Fieguth, P. (2004), “A multimodal varia-

tional approach to learning and inference in switching state space models”, in Proc.

ICASSP, vol. 5, 505–508, Montreal, QC.

Bibliography 237

[150] Lee, L. J., Dang, J., and Deng, L. (1999), “A computational model for 2D ar-

ticulation: Speech production with potential use in recognition”, in Proc. ICPhS,

2529–2532, San Francisco, CA.

[151] Lee, L. J., Fieguth, P., and Deng, L. (2001), “A functional articulatory dynamic

model for speech production”, in Proc. ICASSP, vol. 1, 797–800, Salt Lake City,

UT.

[152] Lee, M., van Santen, J., Mőbius, B., and Olive, J. (1999), “Formant tracking

using segmental phonemic information”, in Eurospeech, Budapest, Hungary.

[153] Lerner, U. and Parr, R. (2001), “Inference in hybrid networks: theoretical limits

and practical algorithms”, in Proc. UAI, 310–318, Seattle, WA.

[154] Lerner, U., Parr, R., Koller, D., and Biswas, G. (2000), “Bayesian fault detection

and diagnosis in dynamic systems”, in Proc. UAI, 531–537, Austin, TX.

[155] Lerner, U. N. (2002), Hybrid Bayesian Networks for Reasoning about Complex

Systems, Ph.D. thesis, Stanford University, Stanford, CA.

[156] Lippmann, R. P. (1997), “Speech recognition by machines and humans”, Speech

Communication, 22(1): 1–15.

[157] Ma, J. Z. and Deng, L. (2004), “Target-directed mixture dynamic models for spon-

taneous speech recognition”, IEEE Trans. Speech Audio Process., 12(1): 47–58.

[158] Ma, Z. J. (2000), Spontaneous Speech Recognition Using Statistical Dynamic Mod-

els for the Vocal-Tract-Resonance Dynamics, Ph.D. thesis, University of Waterloo,

Waterloo, ON, Canada.

[159] MacKay, D. J. C. (1992), “Bayesian interpolation”, Neural Computation, 4(3):

415–447.

[160] MacKay, D. J. C. (2003), Information Theory, Inference and Learning Algorithms,

Cambridge University Press, Cambridge, UK.

238 Hidden Dynamic Models for Speech Processing Applications

[161] Maeda, S. (1996), “Phonemes as concatenable units: VCV synthesis using a vocal-

tract synthesizer”, in Sound Patterns of Connected Speech: Description, Models and

Explanation, edited by A. P. Simpson and M. Pätzod, 145–164, Kiel University,

Germany.

[162] Marquardt, D. W. (1963), “An algorithm for least squares estimation of non-

linear parameters”, Journal of the Society for Industrial and Applied Mathematics,

11: 431–441.

[163] McCandless, S. S. (1974), “An algorithm for automatic formant extraction using

LPC spectra”, IEEE Trans. Acoust., Speech, Signal Process., 22(2): 135–141.

[164] McLachlan, G. J. and Krishnan, T. (1997), The EM Algorithm and Extensions,

John Wiley & Sons, New York, NY.

[165] Mendel, J. M. (1995), Lessons in Estimation Theory for Signal Processing, Com-

munications, and Control, Prentice Hall, Englewood Cliffs, NJ.

[166] Menet, S., Saint-Marc, P., and Medioni, G. (1990), “B-snakes: Implementation

and application to stereo”, in Proc. DARPA Image Understanding Workshop, 720–

726.

[167] Møller, M. F. (1993), “A scaled conjugate gradient algorithm for fast supervised

learning”, Neural Networks, 6: 525–533.

[168] Moody, J. and Darken, C. J. (1989), “Fast learning in networks of locally-tuned

processing units”, Neural Computation, 1: 281–294.

[169] Moore, R. (1999), “Speech pattern processing”, in Computational Models of Speech

Pattern Processing, edited by K. M. Ponting, 1–9, Springer-Verlag, Berlin, Germany.

[170] Morgan, N. and Bourlard, H. (1995), “Continuous speech recognition: An intro-

duction to hybrid HMM/connectionist approach”, IEEE Signal Processing Magazine,

12(3): 25–42.

Bibliography 239

[171] Munhall, K. G., Vatikiotis-Bateson, E., and Tohkura, Y. (1995), “X-ray

film database for speech research”, J. Acoust. Soc. Am., 98: 1222–1224, URL

http://psyc.queensu.ca/∼munhallk/05 database.htm.

[172] Neal, R. M. and Hinton, G. E. (1998), “A view of the EM algorithm that justifies

incremental, sparse and other variants”, in Learning in Graphical Models, edited by

M. I. Jordan, 355–368, Kluwer Academic Publishers, Norwell, MA.

[173] Nilsson, N. J. (1982), Principles of Artificial Intelligence, Springer-Verlag, Berlin,

Germany.

[174] Niyogi, P. and Girosi, F. (1996), “On the relationship between generalization error,

hypothesis complexity, and sample complexity for radial basis functions”, Neural

Computation, 8(4): 819–842.

[175] Nygaard, L. C. and Pisoni, D. B. (1995), “Speech perception: New directions

in research and theory”, in Speech, Language and Communication, edited by J. L.

Miller and P. D. Eimas, chapter 3, 63–96, Academic Press, San Diego, CA.

[176] Opitz, D. and Maclin, R. (1999), “Popular ensemble methods: An empirical

study”, Journal of Artificial Intelligence Research, 11: 169–198.

[177] Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. (1997), Signals & Systems,

2nd edition, Prentice Hall, Upper Saddle River, NJ.

[178] O’Shaughnessy, D. (2000), Speech Communications: Human and Machine, 2nd

edition, IEEE Press, New York.

[179] Ostendorf, M., Digalakis, V. V., and Kimball, I. A. (1996), “From HMM’s to

segment models: A unified view of stochastic modeling for speech recognition”, IEEE

Trans. Speech Audio Process., 4(5): 360–278.

[180] Ott, R. L. (1993), An Introduction to Statistical Methods and Data Analysis, 4th

edition, Duxbury Press, Belmont, CA.

http://psyc.queensu.ca/~munhallk/05_database.htm

240 Hidden Dynamic Models for Speech Processing Applications

[181] Papoulis, A. (1991), Probability, Random Variables, and Stochastic Processes, 3rd

edition, McGraw-Hill, New York, NY.

[182] Parisi, G. (1988), Statistical Field Theory, Addison-Wesley, Redwood City, CA.

[183] Park, J. and Sandberg, I. W. (1991), “Universal approximation using radial-basis-

function networks”, Neural Computation, 3: 246–257.

[184] Pavlović, V., Frey, B. J., and Huang, T. S. (1999), “Variational learning in mixed-

state dynamic graphical models”, in Proc. UAI, 522–530, Stockholm, Sweden.

[185] Pavlović, V., Rehg, J. M., and Cham, T.-J. (2000), “A dynamic Bayesian net-

work approach to tracking using learned dynamic models”, in Proc. Hybrid System

Computation and Control, 366–380, Pittsburgh, PA.

[186] Pavlović, V., Rehg, J. M., Cham, T.-J., and Murphy, K. P. (1999), “A dynamic

Bayesian network approach to figure tracking using learned dynamic models”, in

Proc. ICCV, 94–101, Kerkyra, Greece.

[187] Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems : Networks of Plau-

sible Inference, Morgan Kaufmann, San Mateo, CA.

[188] Percival, D. B. and Walden, A. T. (2000), Wavelet Methods for Time Series

Analysis, Cambridge University Press, Cambridge, UK.

[189] Perkell, J. S., Cohen, M. H., Svirsky, M. A., Matthies, M. L., Garabieta, I.,

and Jackson, M. T. (1992), “Electromagnetic midsaggital articulometer systems for

transducing speech articulatory movements”, J. Acoust. Soc. Am., 92(6): 3078–3096.

[190] Peterson, G. E. and Barney, H. L. (1952), “Control methods used in a study of

the vowels”, J. Acoust. Soc. Am., 24(2): 175–184.

[191] Poggio, T. and Girosi, F. (1990), “Networks for approximation and learning”,

Proc. IEEE, 78(9): 1481–1497.

[192] Pols, L. C. (1997), “Flexible, robust, and efficient human speeh recognition”, Proc.

of the Institute of Phonetic Sciences, 21: 1–10, University of Amsterdam.

Bibliography 241

[193] Ponting, K. M. (1999), “Forward”, in Computational Models of Speech Pattern

Processing, edited by K. M. Ponting, Springer-Verlag, Berlin.

[194] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992),

Numerical Recipes in C: The Art of Scientific Computing, 2nd edition, Cambridge

University Press, New York, NY.

[195] Protize, A. B. (1988), “Hidden Markov models: A guided tour”, in Proc. ICASSP,

vol. 1, 7–13, New York, NY.

[196] Rabiner, L. R. (1989), “A tutorial on hidden Markov models and selected applica-

tions in speech recognition”, IEEE Proceedings, 77(2): 257–286.

[197] Rabiner, L. R. and Juang, B.-H. (1993), Fundamentals of Speech Recognition,

Prentice-Hall, Englewood Cliffs, NJ.

[198] Rabiner, L. R. and Levinson, S. E. (1981), “Isolated and connected word recog-

nition — theory and selected applications”, IEEE Trans. Communications, 29(5):

621–669.

[199] Rabiner, L. R. and Schafer, R. W. (1978), Digital Processing of Speech Signals,

Prentice-Hall, Englewood Cliffs, NJ.

[200] Ranganath, S. (2000), “Contour extraction from cardiac MRI studies using

snakes”, IEEE Trans. Medical Imaging, 14(2): 328–338.

[201] Rao, P. and Barman, A. D. (2000), “Speech formant frequency estimation: Eval-

uating a nonstationary analysis method”, Signal Processing, 80(8): 1655–1667.

[202] Raphael, C. (2002), “A hybrid graphical model for rhythmic parsing”, Artificial

Intelligence, 137(1-2): 217–238.

[203] Reinhard, K. and Niranjan, M. (2002), “Diphone subspace mixture trajectory

models for HMM complementation”, Speech Communication, 38(3-4): 237–265.

[204] Reynolds, D. A. (1994), “Experimental evaluation of features for robust speaker

identification”, IEEE Trans. Speech Audio Process., 2(4): 639–643.

242 Hidden Dynamic Models for Speech Processing Applications

[205] Reynolds, D. A. (1995), “Speaker identification and verification using Gaussian

mixture speaker models”, Speech Communication, 17(1): 91–108.

[206] Richards, H. B. and Bridle, J. S. (1999), “The HDM: A segmental hidden dynamic

model of coarticulation”, in Proc. ICASSP, vol. 1, 357–360, Phoenix, AZ.

[207] Rigoll, G. (1986), “A new algorithm for estimation of formant trajectories directly

from the speech signal based on an extended Kalman-filter”, in Proc. ICASSP, 1229–

1232, Tokyo, Japan.

[208] Robinson, T., Hochberg, M., and Renals, S. (1994), “Ipa: Improved phone

modelling with recurrent neural networks”, in Proc. ICASSP, vol. 1, 37–40.

[209] Ross, S. M. (2003), Introduction to Probability Models, 8th edition, Academic Press,

San Diego, CA.

[210] Rosti, A.-V. I. and Gales, M. J. F. (2004), “Rao-Blackwellised Gibbs sampling for

switching linear dynamical systems”, in Proc. ICASSP, vol. 1, 809–812, Montreal,

QC.

[211] Roweis, S. T. (1999), Data Driven Production Models for Speech Processing, Ph.D.

thesis, California Institue of Technology.

[212] Roweis, S. T. and Ghahramani, Z. (1999), “A unifying review of linear Gaussian

models”, Neural Computation, 11(2): 305–345.

[213] Saltzman, E. L. and Munhall, K. G. (1989), “A dynamical approach to gestural

patterning in speech production”, Ecological Psychology, 1(4): 333–382.

[214] Sanguineti, V., Laboissière, R., and Ostry, D. J. (1998), “A dynamic biome-

chanical model for neural control of speech production”, J. Acoust. Soc. Am., 103(3):

1615–1627.

[215] Saul, L. K., Jaakkola, T. S., and Jordan, M. I. (1996), “Mean field theory for

sigmoid belief networks”, Journal of Artificial Intelligence Research, 4: 61–76.

Bibliography 243

[216] Saul, L. K. and Jordan, M. I. (1996), “Exploiting tractable substructures in in-

tractable networks”, in Advances in Neural Information Processing Systems 8, edited

by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, MIT Press, Cambridge, MA.

[217] Schmid, P. and Barnard, E. (1997), “Explicit, N-best formant features for vowel

classification”, in Proc. ICASSP, 991–994.

[218] Schroeter, J. and Sondi, M. M. (1994), “Techniques for estimating vocal-tract

shapes from the speech signal”, IEEE Trans. Acoust., Speech, Signal Process., 2(1):

133–150.

[219] Shafer, R. W. and Rabiner, L. R. (1970), “Systems for automatic formant analysis

of speech”, J. Acoust. Soc. Am., 47(2): 634–648.

[220] Shanmugan, K. S. and Breipohl, A. M. (1988), Random Signals: Detection, Es-

timation, and Data Analysis, John Wiley & Sons, New York, NY.

[221] Shumway, R. H. (1988), Applied Statistical Time Series Analysis, Prentice Hall,

Englewood Cliffs, NJ.

[222] Shumway, R. H. and Stoffer, D. S. (1991), “Dynamic linear systems with switch-

ing”, Journal of the American Statistical Association, 86(415): 763–769.

[223] Snell, R. C. (1993), “Formant location from LPC analysis data”, IEEE Trans.

Speech Audio Process., 1(2): 129–134.

[224] Stevens, K. N. (2000), Acoustic Phonetics, MIT Press, Cambridge, MA.

[225] Stevens, K. N. and Bickley, C. A. (1991), “Constraints among parameters simplify

control of Klatt formant synthesizer”, Journal of Phonetics, 19: 161–174.

[226] Stone, M. and Davis, E. P. (1995), “A head and transducer support system for

making ultrasound images of tongue jaw movement”, J. Acoust. Soc. Am, 98(6):

3107–3112.

244 Hidden Dynamic Models for Speech Processing Applications

[227] Stone, M., Jr, M. H. G., and Zhang, Y. (1997), “Principal component analysis of

cross sections of tongue shapes in vowel production”, Speech Communication, 22(2-3):

173–184.

[228] Stone, M. and Lundberg, A. (1996), “Three-dimensional tongue surface shapes of

English consonants and vowels”, J. Acoust. Soc. Am., 99(6): 3728–3737.

[229] Story, B. H., Titze, I. R., and Hoffman, E. A. (1996), “Vocal tract area functions

from magnetic resonance imaging”, J. Acoust. Soc. Am., 100(1): 537–544.

[230] Sun, J. and Deng, L. (2001), “An overlapping-feature based phonological model

incorporating linguistic constraints: Applications to speech recognition”, J. Acoust.

Soc. Am., 111(2): 1086–1101.

[231] Sussman, H. M., McCaffrey, H. A., and Matthews, S. A. (1991), “An investiga-

tion of locus equations as a source of relational invariance for stop place categoriza-

tion”, J. Acoust. Soc. Am., 90(3): 1309–1325.

[232] Sweet, H. (1877), Handbook of Phonetics, Clarendon Press, Oxford, UK, reprinted

by McGrath Publishing Co. in 1970.

[233] Sweet, H. (1890), A Primer of Phonetics, Clarendon Press, Oxford, UK.

[234] Tanizaki, H. (1996), Nonlinear Filters, 2nd edition, Springer-Verlag, Berlin, Ger-

many.

[235] Thompson, M. A. and Robl, P. E. (1982), “X-ray microbeam for speech research”,

Nuclear Instruments & Methods in Physics Research, 193: 257–259.

[236] Togneri, R. and Deng, L. (2001), “An EKF-based algorithm for learning statistical

hidden dynamic model parameters for phonetic recognition”, in Proc. ICASSP, vol. 1,

465–468, Salt Lake City, UT.

[237] Togneri, R., Ma, J., and Deng, L. (2001), “Parameter estimation of a target-

directed dynamic system model with switching states”, Signal Processing, 81(5):

975–987.

Bibliography 245

[238] Unser, M. and Stone, M. (1992), “Automated detection of the tongue surface in

sequences of ultrasound images”, J. Acoust. Soc. Am., 91(5): 3001–3007.

[239] Valtchev, V., Odell, J. J., Woodland, P. C., and Young, S. J. (1997), “MMIE

training of large vocabulary recognition systems”, Speech Communication, 22(4):

303–314.

[240] Vidal, R., Chiuso, A., and Soatto, S. (2002), “Observability and identifiability

of jump linear systems”, in Proc. IEEE Conference on Decision and Control, vol. 4,

3614–3619, Las Vegas, NV.

[241] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989),

“Phoneme recognition using time-delayed neural networks”, IEEE Trans. Acoust.,

Speech, Signal Process., 37(12): 1888–1898.

[242] Wainwright, M. J. and Jordan, M. I. (2003), “Graphical models, exponential

families, and variational inference”, Technical Report 649, Department of Statistics,

University of California, Berkeley, Berkeley, CA.

[243] Wang, M., Evans, J., Hassebrook, L., and Knapp, C. (1996), “A multistage,

optimal active contour model”, IEEE Trans. Image Process., 5(11): 1586–1591.

[244] Wang, Y., Mahajan, M., and Huang, X. (2000), “A unified context-free grammar

and n-gram model for spoken language processing”, in Proc. ICASSP, vol. 2, 1639–

1942, Istanbul, Turkey.

[245] Watanabe, M. and Yamaguchi, K. (editors) (2004), The EM Algorithm and Re-

lated Statistical Models, Marcel Dekker, New York, NY.

[246] Welling, L. and Ney, H. (1998), “Formant estimation for speech recognition”,

IEEE Trans. Speech Audio Process., 6(1): 36–48.

[247] Westbury, J. R. (1991), “The significance and measurement of head position during

speech production experiments using the X-ray microbeam system”, J. Acoust. Soc.

Am., 89: 1782–1791.

246 Hidden Dynamic Models for Speech Processing Applications

[248] Westbury, J. R. (1994), X-Ray Microbeam Speech Production Database User’s

Handbook, Waisman Center on Mental Retardation & Human Development, Uni-

versity of Wiscosin, Madison, WI.

[249] Westbury, J. R. and Hashi, M. (1997), “Lip-pellet positions during vowels and

labial consonants”, Journal of Phonetics, 25: 405–419.

[250] Westbury, J. R., Hashi, M., and Lindstorm, M. J. (1998), “Differences among

speakers in lingual articulation for American English /r/”, Speech Communication,

26(3): 203–226.

[251] Westbury, J. R., Lindstorm, M. J., and McClean, M. D. (2002), “Tongues and

lips without jaws: A comparison of methods for decoupling speech movements”,

Journal of Speech, Language and Hearing Research, 45: 651–662.

[252] Westbury, J. R. and Lindstrom, M. J. (2000), “Two-dimensional shape func-

tions applied to speech kinematic data”, in Proc. 5th Seminar on Speech Production:

Models and Data, 65–68, Kloster Seeon, Bavaria.

[253] Westbury, J. R., Severson, E. J., and Hashi, M. (1999), “Lip laws for conso-

nants”, in Proc. ICPhS, 2025–2028, San Francisco, CA.

[254] Westbury, J. R., Severson, E. J., and Lindstorm, M. J. (2000), “Kinematic

event patterns in speech: Special problems”, Language and Speech, 43: 403–428.

[255] Wilhelms-Tricarico, R. (1997), “A biomechanical and physiologically-based vocal

tract model and its control”, Journal of Phonetics, 24: 23–28.

[256] Woodland, P. C. and Povey, D. (2002), “Large scale discriminative training of

hidden Markov models for speech recognition”, Computer Speech & Language, 16(1):

25–47.

[257] Yegnanarayana, B. and Veldhuis, R. N. J. (1998), “Extraction of vocal-tract

system characteristics from speech signals”, IEEE Trans. Speech Audio Process.,

6(4): 313–327.

Bibliography 247

[258] Young, L. C. (1980), Lectures on the Calculus of Variations and Optimal Control

Theory, 2nd edition, Chelsea, New York, NY.

[259] Young, S., Evermann, G., Kershaw, D., Moore, G., Odell, J., Ollason, D.,

Povey, D., Valtchev, V., and Woodland, P. (December 2002), The HTK Book

(for HTK Version 3.2), Cambridge University.

[260] Zavaliagkos, G., Zhao, Y., Schwartz, R., and Makhoul, J. (1994), “A hybrid

segmental neural net/hidden Markov model system for continuous speech recogni-

tion”, IEEE Trans. Speech Audio Process., 2(1): 151–160.

[261] Zemel, R. S. and Pitassi, T. (2001), “A gradient-based boosting algorithm for re-

gression problems”, in Advances in Neural Information Processing Systems 13, edited

by T. K. Leen, T. G. Dietterich, and V. Tresp, 696–702, MIT Press, Cambridge, MA.

[262] Zheng, Y. and Hasegawa-Johnson, M. (2003), “Analysis of the three-dimensional

tongue shape using a three-index factor analysis model”, J. Acoust. Soc. Am., 113(1):

478–486.

[263] Zheng, Y. and Hasegawa-Johnson, M. (2003), “Particle filtering approach to

Bayesian formant tracking”, in Proc. IEEE Workshop on Statistical Signal Process-

ing, 601–604, St. Louis, MO.

[264] Zheng, Y. and Hasegawa-Johnson, M. (2004), “Formant tracking by mixture

state particle filter”, in Proc. ICASSP, vol. 1, 565–568, Montreal, QC.

[265] Zue, V. W. (1976), Acoustic Characteristics of Stop Consonants: A Controlled

Study, Ph.D. thesis, MIT, Cambridge, MA.

[266] Zue, V. W. (1991), “Notes on speech spectrogram reading”, Course Note, MIT,

Cambridge, MA.

[267] Zweig, G. (2003), “Bayesian network structures and inference techniques for auto-

matic speech recognition”, Computer Speech & Language, 17(2-3): 173–193.

	Introduction
	Human Speech Communications
	Machine Speech Processing
	Motivations
	Thesis Organization

	I A Study on Articulatory Dynamics
	Fundamentals of Speech Production and Analysis
	Source-Filter Model of Speech Production
	All-Pole Filter Model
	Short-Time Analysis and Spectrogram

	Data Description and Processing
	The UW-XRMB Database
	Data Acquisition
	Corpus Organization

	A Data Segmentation and Analysis Tool
	Preliminary Processing and Data Preparation
	Selecting a Subset of Measured Articulatory Points
	Hand Labeling and Segmentation

	Data Analysis
	Examples of Interesting Speech Phenomena
	Learning the Articulatory-to-Acoustic Mapping
	A Simple Linear Articulatory-to-Acoustic (ATA) Mapping
	ATA Mapping Approximated by MLPs
	ATA Mapping Approximated by RBFs
	Further Improvements by Ensemble Learning
	Summary

	Modeling the Articulatory Dynamics
	A Functional Articulatory Dynamic Model
	Model Parameter Learning
	Articulatory Trajectory Fitting Experiments
	Further Observations and Possible Improvements

	An Articulatory Speech Production Model
	Concluding Remarks

	II A Study on VTR Dynamics
	Introduction to VTR Dynamics
	Are VTR Dynamics Really Hidden?
	Hand Labeling of VTRs
	The TIMIT Database
	A VTR Hand-Tracking Tool

	Modeling VTR Dynamics

	VTR Tracking by Active Image Contours
	Existing VTR Tracking Methods
	Problem Formulation and Algorithm Development
	VTR Tracking Experiments
	Further Improvement by B-Spline Snakes and Simulated Annealing

	VTR Tracking with a Hidden Dynamic Model (HDM)
	The VTR-to-Acoustic Mapping
	VTR to LPC-cepstra Nonlinear Mapping
	A Piecewise Linear Approximation
	How About Other Acoustic Features?

	The HDM for VTR Tracking
	A HDM Using VTR Dynamics
	A Simplified HDM for VTR Tracking

	VTR Tracking Results and Analysis
	Using VTR Residual Feature in a HMM Speech Recognizer
	Description of the Baseline System
	Why Use VTR Residual?
	TIMIT Phone Recognition Results

	Conclusions and Discussions

	III Algorithm Development of HDM towards ASR
	Introduction to Automatic Speech Recognition (ASR)
	The Formulation of ASR Problem
	Speech Preprocessing
	Acoustic Modeling
	Language Modeling
	Hypothesis Search

	Overview of the Hidden Markov Model (HMM)
	A Classic View of HMM
	HMM as a Probabilistic Graphical Model

	From HMM to HDM

	Algorithm Development for HDM
	A SSSM Formulated from HDM
	Detailed Model Description
	Review of Previously Developed Algorithms

	Introduction to Variational Methods
	Variational EM versus Exact EM
	An Illustrative Example

	Variational Inference for SSSM
	Model Parameter Learning for SSSM
	Hidden State Recovery of SSSM
	Simulation Experiments

	Special Considerations and Experiments for ASR
	Some ASR Related Issues
	An Alternative Decoding Scheme
	Effect of Piecewise Linear Mapping

	Some Speech Examples

	IV Overall Conclusions
	Summary and Future Work
	Summary of Contributions
	Future Research Directions

	Derivations
	Exact Inference from a Variational Principle
	Full Equation of Exact Inference for SSM
	A Forward-Backward Algorithm of Probability Propagation
	Parameter Estimation Formulas of SSSM

