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Abstract

Random heterogeneous, scale-dependent structures can be observed from many image

sources, especially from remote sensing and scientific imaging. Examples include slices

of porous media data showing pores of various sizes, and a remote sensing image includ-

ing small and large sea-ice blocks. Meanwhile, rather than the images of phenomena

themselves, there are many image processing and analysis problems requiring to deal with

discrete-state fields according to a labeled underlying property, such as mineral porosity

extracted from microscope images, or an ice type map estimated from a sea-ice image. In

many cases, if discrete-state problems are associated with heterogeneous, scale-dependent

spatial structures, we will have to deal with complex discrete state fields. Although scale-

dependent image modeling methods are common for continuous-state problems, models for

discrete-state cases have not been well studied in the literature. Therefore, a fundamental

difficulty will arise which is how to represent such complex discrete-state fields.

Considering the success of hidden field methods in representing heterogenous behaviours

and the capability of hierarchical field methods in modeling scale-dependent spatial fea-

tures, we propose a Hidden Hierarchical Markov Field (HHMF) approach, which combines

the idea of hierarchical fields with hidden fields, for dealing with the discrete field modeling

challenge. However, to define a general HHMF modeling structure to cover all possible sit-

uations is difficult. In this research, we use two image application problems to describe the

proposed modeling methods: one for scientific image (porous media image) reconstruction

and the other for remote-sensing image synthesis.

For modeling discrete-state fields with a spatially separable complex behaviour, such

as porous media images with nonoverlapped heterogeneous pores, we propose a Parallel

HHMF model, which can decomposes a complex behaviour into a set of separated, simple

behaviours over scale, and then represents each of these with a hierarchical field.

Alternatively, discrete fields with a highly heterogeneous behaviour, such as a sea-ice

image with multiple types of ice at various scales, which are not spatially separable but

arranged more as a partition tree, leads to the proposed Tree-Structured HHMF model.

According to the proposed approach, a complex, multi-label field can be repeatedly par-

titioned into a set of binary/ternary fields, each of which can be further handled by a

hierarchical field.
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Chapter 1

Introduction

This thesis will describe research work regarding discrete-state field models for image pro-

cessing applications. This introduction presents a general discussion about the motivations

and contributions of this thesis work.

1.1 Motivation

Nowadays, large sets of image data are obtained from many imaging sources, such as

microscopy, MRI, satellites, and video cameras. To automatically deal with large amounts

of data, image models are created, which offer a convenient way to represent, code, and

analyze many problems in image processing and computer vision. Their primary concerns

are how to define a correct representation for a problem and how to find its optimal solution.

Markov Random Fields (MRFs) [26, 64, 113] and their associated algorithms have provided

successful approaches to address modeling concerns. The MRF models have been widely

applied in solving image and vision problems [64, 113].

The MRF modeling technique itself has experienced significant developments. In the

simplest case, a single MRF has been employed to represent global statistical phenom-

ena [25, 27, 92, 118]. However, many scenes, which might be distorted, blurred, or have

multiple underlying behaviours, are hardly represented by a single MRF with a simple

neighborhood structure. Such modeling problems lead to the proposed classical Hidden

Markov Field (HMF) [13, 22, 28, 39]. The basic idea of the HMF is to simplify an image
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modeling problem by introducing a hidden field to capture the underlying characteristics

of the observed image, so that, based on the hidden field, the image can be decomposed to

two simpler random processes: the observation and the underlying prior. In the classical

HMF, the prior is assumed to be a MRF.

However, a local, stationary MRF prior model is too strict to represent complex scenes

faced by common applications, since in many cases real images do not have global sta-

tionarity. In particular, there are many problems in texture analysis, remote sensing and

scientific imaging where the underlying discrete fields of observed images possess complex,

non-stationary, scale-dependent, spatial structures. For example, the microscopic sample

of porous media shown in Fig. 1.1(c) exhibits pores (black) at multiple scales. More-

over we can see that those scale-dependent pores have an uneven spatial distribution. In

Fig. 1.1(d), the underlying label field of a SAR sea-ice sample has complicated multi-label

states and all states display heterogenous behaviours. Although a single MRF prior model

(Fig. 1.3(a)) is good at modeling homogenous behaviours at a single scale [36], they can-

not handle such complex phenomena as shown in Fig. 1.1(c,d). MRFs with complicated

neighbourhood structures may work, however the costs for training models with high-order

neighbourhood systems are very expensive [24, 113]. Therefore, to modeling complex dis-

crete fields, in particular with scale-dependent spatial structures as Fig. 1.1(c,d), brings a

challenge to the classical MRF framework.

To deal with this challenge, more flexible methods need to be considered. Instead of

using a single MRF, methods have been proposed to employ multiple separated MRFs [10,

57, 59] or joint MRF fields [7, 77, 89] to model complex situations such as mixed densities,

non-stationary states and multi-sensor states. For example, we can apply multiple fields

to capture the piece-wise, heterogenous behaviours of pores in Fig. 1.1(c), such as one for

the large-scale pores (Fig. 1.2(a)), one for the small-scale, high density distributed pores

(Fig. 1.2(b)), and one for the small-scale, low-density distributed pores(Fig. 1.2(c)), where

each field represents a relative homogeneous behaviour.

However, for more complicated situations where spatial structures are highly dependent

and have heterogenous behaviours at multiple scales, as shown Fig. 1.1(d), such discrete

fields cannot be well-represented by two or three simple, stationary fields. Moreover, the

multiple field methods can only process spatial structures at the finest scale, which makes

computational costs very high for asserting large-scale structures. This computational

inefficiency limits the application of the method.
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At the same time, there are hierarchical MRF field methods [2, 43, 53, 60, 79], which

can decompose scale-dependent characteristics at a set of scale spaces. In particular, a

Frozen State Hierarchical Field (FSHF) method [20] has been proposed with attractive

computational complexity. According to this FSHF method, a large-scale structure will be

asserted hierarchically from the coarsest scale, and only those pixels, whose states cannot

be determined at coarser scales, need to be processed at the finest scale. As a result, the

computational cost is significantly reduced. However, a single hierarchical MRF cannot

model heterogenous behaviours existing across the scales. For example, as we hierarchically

downsample a discrete field such as Fig. 1.1(c), at many scales the downsampled fields are

still heterogenous and cannot be modeled well by a stationary MRF.

Since the existing MRF based methods have some limitations in modeling complex,

heterogeous, scale-dependent behaviors, the work of this thesis is motivated to address

this challenge by developing new methods with a more powerful modeling capability.

1.2 Contribution

This thesis proposes the Hierarchical Hidden Markov Field (HHMF) method in modeling

scale-dependent discrete fields, as well its application to real problems, such as porous me-

dia images and remote sensing imagery. Even though multi-scale, continuous-state model-

ing methods have been studied by many researchers [30, 73, 92], the modeling difficulty for

discrete-state fields with structures on more than one or two scales has not been well solved.

The proposed models in the literature are for relatively simple situations [2, 20, 80, 82].

In contrast, the HHMF approach provides a powerful and efficient way to handle complex,

non-stationary discrete-state fields which possess structures at multiple scales.

In summary, with respect to modeling different scale-dependent situations, the proposed

HHMF approach has four inter-related stages:

• To model discrete fields with piecewise, heterogenous, scale-dependent spatial struc-

tures, we apply the existing idea of multiple separated MRFs (Fig. 1.3(b)) to handle

the non-stationarity, where each field is used to capture a simple stationary behaviour.

For example, for a discrete field shown in Fig. 1.1(c), we can employ three MRFs

to separately represent the behaviours of large-scale pores, high-density small-scale

3



(a) Noisy LR measurement sample (b) Sea-ice texture sample

(c) True microscopic sample of (a) (d) The underlying label field of (b)

Figure 1.1: Both a microscopic sample (a) and a RADARSAT-1 SAR sea-ice texture sample

(b) have complicated underlying label maps with multi-scale structures as in (c) and (d)

respectively.

pores, and low-density small-scale pores. In doing so, a complex, non-stationary

modeling problem is addressed by multiple simple models. However, considering the

computational cost, in the thesis we only apply two separated MRFs to solve a recon-

struction problem with two scale-dependent behaviours and discuss it in Section 5.2.

• The existing ideas of hierarchical fields (Fig. 1.3(c)) provide a natural way to capture

spatial structural features at different scales, especially since the FSHF naturally

offers computational efficiency. To efficiently capture the scale-dependent, spatial

features of an underlying behaviour, we take the advantage of the efficient modeling

4



(a) Large-scale pores (b) Small-scale, high (c) Large-scale, low

density pores density pores

Figure 1.2: Multiple behaviours underlying a microscopic sample shown in Fig. 1.1(c).

capability of the FSHF, and apply it as the hidden layer to model the structural

characteristics of an underlying behaviour. For example, the spatial structure of

high-density, small-scale pores in Fig. 1.1(c) can be modeled by a hidden FSHF. In

this thesis, the hidden FSHF method is discussed and applied to reconstruct porous

media images in Section 5.2, and to synthesis remote sensing images in Section 6.3.

• To provide a powerful modeling tool with computational efficiency, scale-dependent

modeling and non-stationary modeling capability, the ideas of hidden field, multiple

fields, and hierarchical field are combined together to generate a Hidden Hierarchical

Markov Field (HHMF). As for modeling a discrete field with piecewise, heterogenous

behaviours, we introduce parallel HHMFs (Fig. 1.3(d)). For the example, as shown

in Fig. 1.1(c), in applying the parallel HHMF method the different behaviours of

pores are modeled separately and hierarchically. In the thesis, this parallel HHMF

model is discussed and applied to porous media image reconstruction in Section 5.3.

• However, there are many discrete fields with spatially dependent, non-stationary

structures that cannot be separated in a parallel way, such as shown in Fig. 1.1(d). To

address this problem, a tree-structured HHMF (Fig. 1.3(e)) is proposed by combining

a partition-tree modeling structure with hidden hierarchical fields. According to the

proposed approach, a complex, multi-label, non-stationary field (Fig. 1.1(d)) can be

repeatedly partitioned to yield a set of region-oriented, binary/ternary fields, each of

5



(a) A single field (b) Multiple fields, Chap. 3, 5

(c) A single hierarchical field, Chap. 3, 5 (d) A hierarchical field with multiple

hidden hierarchies, Chap. 5

0U |1

1U 0|U 4U 0|U

2U 1|U ,
3U 1|U 0U

(e) Tree-structured hidden hierarchies, Chap. 6

Figure 1.3: Possible structures for modeling scale-dependent multi-model behaviour.

which can be further handled by a resolution-oriented hierarchy. The tree-structured

model is discussed and applied to remote-sensing image synthesis in Section 6.4.
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1.3 Thesis Organization

The organization of the remaining chapters is as follows: Chapter 2 provides the gen-

eral background of image modeling; Chapter 3 is about the specific background of MRF

modeling approaches; Chapter 4 describes the problem formulation and some preliminary

approaches to the solution. In Chapters 5 and 6, the HHMF based modeling methods are

proposed and applied in porous media image reconstruction and remote sensing image syn-

thesis, respectively. Finally, Chapter 7 summarizes the thesis work and discusses possible

future research directions.

7



Chapter 2

Background: Image Modeling

This chapter contains a brief introduction to statistical modeling techniques. The chapter

starts by describing the Bayesian framework as well as estimation and sampling problems.

Then, the Markov/Gibbs random fields are introduced, and simple probability models used

in this research are discussed. Finally, classical techniques including MCMC sampling

methods along with simulated annealing are reviewed.

2.1 Images and Random Fields

Modeling a natural image is difficult. Just investigating simple first- and second- order

statistics is not enough to adequately represent natural image characteristics [113]. Instead,

one of the most general approaches is to consider an image as a realization of a random

field where each pixel value is a realization of a discrete random variable [113]. A discrete

random field is a two dimensional random process and can be defined as follows:

Definition 2.1.1 (Random Field)

Let S = {s1, s2, · · · , sN} be a finite site set. A random field X on S is X = {Xs : s ∈ S}.

Let Λ = {λ1, λ2, · · · , λL} define a finite set of state values, Xs ∈ Λ, ∀s ∈ S. Denote the

configurations for the realization of x as

Ω = {x = (xs1 , · · · , xsN ) : xsi ∈ Λ, 1 ≤ i ≤ N}.

8



A random field can also be defined on a lattice:

X = {Xi,j|1 ≤ i ≤ n1, 1 ≤ j ≤ n2}

where Xi,j is a random variable corresponding to the pixel (i, j), and where n1 and n2 are

the numbers of the row indexes and the column indexes, respectively. X can be modeled by

a probability distribution p(x) on Ω with p(x) ≥ 0 and
∑

x∈Ω p(x) = 1. As image samples

x from X are measured, the set of measurement samples y can be denoted by a random

field Y .

2.1.1 Bayesian Framework

A stochastic relation between X and Y can be defined as a joint distribution p(x, y) that

can be further interpreted by Bayes’ theorem:

p(y)p(x|y) = p(y|x)p(x) (2.1)

Re-ordering (2.1), we have

p(x|y) =
p(y|x)p(x)

p(y)
(2.2)

The Bayesian formula (2.2) provides a framework for inferring x from y. Given knowledge

of the prior distribution p(x) and the likelihood function p(y|x), the random sample x is

represented by the posterior distribution p(x|y). For an estimation problem, an estimate x̂

can be decided by a statistical decision criterion such as maximum a posterior (MAP) [112]

x̂ = arg max
x

p(x|y) (2.3)

If p(y) is given, based on (2.2), the MAP estimator can be rewritten as

x̂ = arg max
x
{p(y|x)p(x)} (2.4)

Then, the MAP solution to x̂ can be considered as the optimal compromise between a

prior model p(x) and a measurement model p(y|x).

More straightforward than estimation, image synthesis is a pure sampling problem

which picks a configuration at random from a prior model p(x)

x̂← p(x) (2.5)

Since synthesized samples x̂ do not depend on any measurement, the behaviour of the

synthesized samples reflects only the properties of the prior model [36].

9



2.1.2 Markov Random Fields

Although images and observations can be represented by random fields and probability

distributions, in practice it is almost impossible to specify an image model based on a

joint distribution of all of the pixels directly. Consider a small 32× 32 binary image: the

number of possible configurations is 232×32 = 21024 ≈ 10100. Such a large configuration

space makes it impossible for us directly model the image with a joint distribution. So

certain assumptions need to be introduced to simplify random field models.

Most images exhibit spatial dependencies, i.e., the pixels close to each other tend to

have similar values or features. This local characteristic of images allows a Markovian

property to be a reasonable assumption to reduce the complexity of modeling.

Definition 2.1.2 [Markov Chain] [36]

A random process x(t) is a Markov Chain, if the knowledge of the process at some time t0

is x0, x0 decouples the “past” xp and the “future” xf :

p(xf |x0, xp) = p(xf |x0), and p(xp|x0, xf ) = p(xp|x0) (2.6)

where xp = {x(t)|t < t0}, xf = {x(t)|t > t0}.

Whereas a Markov Chain (Definition 2.1.3) uses causal concepts of “past” and “future”,

a Markov Random Field (MRF, Definition 2.1.4) is noncausal. As such, it employs the

variables xNs in the local neighborhood Ns to decouple a random variable xs on site s from

the rest of the domain {r ∈ S, r 6= s}. The neighborhood system is illustrated in Fig. 2.1

and defined as follows:

Definition 2.1.3 [neighborhood system]

A neighborhood system: Ns ⊂ S (2.7)

must have two properties:

1. A site is not a neighbor of itself: s /∈ Ns.

2. A site and its neighbors have reciprocity: s ∈ Nr ⇔ r ∈ Ns.
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(a) First-order neighborhood (b) Second-order neighborhood (c) Fifth-order neighborhood

Figure 2.1: Neighborhood structures for MRF.

Definition 2.1.4 [Markov Random Field]

A random field X is Markov with respect to neighborhood system N , if

p(xs|xr, r ∈ S, r 6= s) = p(xs|xr, r ∈ Ns) (2.8)

or in more compact notation as

p(xs|xS\s) = p(xs|xNs) (2.9)

Therefore, given a neighborhood structure the MRF provides a convenient approach to rep-

resent spatial dependencies of a random field through a conditional marginal probabilistic

distribution (2.9).

However, the remaining difficulty for MRFs is how to specify p(x) or the conditional

probabilities p(xs|xNs). This limitation of MRFs can be solved by GRFs which will be

discussed in the next subsection.

2.1.3 Gibbs Random Fields

Gibbs Random Fields (GMF) are characterized by neighboring-site interactions [36], which

were introduced into image modeling by Hassner & Sklansky [47], and popularized by

Geman & Geman [39] and Besag [12].
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(a) First-order cliques (b) Second-order cliques

Figure 2.2: Gibbs cliques for the first and second-order MRF neighborhoods.

Definition 2.1.5 [Gibbs Random Fields]

A random field X on S is a Gibbs Random Field if and only if its configurations obey a

Gibbs distribution.

The Gibbs distribution is defined as

p(x) =
e−H(x)/T

Z
(2.10)

where T is a temperature, Z is the partition function, and H(x) is the energy function

taking the form:

H(x) =
∑
c∈C

V (xs, s ∈ c) (2.11)

Here, c is a clique denoting a single site or a set of neighboring sites with c ⊂ S. C is the

set of all cliques. V (·) is a clique potential which only depends on those xs on the local

sites s ∈ c.

The partition function Z is a normalizing constant

Z =
∑
x

e−H(x)/T (2.12)

The enormity of the possible configurations for x prevents Z to be evaluated but for the

tiniest problems.

Since any pair of sites in c are neighbors to each other, the clique set can be associated

with a neighborhood structure, for example, the clique types for the first and second order

neighborhoods (Fig. 2.1(a)(b)) are shown in Fig. 2.2.

Actually, not only are C and N related, the MRF and the GRF have been proven to

be equivalent [12, 45]:
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Theorem 2.1.1 [Hammersley-Clifford theorem] [36, 45]

“X is a MRF with respect to N if and only if p(x) is a Gibbs distribution with

respect to C, where C is the set of cliques with respect to neighborhood system

N .”

From Theorem 2.1.1, the local conditional distributions in a MRF model can be charac-

terized by a Gibbs distribution, so p(x) can be specified as

p(x) =
1

Z
exp

{
− 1

T

∑
c⊂C

Vc

}
(2.13)

Then, based on (2.13), the joint probability of a MRF can be specified by an energy

function encoding the interactions of the local sites. Therefore, MRFs and GRFs provide an

approach to simplify the modeling complexity of random fields. Their appealing properties

for image and vision modeling can be summarized as follows [36, 64]:

1. They provide an effective mechanism for modeling spatial dependencies;

2. They offer a flexible way to describe enormously complicated probability functions

by using relatively simple, intuitive energy functions, which will be discussed in

Section 2.2.

3. They can be formulated within the Bayesian framework in Section 2.1.1, and can be

easily estimated/sampled by existing statistical decision and estimation algorithms,

as is shown in Section 2.3.

2.2 Common Prior Models

In Bayesian image analysis, the local and global characteristics of an image can be rep-

resented by random field models by setting up appropriate priors. In this section, some

useful pixel-based models are reviewed including local and non-local models.
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2.2.1 Ising Model

The Ising model (Ising 1925), based on the first-order neighborhood Ns for a pixel s, has

been shown in Fig. 2.1(a). Although the Ising model is a very simple binary model, it

exhibits a fundamental and typical local homogenous property shared by many complex

systems: xs tends to have the same value as its immediately adjacent neighbors xNs . Hence

it often acts as a test model for substantial problems about Markov fields.

Initially the Ising model was used by physicist E. Ising to explain ferromagnetism based

on a crystal lattice of spin up or spin down dipoles [112]. In physics the energy H(x) is

formed as

H(x) = − 1

kTa

(
J

∑
<s,r>∈C2

xsxr −mB
∑
s

xs

)
(2.14)

where C2 represents all pairwise cliques of adjacent pixels. The first term of H(x) represents

the interaction energy of spin pairs and the second term represents the influence of an

external field. As for the physical parameters, Ta is absolute temperature, k is Boltzmann’s

constant, the sign of J denotes whether spins are desired to be the same direction or not,

B is the external field intensity, and m is a property of the material. If there is no external

field, the model (2.14) is simplified as

H(x) = −β
∑

<s,r>∈C2

xsxr (2.15)

where, when β > 0 unequal neighbor pairs are penalized by high energy while the equal

neighbor pairs are encouraged.

With only four nearest neighbors, the Ising model describes a variety of highly related

random fields. The most favorable case is when the whole field is a homogenous region,

which is much too simple to faithfully capture subtle structural characteristics. However,

it is widely used in those cases where simplicity is pursued rather than searching for the

best model, such as method testing [8, 111].

2.2.2 Potts Model

The Potts model (R.B. Potts, 1952) [93] is a natural generalization of the Ising model,

where each site extends to have a L-state labels: xs ∈ Λ = {0, 1, · · · , L − 1}, s ∈ S. Its
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energy has the form

H(x) = −β
∑

<s,r>∈C2

δ(xs, xr) (2.16)

where δ(xa, xb) is defined as:

δ(xs, xr) =

{
1 if xa = xb

−1 if xa 6= xb
(2.17)

Here, H(x) is the number of unequal pairs minus equal pairs, thus measuring the degree

of smoothness of X.

The model can also be formed as

H(x) = β
∑

<s,r>∈C2

(1− δ(xs, xr)) (2.18)

Here, H(x) is equal to the length measuring the discontinuity of X.

A common application for the Potts model is modeling images with more than two

colors or images mixed with more than two kinds of textures, such as in [13] [83] [86].

2.2.3 Local Histogram Model

The local histogram model [1], Local Binary Pattern (LBP) [84] and Grey Level Co-

occurrence (GLC) [46] are all non-parametric models defined on a neighborhood region,

where both histogram and LBP accumulate the count of all the possible configurations

about the whole neighborhood, whereas the GLC collects information about the joint

probability of pixel pairs. In this thesis, the local histogram model will be used for all

experiments.

To simplify the discussion, here we define a local histogram model on a binary random

field X. For a 3 × 3 neighborhood as shown in Fig.2.1(b), the number of possible config-

urations will be 29. Target histograms (h̃) should be learned from the training data. An

example of h̃(n) is shown in Fig. 2.3(b).

An energy functions H(x) of the local histogram model measures the consistency be-

tween the estimate histogram h(n) and the target histogram h̃(n). For example, for de-

scribing binary porous media the authors in [20] has proposed a histogram energy function
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(a) An example image
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(b) h(n) of the example image

Figure 2.3: The histogram of an image example (a) is shown in (b).

as

H(n) =

Nh−1∑
n=0

|h(n)− h̃(n)|
ν(n) + ε

(2.19)

where Nh is the number of possible neighborhood configurations, ε is a small value to

control the penalty for the unallowed local configurations, and ν normalizes coefficients,

such as ν(n) =
√
h̃(n) defined in [20].

As a non-parametric, the model (2.19), well-defined in a small local neighborhood, can

effectively model the nature of stationary structures as shown in Fig. 2.3(a), but is not

suitable to capture large-scale heterogenous behaviours, such as in Fig. 1.1(c), whose con-

figurations cannot be investigated locally [80]. However, it is computationally intractable

to extend the local histogram model by employing a large neighbourhood, because the

number of possible configurations increases exponentially with the size of the neighbour-

hood.

2.2.4 Chordlength Model

The chordlength model [105] is a standard model for handling dense structures in binary

images. It describes the likelihood of finding black or white chords (line segments) as a

function of length. If we only consider chords in the horizontal and vertical directions, and
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denote the distribution of the counts of possible chord lengths as ch and cv, respectively,

an energy function of the chordlength prior can be defined as

Hc(n) =
Lc−1∑
n=0

‖ch(n)− ch(n)‖+ ‖cv(n)− cv(n)‖ (2.20)

where ‖ · ‖ defines a norm function, ch(n) and cv(n) are the horizontal and vertical tar-

get chordlength distributions obtained from training data, and Lc denotes the longest

chordlength. Fig. 2.4 shows an example of ch(n) for black chords.

The chordlength model is widely used in porous media reconstructions [104, 105], which

is effective at modeling structures at a single scale. However, it cannot effectively model

complex, scale-dependent phenomena (Fig. 1.1(c)). Because the model does not define

the correlation between the horizontal and vertical chords, in complex, multi-scale cases

there are some unexpected configurations which are not forbidden by the model, such as

those combining the horizontal chords of large-scale structures with the vertical chords

from small-scale ones [81].

2.3 Markov Chain Monte Carlo Methods

As the configuration space of a random field X is extremely large, in particular the com-

putation of the partition function Z of the Gibbs distribution is prohibitive, so directly

sampling of the distribution p is impossible [113]. Therefore, dynamic Markov Chain

Monte Carlo (MCMC) Methods [96] are prevailingly applied as the alternative approaches

to simulate samples from random fields.

Dynamic Monte Carlo methods convert a problem of spatial complexity to a problem

of temporal complexity. Starting from an initial configuration x(0), the algorithms update

x(0) in subsequent steps under some proposed probabilistic rule which only depends on the

current configuration and the number of updates. With a long running time, Dynamic

Monte Carlo methods construct a sequence {x(0), x(1), · · · , x(n−1)} to converge to x:

Theorem 2.3.1 [Convergence Theorem] [112]:

“Suppose P , Pi,j = p
(
x(n) = j|x(n−1) = i

)
, is an irreducible and aperiodic transition

probability on a finite space with an invariant probability distribution p. Then uniformly
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Figure 2.4: A chordlength example of event count distribution of all possible configurations

with black pixels in the horizontal direction.

in all initial distributions p(0), (p(0) ·P n)→ p as n→∞, where P n is the n-step transition

probability.”

Theorem (2.3.1) indicates that for a Markov chain with ergodicity and steady-state

probability, p(n) should be close to p after sufficient time. Although here only the con-

vergence of homogenous chains is discussed, the inhomogenous cases also hold a similar

theorem but need more assumptions to converge [112].
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In MCMC methods, the Gibbs and the Metropolis samplers are the two most commonly

used in solving image and vision problems, hence they are briefly reviewed below.

2.3.1 Gibbs Sampler

The Gibbs sampler [39] is an algorithm that simulates samples of a target Gibbs distribution

by sampling its conditional marginal distribution. The conditional marginal distribution

can be derived as

p(xs|xNs) =
p(x)∑

λi∈Λ p(x)|xs=λi

=
1
Z exp{−H(x)/T}

1
Z
∑

λi∈Λ exp{−H(x)/T}|xs=λi

=
exp{−H(x)/T}∑

λi∈Λ exp{−H(x)/T}|xs=λi
(2.21)

where Z is canceled out. Representing the energy term H(x) in terms of clique potentials

V (·), (2.21) can be rewritten as

p(xs|xNs) =
exp{−

∑
c⊂C,s∈c Vc}∑

λi∈Λ exp{−
∑

c⊂C,s∈c Vc}|xs=λi
(2.22)

For the Gibbs sampler, the canceling of Z is a crucial idea that helps the conditional

marginal distribution p(xs|xNs) to be formulated in a feasible form as (2.22).

During the sampling process, the Gibbs sampler only changes one site value at each

time and chooses a new value with a probability conditionally independent of the past

choices. That means, taking a configuration (x(t)) at time t and supposing the visiting site

to be s, the new configuration x(t+1) will be:

x(t+1)
r =

{
a sample from p(x

(t+1)
s |x(t)

Ns) r = s

x
(t)
r r 6= s

(2.23)

The sampling process is shown in Algorithm 2.3.1.

According to (2.22), a marginal conditional distribution of the Ising model (2.15) at a

site s can be written as

p(xs|xNs) =
exp{−βxs

∑
r∈Ns xr}

exp{−β
∑

r∈Ns xr}+ exp{β
∑

r∈Ns xr}
(2.24)
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Figure 2.5: Realizations sampled from an Ising model by the Gibbs sampler. Notice how

the samples are smoother for high β than for low β. That is because for high β adjacent

pixels are more strongly coupled, discouraging irregular rough samples.
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Algorithm 2.3.1: Gibbs Sampler

1: repeat

2: for all s ∈ S do

3: compute all p
(
x

(t+1)
s = λi|x(t)

Ns

)
, λi ∈ Λ = {λ1, λ2, · · · , λL}, and

accumulate PGi = PGi−1 + p
(
x

(t+1)
s = λi|x(t)

Ns

)
4: uniformly draw a number ξ from [0, 1],

find λi∗ ∈ Λ with PGi∗−1
< ξ ≤ PGi∗ , set x

(t+1)
s = λi∗

5: end for

6: until convergence

An example using the Gibbs algorithm to sample an Ising model is shown in Fig 2.5, where

the samples are generated from (2.24) at both low and high inverse temperature (β = 1/T ).

2.3.2 Metropolis Sampler

The Metropolis sampler [48] operates by choosing a state at random and then testing

whether to accept or reject. In a single site case, at time t, for a site s randomly pick a

new value λ. If the energy of this new configuration is lower than the former energy, then

accept the new value, otherwise accept the new state λ with a probability PM :

PM = exp
(
H(x(t))−H(x(t+1))

)
⇒ x(t+1)

s = λ.

We can see that, to avoid being trapped in local minima, the Metropolis sampler allows

the acceptance of a new value λ which leads a higher energy, then even if x(t) is in a local

minima, there is a change of PM for x(t+1) to jump out of it. The sampling process of the

sampler is shown in Algorithm 2.3.2, where the configuration change is decided by a ratio

of the new configuration probability p(x(t+1)) to the former one p(x(t)), so there is no need

to compute the normalization factor Z.

Moreover, different from the Gibbs sampler, the performance of the Metropolis sam-

pler depends crucially on the visiting scheme. It is irreducible only with random visiting
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Algorithm 2.3.2: Metropolis sampler

1: repeat

3: randomly pick a site s ∈ S

4: hypothesize a value λ ∈ Λ for xs, which is corresponding to a configuration x(t+1)

5: compute PM = min
{

1,
p
(
x(t+1)

)
p
(
x(t)
) }, and uniformly draw a number ξ from [0, 1]

6: if PM > ξ, then x
(t+1)
s = λ

7: else x
(t+1)
s = x

(t)
s

9: until convergence

schedule [112], so the systematic sweep strategies, such as a chequerboard scan, may lead

to some configurations that cannot be reached by the sampler.

2.3.3 Simulated Annealing

Simulated Annealing (SA), proposed by Kirkpatrick [58], is a stochastic optimization algo-

rithm which provides an approach to reach the global minimum/maximum of non-convex

energy functions. In image analysis problems, SA seeks the maximal modes of the (poste-

rior) probability distribution on an image space.

For a Gibbs field, SA can be applied to a MCMC sampler to search the most prob-

able samples by defining the parameter T of the distribution (2.10) as a function of the

index of a sequence (T = T (n)). At the beginning, one sets T to be a large value that

leads p(x) to approach a uniform distribution on the configuration space. Then one slowly

cools down T based on an annealing schedule {Tn}. As T → 0, p(T )(x) concentrates

on the peaks of p(x) with a uniform distribution on the space of maximal modes. In

essence, under {Tn} and a visiting scheme {q1, · · · , qN}, the method replaces the homo-

geneous Markov chains defined by the previous samplers to a non-homogeneous Markov

chain {x{(q1),(T1)}, · · · , x{(qN ),(T1)}, · · · , x{(q1),(Tn)}, · · · , x{(qN ),(Tn)}}. Algorithm 2.3.3 shows

this process. The convergence theorem for SA (Theorem 2.3.2) has been proved by Geman

& Geman [39].
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Algorithm 2.3.3: Simulated Annealing

1: Initial configuration x(0)

2: i← 0

3: repeat

4: β(i) = 1/T (i)

5: Apply the Gibbs/Metropolis sampler with β(i) and get x{(i),β
(i)} from x{(i−1),β(i−1)}

6: i← i+ 1

7: until T → 0

Theorem 2.3.2 [Convergence Theorem for SA] [39]:

“Let Tn (n ≥ 2) be a cooling schedule decreasing to zero with

Tn ≥
N∆

lnn
(2.25)

then uniformly for any initial distribution p(0),

lim
n→∞

p(0)P1 · · ·Pn(x) =

{
|M |−1 if x ∈M
0 otherwise

where |M | denotes the number of maximal modes M , and ∆ is the absolute maximum

change in Gibbs energy when only a single site changes its value.”

The key idea of a cooling schedule is that, for a sufficiently slow cooling, the final energy

H(x(0)) should be close to the global minimum energy Hmin. But a logarithmic schedule

like Theorem 2.3.2 is too slow to be practical. Therefore, many other schemes are used

such as geometric cooling [58]:

Tn = ρn · T0 (0 < ρ < 1) (2.26)

Although geometric schemes (2.26) have practical advantages, their convergence is not

guaranteed. Therefore, we need a trade-off between the quality of convergence and the

convergence speed. In practice, T0 is set high enough in order to explore the whole config-

uration space. When Tn is cooled with rate ρ, the constraints defined by energy functions

are more and more emphasized. As Tn → 0, whether a new state value will be accepted

only depends on energy reductions, so configuration searching process is not stochastic any

more.
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For SA applied to a random field, the conflict between the computational cost and the

convergence to a global minimum becomes more serious in modeling large-scale phenomena

than small-scale ones, since large structures composed of many pixels are hard to change by

single-site samplers. As discussed in [42], for a random walk process the required number of

Monto Carlo updates (the relaxation time τ) can be roughly approximated as a quadratic

function of the correlation length ξ of the process:

τ ≈ ξ2. (2.27)

Thus, annealing a random field with very large spatial structures will lead to an enormous

computational demand [35]. Clearly the methods, which can represent large-scale struc-

tures with reduced pixel numbers and local correlations, are motivated. Thus, hierarchical

representation methods are intuitively attractive, where large spatial structures in an im-

age can be decomposed into local ones at coarse scales by repeatedly downsampling the

original image. As we hierarchically sample a field, an annealing process is allowed to start

from a coarse scale where the field is related to few pixels, and create pixels over scales.

During the annealing process, for coarse scale pixels whose state values are converged or

close to converged, at fine scales their corresponding pixels may not need a re-sampling [20]

or may not require a highly relaxed stochastic re-sampling [79]. Therefore, the annealing

cost can be significantly reduced by either decreasing the number of pixels to be sampled

or decreasing the relaxation time.

According to the efficiency of hierarchical annealing, many methods with various struc-

tures and schemes have been proposed in the literature, such as a pyramid with multi-

temperature annealing [53], a pyramid with frozen-state annealing [20], a quadtree struc-

ture [60], a hybrid structure combining pyramid and quadtree [18], and a hierarchical region

growing [109].

Moreover, except for hierarchical methods, various other acceleration techniques have

been proposed in the literature, such as causal Markov model [51, 62], and clustering [5,

103, 106].
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Chapter 3

Background: Markov Random Field

Modeling

In this chapter MRF based modeling methods are reviewed. We start with a discussion of

the single MRF field and the classical Hidden Markov Field, and then present some pop-

ular extended MRF methods. Finally, hierarchical MRF methods are introduced. Those

reviewed materials cover three important ideas: hidden fields, multiple/joint MRF fields,

and hierarchical fields, which will be applied later in this thesis to create new approaches

for addressing challenges of modeling scale-dependent, non-stationary structures.

3.1 Single Markov Random Fields

The simplest approach to MRF modeling is to represent an image with a single random

field X = {Xs : s ∈ S} which has been successfully applied in image related problems such

as modeling [105], classification [25] and synthesis [2] [27].

3.1.1 Gaussian Markov Random Fields

One particularly common MRF is the Gaussian-Markov Random Field (GMRF) [24] which

changes the conditional independence of the Markov definition from (2.9):

p(xs|xr, r ∈ S, r 6= s) = p(xs|xr, r ∈ Ns)
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Figure 3.1: Textures and their estimated GMRF model parameters corresponding to a

4th-order MRF neighborhood structure. Textures are taken from the Brodatz Texture

Database. The method used to learn the model parameters is from [24].

to conditional decorrelation, we get a Weakly Markov Field [44]:

E(xs|xr, r ∈ S, r 6= s) = E(xs|xr, r ∈ Ns) (3.1)

In the Gaussian case, (3.1) is equal to the best linear estimate of xs [36], so the GMRF

can be written as

xs =
∑
r∈Ns

as,rxr + ωs (3.2)

Here θs = {as,r, r ∈ Ns} is a model parameter set which can be used to capture the

stationary characteristics of x, and ω is zero mean Gaussian noise with E(xrωs) = 0 for all

r 6= s.

Three examples of applying a GMRF to model textures are shown in Fig. 3.1, where θs

is based on a 4th-order neighborhood structure and the different estimated θs reflect the

different features of those textures.

In general, the complexity of a MRF model is related to the size of neighbourhood

(Fig. 3.3), whereas the scale characteristic of a MRF model, which is determined by model

coefficients, actually has no relationship with the size of neighbourhood — a local neigh-
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(a) small scale (b) medium scale (c) large scale

Figure 3.2: A given order MRF model can model wide range scales, for example, a 3rd-order

thin-plate model generates (a-c).

(a) Membrane (b) Thin-plate (c) Tree-bark

Figure 3.3: The complexity of a MRF model is related to the size of neighbourhood, such

as (a) a 1st-order membrane model, (b) a 3rd-order thin-plate model, and (c) a 4th-order

tree-bark model [36].

bourhood can define a small or a large scale process (Fig. 3.4(a,b)), but cannot define a

complex multi-scale process (Fig. 3.4(c)) [36].

At the same time, a single MRF parameter set, corresponding to a stationary model, is

unable to represent a nonstationary scene with multiple textures (Fig 3.5(b)). Generally,

a simple linear MRF model is also not suitable to describe scenes which are distorted,

blurred, or contaminated, since the statistics of those scenes are usually not driven by

a single random process associated with the true scene. To model those cases, another

method — Hidden Markov Fields — is considered.
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(a) small scale (b) large scale (c) (a)×(b)

Figure 3.4: Thresholded binary samples from a thin-plate model and a simple operation.

A local thin-plate model can represent small scale structure (a) or large scale structure

(b), but is unable to represent a two-scale structure (c) which is generated from the simple

operation (a)×(b) [36].

3.1.2 Classical Hidden Markov Fields

Since the work of Geman & Geman [39] and Besag [13], the Hidden Markov Field (HMF)

has made significant contributions to MRF modeling. The main reason for its success is

that the HMF extends the modeling flexibility of MRF by using two coupled fields which

allow modeling a broader range of features than a single field on its own.

Basically, the classical HMF models a scene as a two-layer random field: an observable

field Y and a hidden field X to be estimated. Here, Y can be considered as a deterministic

or random transformation of X. A general measurement y of a random sample x can be

written as

y = g(x) + ν (3.3)

where y is a realization of Y , g(·) denotes a forward operation, and ν denotes measurement

noise. Examples in Fig. 3.5 show a ground truth
∗
x and several observations corresponding

to different forward models.

Therefore, the classical HMF has two random processes: one is driven by ν, which

constrains the inconsistency between g(x) and y; the other is a MRF which constrains the

statistical features of x based on the prior knowledge of
∗
x.

The general problem for a HMF is how to generate a sample notation or an estimate

(x̂(y)) from y. In general, there are many possible x which can match a given y, so the
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(a) Ground truth,
∗
x, (b)Mixed texture image, y = g(

∗
x), g(i) is

∗
xs∈ {1, 2, 3}, s ∈ S a texture decided by labels i ∈ {1, 2, 3}

(c) Noisy observation, (d) Noisy downsampled observation,

y =
∗
x +ν y =⇓ (

∗
x) + ν

Figure 3.5: A ground truth
∗
x and several of its possible observations resulting from different

g(·). The observations correspond to different applications of HMF models such as (b)

texture segmentation, (c) restoration, and (d) reconstruction. Specifically, (c) can be

modeled by the classical HMF, (d) can be modeled by a relaxed classical HMF with a

loose assumption (A.1) only based on (3.6), and (b) can be modeled by the Double MRF

(Section 3.2.1).
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HMF is usually approached as an optimization problem which can be addressed under a

Bayesian framework and solved by a MAP estimator:

x̂ = arg max
x

p(x|y)

= arg max
x
{p(y|x)p(x)} (3.4)

However, as discussed in Section 2.1.2, except for uninterestingly small scenes the configu-

ration space of x is too enormous to permit (3.4) to be solved directly. To make the above

estimation tractable, p(x|y) is desired to be Markovian so that existing algorithms, such

as Markov Chain Monte Carlo (MCMC) methods (Section 2.3) can be used to solve the

problem. For the classical HMF, two assumptions are required to have this Markovian-

ity [7, 13, 39]:

Assumption (A.1) : Y is conditionally independent, that is

p(y|x) =
∏
s∈S

p(ys|xs) (3.5)

which implies two sub-assumptions:

1. Given X, ∀ s ∈ S, ys has conditional independence:

p(y|x) =
∏
s∈S

p(ys|x) (3.6)

2. Given X, ∀ s ∈ S, the conditional probability of ys only depends on its corresponding

xs:

p(ys|x) = p(ys|xs) (3.7)

(3.6) implies that the measurement model should be driven by independent noise, and (3.7)

implies that g(·) should not allow multiple variables of x corresponding to a single variable

of y, such as a blurring operation.

Assumption (A.2) : X is aMRF with distribution p(x).

Therefore, according to (A.1), the Markovianity of p(x) can lead p(x|y) to be Markovian:

p(x|y) ∝
[∏
s∈S

p(ys|xs)
]
p(x) (3.8)
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However, it is easy to be aware of the drawback of the classical HMF: it maintains the

Markovianity of p(x|y) by adding a strict assumption on p(y|x). The problem is that (A.1)

is hard to be satisfied in many complex situations, for example when the observation is

corrupted by a correlated noise, or when it is a blurred version of the true scene. In those

cases, the classical HMF will introduce approximations, which results in the deterioration

of the estimates.

3.2 Multiple Markov Random Fields

3.2.1 Extended Hidden Markov Fields

To improve the modeling ability of the classical HMF, many models with extended HMFs

have been proposed. A double MRF structure, shown in Fig. 3.6(c), has been introduced

in [77]. A scene is modeled as a joint distribution for X and Y :

p(x|y) ∝ p(y|x)p(x)

Here, p(x) is Markov, p(y|x) is conditional Markov, and their spatial dependency can be

represented as

p(ys|yS\s, x) = p(ys|yN y|xs
, x) (3.9)

p(xs|xS\s) = p(xs|xNs)

where N y|x
s and N x

s are the neighborhoods for the MRFs of Y |X and X, respectively, at

site s.

Compared to the classical HMF, the double MRF model provides more powerful mod-

eling capability, since in many cases observations have locally dependent characteristics.

For examples of remote-sensing data, in a landmass image the noise may be related to land

cover types, in an lake image the reflectance of adjacent pixels may be very different from

the pixels far away, and in a forest image the density of tree distribution may be different

from one area to another. In addition, the mixed-texture modeling problem (Fig. 3.5(b))

mentioned in Section 3.1.2 can now be addressed by a double MRF model where, given a

field X labeling the type of texture the observation, Y only contains a single texture and

then Y |X can be modeled by a GMRF (Section 3.1.1).
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(f) Three-layer MRF [10]

Figure 3.6: Some examples of extended HMF models. The classical HMF (b) has been

extended from a two-layer random field with a single MRF to multi-layer, multi-MRF

structures, such as (c)(d)(e)(f). Those extended HMF models relax the conditional inde-

pendency assumption of the classical HMF. All HMFs are extensions of the classical MRF

(a).
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Although the classical HMF model performs well in dealing with low-level vision prob-

lems [63], the model seems inadequate to handle high-level vision problems without exten-

sions, since most high-level vision problems are related to much more complicated situa-

tions such as multiple feature spaces, multiple measurement channels, disconnected spatial

regions, etc. For example: in a multi-object recognition problem, where images show a

wooden table with three objects on it: a newspaper, a cup, and a basket of strawberries,

to successfully label the items on the table we need to model the objects, the background,

and their relations. In [57], a factorial Markov Random Fields (FMRF) model was pro-

posed, which is based on layer representations [107] to represent scenes with overlapped

objects. This model assumes an observation (Y ) based on a set of independent hidden

fields {X l, l ∈ L}. Here L is a set of layer labels, and at each layer has X l = {X l
s : s ∈ S l},

where S l is the site set at layer l. Given y, a FMRF can be modeled as

p(x|y) ∝ p(y|x)p(x) =
∏
s∈S

p(ys|xs)
∏
l∈L

p(xl) (3.10)

where all the hidden fields are assumed to be Markov with a neighborhood N l. An example

of a typical FMRF structure is shown in Fig. 3.6(d)). For some complex vision problems

such as motion recognition and pose detection, more than decomposing a scene into inde-

pendent layers, features captured by different layers need to combine together to contribute

to a final conclusion. For example, to detect a human body pose, statistical features of

relevant body parts, such as head, arms and the legs, need be integrated to make a final

pose decision. For those cases requiring to model inter-layer relations, multi-MRF models

have been proposed and applied [10] [54]. An example structure is shown in Fig. 3.6(e),

where

Y = Y 1 ∪ Y 2. (3.11)

Y could been decomposed into two independent feature fields Y 1 and Y 2. Y 1 and Y 2

respectively correspond to two independent hidden fields X1 and X2. In addition, the

third hidden field X3, which combines the information of X1 and X2, is defined as

X3 = {X3
s : s ∈ S1 ∪ S2 ∪ S3}. (3.12)

X3 has intra-layer and inter-layer spatial dependencies.
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Therefore, given y, the posterior distribution of this model can be formulated as

p(x|y) ∝ p(y1, y2|x1, x2, x3)p(x1, x2, x3)
= p(y1|x1)p(y2|x2)p(x1, x2|x3)p(x3)
= p(y1|x1)p(y2|x2)p(x1|x3)p(x2|x3)p(x3) (3.13)

where conditioned on a hidden field X3, a complex joint field model p(x|y) is decomposed as

several independent models. Generally, those independent models are simpler than p(x|y)

and are relatively easy to deal with.

In more general cases the hidden layers associated with the different feature fields could

be related to each other, so the information of X l not only depends on Y but also depends

on other hidden layers. A three-layer MRF model was proposed in [10] to ensure the

connection of different feature layers. A modeling structure is shown in Fig. 3.6(f). Given

Y = {Y l, l ∈ L}, the energy function H(xl|yl) of the posterior distribution for p(xl|yl) can

be written as

H(xl|yl) = CmHm(yl|xl) + CiHi(x
l) + CoHo(x

l|xj, j ∈ L, j 6= l) (3.14)

where Cm, Ci, and Co are modeling parameters. All the hidden layers are assumed to be

Markov, Hi(x
l) models intra-layer features, and the prior Ho(x

l|xj, j ∈ L, j 6= l) reflects the

influences from other layers.

Although the double MRF, the FMRF, the multi-MRF, and the three-layer MRF mod-

els were introduced for addressing different image and vision issues, all of them extend the

classical HMF by relaxing its strict assumption of a conditional independency, and provide

more powerful capabilities for capturing complex statistical characteristics.

3.2.2 Pairwise Markov Fields and Triplet Markov Fields

To remedy the drawbacks of the classical HMF, and in contrast to the extended HMF

models discussed in the previous section, the Pairwise Markov Fields (PMF) [89] and the

Triplet Markov Fields (TMF) [7] directly assume the joint fields to be Markov instead of

assuming single fields or conditional fields to be so. The PMF (Fig. 3.7(b)) asserts (X, Y )

to be pairwise Markov, so given Y or given X, the conditional distributions p(x|y) or

p(y|x) are guaranteed to be Markovian, respectively. But X and Y individually are not
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Figure 3.7: The structure graph of single and joint MRF models. Here, models are sep-

arated as joint fields (a)(b)(c). Among them the TMF (c) is the most general one. The

TMF can be the PMF (b) by calculating marginal distribution, and similarly (b) can be

simplified as the single MRF (a).

necessarily Markov. Therefore, the PMF offers a more general modeling capability than

other two-field Markov models, such as the double MRF (3.2.1), since the PMF not only

allows modeling complex noise processes based on p(y|x), but also estimates underlying

properties based on p(x|y), for example, given observation Y we can estimate an underlying

label field X for segmentation [8].

A local dependency for the PMF can be described as

p(xs, ys|xS\s, yS\s) = p(ys|xs, xNxs , yN ys )p(xs|xNxs , yN ys ) (3.15)

where N x
s defines a neighborhood structure in X, and N y

s defines a neighborhood structure

in Y . From (3.15), we can see that, compared to the classical HMF, the PMF relaxes

assumption (3.5) without requiring p(y|x) to be conditionally independent. Therefore,

(3.6) is relaxed so that a measuring process could be driven by correlated noise, and

(3.7) is also relaxed so that g(·) is allowed to determine ys based on a subregion of x:

xws = {xs, s ∈ ws ⊂ S}. Moreover, the model for X is also relaxed and is not necessarily

to be Markov.

Generally, the distribution of the PMF can be written as

p(x, y) =
e−H(x,y)/T

Z
(3.16)

Further, by introducing an auxiliary random field U = {Us : s ∈ S}, the PMF can be

extended to a TMF (Fig. 3.7(c)) which is capable of handling more complex situations,
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such as nonstationary regions, by asserting (X, Y, U) to be triplet Markov:

p(x, y, u) =
e−H(x,y,u)/T

Z
(3.17)

For a TMF, if we assert (X, Y ) to be pairwise fields and U to be an underlying field labeling

heterogenous regions, p(x, y|u) will be PMF. Taking advantage of an auxiliary field U , the

TMF can provide a broader representation than the PMF, for examples, the TMF is able

to model a nonstationary image with correlated noise, or segment a nonstationary, noisy

image [7, 8]. Moreover, the TMF offers a more general relation between an image field X

and its observation Y : if we assume (X,U) to be pairwise hidden fields, then not only p(x)

and p(y) but also p(x|y) and p(y|x) are not necessarily Markovian.

At the same time, similar to the PMF, the TMF does not need any conditionally

independence assumption or the Markov assumption for individual fields. Thus, it is more

general than other three-field Markov models, such as the FMRF (Section 3.2.1).

3.3 Hierarchical Markov Random Fields

There are many problems in texture analysis, remote sensing and scientific imaging where

observed images possess highly scale-dependent structure, for example, imagery of damaged

woolen fabrics with holes of various sizes, imagery of an archipelago including large and

small islands, and imagery of rock samples possessing pores at multiple scales. Although

such structures can, in principle, be represented with sufficiently complex models, the

development of such models is a difficult task and leads to computationally intractable

algorithms if executed on a single, fine scale. Instead, hierarchical methods [43, 60, 62, 111]

by constructing fields at a set of sequential scales offer an approach to scale-dependent

modeling.

3.3.1 Hierarchical Random Fields

In general, hierarchical models defineX via a sequence of fields {Xk, k ∈ K = (0, 1, · · · ,M)},
where k = 0 defines the finest scale. At each scale k, Xk is defined on site space Sk and

results from the downsampling of X0.
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However, the fact is that a downsampled Markov field is no longer Markov, in gen-

eral [49], to which there are two main responses: one is to formally model the downsampled

fields properly based on group normalization [41], the other is to construct an approxima-

tion and assert the downsampled fields to be Markov. The latter MRF approximation

gives us a simple, convenient modeling environment with a scale dependent model, where

the hierarchy very nearly obeys the statistics of the finest scale. Therefore, at each scale a

single MRF (Xk) can be used to capture the features local to that scale, inherently allowing

scale-dependent structure.

Many researchers have been working on hierarchical MRF modeling [2, 20, 43, 53, 60, 79]

to provide a more natural and efficient way to deal with label fields. Kato et al [53] proposed

a hierarchical MRF model with a 3D neighborhood system for modeling discrete states,

but with considerable computational cost. A MRF model based on a quad-tree structure

was discussed by Laferté et al [60], but does not model the interactions within scales.

Thus, in defining a hierarchical model two issues need emphasizing: the inter-scale

context, and the computational complexity. To model the spatial context, Mignotte et

al [79] proposed a Markov chain in scale p(xk|xK\k) = p(xk|xk+1), where the intra-scale

relation is a MRF p(xks |xkS\s) = p(xks |xk+1
℘(s), x

k
N ks

), where ℘(s) denotes the parent site of s at

the parent scale and N k
s defines a local neighborhood. Although this hierarchical model

is computationally cheaper than one with a 3D neighborhood, a single-site sampler still

needs to scan all of the pixels at every scale.

3.3.2 Frozen State Hierarchical Field

To achieve computational efficiency, a Frozen State Hierarchical Field (FSHF) was pre-

sented in [20] to synthesize binary images. In that work, a given HR field (x = x0) can be

represented by a hierarchical field {xk} (Fig. 3.8) where xk =⇓k(x0), and ⇓k(·) denotes a

downsampling operator.

At coarse scales (k > 0), xk is defined with a ternary state xk(s) ∈ {0, 1, 1
2
}, where 0, 1

(black, white) are determined states, and 1
2

(grey) is undetermined. In terms of modeling,
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a fine to coarse representation can be derived as

xks =


1 if xk−1

q = 1, ∀q ∈ <k−1(s)

0 if xk−1
q = 0, ∀q ∈ <k−1(s)

1
2

otherwise

(3.18)

where <k−1(s) is the set of sites in scale k−1 corresponding to location s in scale k. Then,

for synthesis, the key idea of the FSHF model is that, at each scale, only the sites which are

undetermined need to be sampled, with those sites determined by the parent scale fixed

(or frozen):

p(xks |xkS\s) =

{
δxks ,xk+1

℘(s)
if xk+1

℘(s) ∈ {0, 1} ←− Frozen

p(xks |xkN ks ) if xk+1
℘(s) = 1

2
←− Sampled

(3.19)

With the frozen state, large scale features captured at the coarse scale are frozen and

maintained to the fine scale, regardless of annealing schedule or sampling method. Since

the “grey” interface between black and white determined regions represents only a small

fraction of most images (Fig. 3.9), this approach offers a huge reduction in computational

complexity relative to standard, full-sampling hierarchical techniques. The site sampling

strategy corresponding to (3.19) is

x̂ks =

{
x̂k+1
℘(s) if x̂k+1

℘(s) ∈ {0, 1}
a sample from p(xks |xkN ks ) if x̂k+1

℘(s) = 1
2

(3.20)

where x̂k is the sampled (estimated) random field at scale k.

With a determined inter-scale relationship, the idea of FSHF modeling [20] inherits

the advantage of hierarchical methods, such as the method of [79], which can provide a

good capability to model scale-dependent structures by using simple models. At the same

time, the FSHF brings significant computational benefits. Since a single-site sampler only

needs to scan the interface between determined regions which represents a small fraction

of most images, as shown in Fig. 3.9, the method offers a huge reduction in computational

complexity relative to standard, full-sampling hierarchical techniques.

3.3.3 Modeling and Sampling

A hierarchical modeling and sampling approach as proposed in [2, 20, 72] will be applied in

this thesis, which is shown in Fig. 3.11. This approach use a bottom-up modeling process
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1x= (    )
2x  

  xx0

=   (    )1x 0x 

Figure 3.8: An example of ternary hierarchical subsampling [20]: a given field x0 is coar-

sified by repeated 2 × 2 subsampling ⇓(·). All-white and all-black regions are preserved,

with mixtures labeled as uncertain (grey).

starting from the finest scale, and a corresponding top-down sampling process starting at

the coarsest scale.

Specifically, a hierarchical model, such as the FSHF, can be described by a Gibbs

distribution (Section 2.1.3) at each scale k

p(xk) =
e−H

k(xk)/T

Zk
(3.21)

where T is the temperature, Zk is the partition function, and Hk(xk) is the energy function

at scale k.

A variety of methods [2, 104, 105] can be applied to define binary energy functions to

model complex structures. In this thesis, we apply a local histogram model (Section 2.2)

to set up the target and sample models. The energy function at each scale k is then defined

as

Hk(xk) = ‖hk(xk)−Hk‖ (3.22)

where Hk is the target histogram learned from the training samples, and hk is the sample

histogram corresponding to xk.

Once a model has been built up, random samples can be generated through MCMC

samplers with simulated annealing as we have described in Section 2.3.
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(a) x0, 512× 512 (b) x1, 256× 256 (c) x2, 128× 128

(d) x3, 64× 64 (e) x4, 32× 32 (f) x5, 16× 16

Figure 3.9: A frozen state down-sampling example. A binary image (a) with determined

states (black, white) is repeatedly downsampled (b-f) until reaching a scale with all pixels

undetermined (f). The uncertain label dominates at coarse scales (e,f), but is present only

around boundaries at fine scales (b,c). Thus, under a frozen state hierarchy the number

of undetermined pixels is only a small fraction of the original image size, 19% for this

example.
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Figure 3.10: A plot of the fraction of uncertain pixels as a function of scale k. For the

down-sampling example shown in Fig. 3.9, the portion of uncertain (grey) pixels drops as

the scale k goes to finer scales.
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Figure 3.11: The hierarchical modeling approach is a bottom-up process, started at the

finest scale to infer a model Hk at each scale k. Hierarchical sampling, on the other hand, is

a top-down process starting at the coarsest scale, then sampling at each scale k, constrained

by the model Hk and parent state X̂k+1.
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Chapter 4

Problem Formulation

Random heterogeneous, scale-dependent structures are omnipresent and can be observed

from many image sources, especially from remote sensing [17, 40, 100, 114] and scientific

imaging [20, 50, 82]. Examples include a slice of microscope data showing cell nuclei with

different sizes, a remote sensing image of a forest area with scattered small and large fires,

or a telescope image of the observable universe with stars and galaxies having various

forms and scales. Meanwhile, rather than the images of phenomena themselves, there

are many image processing and analysis problems requiring to deal with discrete-state

fields according to a labeled underlying property. For examples, the porosity information

extracted from human bone images helps to analyze age-related bone changes; a labeled

map of an infrared image indicates the distribution of noise sources; a remote-sensing land-

mass image segmented according to types of plants is for plant distribution study. In many

cases, if discrete-state problems are associated with heterogeneous, multi-scale structures,

we will have to deal with complex discrete state fields, such as shown in Fig. 4.1. Therefore,

a fundamental difficulty will arise: how could we represent such complex, scale-dependent

discrete-state fields? The focus of this thesis is to answer this question.

Certainly, for continuous-state problems scale-dependent modeling methods are com-

mon in image representation, analysis and processing, such as the widespread application

of wavelets [29, 30, 74, 91], Gaussian and Laplacian pyramid methods [19, 85], and quad-

tree based models [6, 36]. In addition, multi-fractal analysis has been used to characterize

self-similarity to study the statistics of natural images [23], to synthesize textures [23], and

as a prior to regularize reconstruction problems [67]. Moreover, nonparametric example-
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(a) A microscopic sample of a (b) The underlying label field of

complex porous media image a sea-ice sample

Figure 4.1: Both a microscopic sample (a) and the underlying label field of a RADARSAT-1

SAR sea-ice texture sample (b) have complicated multi-scale structures.

based methods have been proposed and successfully used in texture synthesis or enhance-

ment [37, 65], which have the ability to handle spatial inhomogeneities by introducing

patch-based representations.

On the other hand, the modeling problem for scale-dependent, discrete-state fields,

which is emphasized in this research, has not been well studied in the literature — many

related works are limited to modeling relatively simple situations [2, 20, 80]. However,

in many cases the characteristics of discrete-state fields, such as porous media images

(Fig. 4.1(a)) and the label fields underlying remote-sensing images (Fig. 4.1(b)), are diverse,

complex, scale-dependent, and require further study.

In Chapters 5 and 6, we will describe our proposed modeling approaches in detail

through a reconstruction of porous media images and a synthesis of remote-sensing images.

In this chapter, we intend to formulate the scale-dependent modeling problem for discrete-

state fields by briefly discussing existing methods, challenges and possible approaches.

4.1 Modeling Scale-dependent Structures

In Chapter 3, we reviewed MRF-based methods which can be used for representing scale-

dependent discrete state fields. For a stationary field, no matter whether on a small
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(Fig. 4.2(a)) or a large scale (Fig. 4.2(b)), the statistical characteristics of the field can be

captured by a single field X with a stationary local model, such as a MRF with a small

neighborhood (Section 3.1). However, a local stationary model cannot capture both small

and large scales at the same time (Fig. 4.2(c)).

A nonlocal model, such as the MRF with a very large neighborhood, may be able to

model such multi-scale structures, however, the training costs for learning models with

high-order neighbourhood systems are expensive [24, 113], and how to simplify a complex

neighborhood to a relatively simple form is an unsolved problem.

The widely used nonlocal discrete-state models, such as correlation [105] and chordlength

distributions (Section 2.2.4), are more powerful than simple, local discrete Markov models.

However although these models are effective at modeling microstructural information at a

single scale, nevertheless they perform rather poorly in modeling phenomena at multiple

scales [80].

Recently, a powerful modeling structure — the TMF/PMF (Section 3.2.2)— has been

proposed to model complex nonstationary situations by using ternary/pairwise joint fields [8,

88]. This method can be applied to represent scale-dependent structures. For example, for

a two-scale problem shown in Fig. 4.2(c), we can introduce two random fields X1 and X2

to describe the small and the large scale structures, respectively. Then, Z is defined as a

joint field

X ≡ f(X1, X2) (4.1)

where, although X is scale-dependent, both X1 and X2 only have one scale and can be

modeled by local stationary models.

However, the TMF has its own problems: the modeling structure is limited to triplet

fields, and the joint correlation f(·) is difficult to infer [16]. To develop a more practical

method, we also consider introducing a modeling structure with N parallel fields, each of

which has a local stationary neighborhood structure to model a single scale. In this case,

we assume that X can be decomposed as a set of independent parallel fields X = {X i}.
Then, we have

p(x) ≡
N∏
i=1

p(xi) (4.2)

where p(xi) can be defined by simple local or nonlocal models. However, this approach

also has limitations:
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(a) Stationary, small scale (b) Stationary, large scale

(c) Stationary, scale-dependent (d) Nonstationary, small scale

(e) Scale-dependent, nonstationary (f) Scale-dependent, multi-label,
nonstationary

Figure 4.2: Synthetic image examples of discrete fields with different scale-dependent structures.
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• The multiple parallel field method is based on an assumption that scale-dependent

structures of a field are spatially independent of each other. However, for those cases

where the multi-scale structures are spatially correlated (parallelly unseparable), this

method will have a model approximation [70].

• Generating large-size image fields is computationally expensive when using common

single-site samplers (Section 2.3.1 and 2.3.2) to update all of the pixel sites, and to

allow large-scale spatial structures to converge demands a long relaxation time for an

annealing process (Section 2.3.3). Therefore, the computational cost of this multiple

parallel field method will be very high for sampling a set of large fields, especially for

those fields carrying large-scale structures.

To reduce the modeling approximation in using multiple parallel fields, a more natural ap-

proach for modeling scale-dependent structures is to gradually model their spatial features

decomposed at different scales. The idea can be realized by setting up hierarchical fields

at a series of scales from large to small and using a local model to capture features at each

scale [2, 20]. A hierarchical model, Markov in scale, with M + 1 scale levels can be written

as

p(x) =
[M−1∏
k=0

p(xk|xk+1)
]
· p(xM) (4.3)

Further, to reduce computational cost an efficient approach is to apply the Frozen State

Hierarchical Field (FSHF) model (Section 3.3.2), which is defined as

p(xks |xkS\s) =

{
δxks ,xk+1

℘(s)
if xk+1

℘(s) ∈ {0, 1} ←− Frozen

p(xks |xkN ks ) if xk+1
℘(s) = 1

2
←− Sampled

For the FSHF, at a given scale only the states undetermined by the coarser level are

allowed to be sampled and forces the rest pixels to be fixed (frozen). Based on the FSHF,

large-scale structures are modeled at a sequence of scales, where in general the proportions

of undetermined pixels are large at coarse scales, but gradually narrowed down at finer

scales (Section 3.3.2). Since the number of pixels to update for a hierarchical field is

smaller than that for a flat field, the computational cost will be significantly reduced,

especially for those fields with large scale structures.
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4.2 Challenges and Proposed Approaches

In general, scale-dependent structures may possess other complex attributes, such as having

spatially nonstationary behaviour. As a simple synthetic example, an image X is shown

in Fig. 4.2(d), where balls are at the same scale, but have two nonstationarily distributed

label states. A hidden field (Section 3.1.2) model can easily handle this nonstationary

image by introducing an additional underlying field U . Defining U to capture the spatial

distribution of the label state of balls, X obtains a conditional stationarity given U . Then,

a modeling problem about (X,U) (Fig. 4.2(d)) can be addressed by modeling a stationary

field X|U and a prior U :

p(x, u) = p(x|u)p(u) (4.4)

where both X|U and U can be described by simple local/nonlocal models as discussed in

Section 2.2.

However, for a discrete field X with scale-dependent, nonstationary structures, it can-

not be appropriately represented by either by a hidden field or by hierarchical methods

based on simple models. For example, for a synthetic two-scale field with separately dis-

tributed large-small structures as shown in Fig. 4.2(e), even given a hidden field U to

capture the label nonstationarity, X|U still has large and small structures which cannot

be represented by a simple local/nonlocal model. Moreover, when we define this two-scale

nonstationary field with a FSHF {Xk} (Section 2.3.3 and 3.3.2), at each scale the field Xk

is still nonstationary, as demonstrated in Fig. 4.3(b-e), which also cannot be well modeled

with simple local/nonlocal models.

Further, in more complicated cases, instead of only having a binary state, scale-dependent

structures may have different label states associated with multi-model behaviors as shown

in Fig. 4.2(f). In general, it would not be a trivial step to extend the existing local his-

togram model for binary microstructure modeling (Section 2.2.3) to a multi-label model.

Since the number of possible configurations is decided by an exponentiation with the num-

ber of states as the base, a multi-label field will lead to a much larger configuration space

than the binary one. Therefore, more sophisticated and practical approaches are desired

to overcome the modeling challenges of complex scale-dependent behaviours.

In this thesis, we propose the Hidden Hierarchical Markov Field (HHMF) model by

combining the idea of a hierarchical field (Section 3.3) with a hidden field (Sections 3.1
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(a) x0, 512× 512

(b) x1, 256× 256 (c) x2, 128× 128

(d) x3, 64× 64 (e) x4, 32× 32

Figure 4.3: A two-scale synthetic example under a frozen state down-sampling.
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and 3.2). The considerable success of hidden field models for representing complex non-

stationarities is highly motivating in the sense that they allow more complex models than

would otherwise be possible. Meanwhile, the computational efficiency of the FSHF ap-

proach (Section 3.3.2) strongly motivates the use of hierarchical discrete fields. Therefore,

the proposed HHMF aims to take the advantages from both of them and offers a modeling

approach with a capability to capture scale-dependent, nonstationary, spatial structures

by using simple local models through a hierarchy.

At the same time, the proposed HHMF approaches are based on such an assumption

that a complex scale-dependent problem can be simultaneously or repeatedly partitioned to

yield a set of simple problems. Since many complicated phenomena are actually composed

of simple ones, such as the synthetic problems in Fig. 4.2(e,f), this assumption can hold in

many situations.

However, to implement a HHMF model is not straightforward. The most important

problem is how to assert the HHMF modeling structure to make a complex problem simple

again. Moreover, is it good sufficient to use a single HHMF to handle all the possible

modeling situations? If not, how many HHMFs do we need? And how could we infer the

relationship among those HHMFs? Further, how to infer the relationship between HHMFs

and observable fields? It is significant that the answers for those questions are highly

problem-dependent, for example, to well handle the synthetic samples in Fig. 4.2(e) and

(f) need different HHMF modeling structures. It is hard to define a general structure to

cover all possible situations. Thus, in the following two chapters we are going to illustrate

the proposed HHMF modeling approaches through two application problems: porous media

image reconstruction and remote-sensing image synthesis.
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Chapter 5

Parallel Hidden Hierarchical Fields

for Multi-scale Reconstruction

Porous media images are typically complex, nonstationary and possessing structures at

multiple scales. Because Markov random fields are poor at representing other than single-

scale phenomena, the classic Hidden Markov Model is a relatively poor fit to complex

scenes such as porous media, and a single hierarchical field with local models cannot handle

scale-dependent heterogeneous behaviours. Consequently this chapter proposes a Parallel

Hidden Hierarchical Markov Field method for images having structure on more than one

scale based on a prior model with multiple hidden hierarchical fields. We illustrate the

effectiveness of the model with the reconstruction of porous media from low-resolution

measurements.

5.1 Introduction

Porous media are materials containing heterogeneous pores, where the examples include ce-

ment, concrete, cartilage, bone, wood, and soil. Their application covers many science and

engineering areas, such as geosciences, biology, material science, petroleum engineering,

construction engineering,and environmental engineering. In the study of porous media,

scientific imaging plays a significant role, especially with the supporting from more and

This chapter is written based on the papers: [68], [69] and [70].
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more imaging tools including magnetic resonance imaging (MRI), micro-CT, X-ray, confo-

cal microscopy, and so on.

However, to obtain High Resolution (HR) binary images (Fig. 5.1) of internal struc-

tures from a porous media sample is difficult, which requires to physically process the

sample with cutting, polishing, etc. [80]. Alternatively, Low Resolution (LR) images can

be noninvasively observed by MRI 3D imaging, but the resolution is not enough to resolve

small-scale pores (Fig. 5.2). Therefore, researchers have published papers on synthesiz-

ing [2, 20, 104] or reconstructing HR image from LR measurements [80, 82, 116]. In this

chapter, the work is focused on the reconstruction. Since porous media images are typically

complex, nonstationary and possessing structures at multiple scales (Fig. 5.1), to generate

their HR samples is challenging.

Hidden Markov Fields (HMFs) are widely used in image restoration and resolution en-

hancement [39, 80, 105], however because local MRF/Gibbs models and the widely used

non-local models, which are discussed in Chapters 2 and 3, can only describe structures at

a single scale, most methods fail to produce convincing fine-scale and coarse-scale recon-

structions.

The Frozen State Hierarchical Field (FSHF) method, as discussed in Section 3.3.2,

has attractive computational complexity and scale-dependent modeling. The goal of this

chapter is the extension of FSHF to allow hidden fields.

Generally, a single hierarchy with a scale-dependent model can capture a stationary

structure (Fig. 5.1(a)), whereas many random fields have some sort of nonstationary piece-

wise multi-model behaviour which requires additional hidden fields (Section 3.2). Although

multiple hidden fields are routinely used in Markov modeling, asserting a hierarchical

context creates additional subtleties. Recently, Scarpa et al. [101] proposed a hierarchical

texture model which represents texture at the region level with a superimposed finite-

state hierarchical model. Their approach has some similarities with ours, but focuses on

unsupervised model inference, whereas our approach requires more accurate, supervised

models, with an emphasis on computational tractability for large problems.

In this chapter, we explore the combination of hierarchical and hidden fields to perform

reconstruction for complex, nonstationary problems. We have chosen to apply our meth-

ods to reconstruct scientific images of porous media, such as the ones shown in Fig. 5.1,

since the images include multiple challenging behaviours, with fractal-like scale-dependent
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(a) Single-scale example (b) Two-scale example

(c) Multi-scale example (d) Complex, multi-scale,

multi-model

Figure 5.1: Excerpts from microscopic images of physical porous media. A variety of

behaviours can be observed, such as (a) single-scale stationary behaviour, (b) two-scale

nonstationary behaviour, (c) near-fractal multi-scale behaviour, (d) multi-scale, multi-

model behaviour. To correctly model these complex multi-scale behaviours in general

poses a significant modeling challenge.

structures.
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(a) Single-scale (b) Two-scale

(c) Multi-scale (d) Complex, multi-scale,

multi-model

Figure 5.2: Noisy low resolution measurements for the porous media images shown in

Fig. 5.1.

5.2 Markov Random Field Models

Based on the classical HMF framework (Section 3.1.2), image reconstruction can be achieved

by estimating a hidden random field X from an observed field Y , where Y = {Ys : s ∈ SL}
is defined on a LR grid space SL, and X = {Xs : s ∈ SH} is defined on a HR grid space

SH . The relationship between X and Y is expressed by a forward model Y = g(X) + ν,

where ν denotes the measurement noise. If ν is i.i.d, the classical HMF is written as

p(x|y) ∝
∏
s∈SL

p(ys|x)p(x) (5.1)
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(a) A single field (b) Multiple fields

(c) A single hierarchical field (d) A hierarchical field (right) with multiple hidden hierarchies (left)

Figure 5.3: Possible structures for modeling scale-dependent multi-model behaviour. This

chapter focuses on case (d).

where X is assumed to be MRF. However, a single local MRF (Fig. 5.3(a)) cannot perform

well in modeling a multi-scale nonstationary X, as seen in Fig. 5.4.

The TMF (Section 3.2.2) is a more general framework, assuming a joint triplet random

field (Y,X1, X2) to be Markov. We can apply the joint field (X1, X2) to capture the multi-

model behaviour present in a scene, such that both X1 and X2 can be stationary. The idea

can be extended, in principle, to multiple hidden fields (X1, · · · , XNf ), where we can use

multiple flat fields (Fig. 5.3(b)) to model multi-scale phenomena. Then, the reconstruction
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(a) HR ground truth
∗
x (b) LR, noisy measurement y

(c) HR estimate x̂ from (d) HR estimate x̂ from multiple

classical HMF [80] parallel MRFs [70]

Figure 5.4: Suppose we have a two-scale structure (a) with low resolution measurement

(b). A flat Markov model is poor at simultaneously modeling the large black pores and

tiny spaces between beads, therefore the HR result (c) using a classical HMF model cannot

strongly assert the presence of large scale structures. Instead, (d) shows that multiple flat

MRFs lead to an improved result with this two-scale case.

can still be addressed under the HMF framework:

p(x|y) ∝
∏
s∈SL

p(ys|x1, · · · , xNf )
Nf∏
i=1

p(xi) (5.2)

where each Xi is assumed to be Markov. The modeling improvement from (5.1) to (5.2)

is obvious (e.g., comparing Fig. 5.4(d) with Fig. 5.4(c)). However, this multiple MRFs
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method has its limitations: it is only tractable for cases with a limited number of scales

(Nf ), it ignores any dependencies among the different scale structures, and flat MRFs will

have difficulty in modeling large nonlocal structure.

Under the HMF framework, if we use a hierarchical field (Fig. 5.3(c)) discussed in

Section 3.3, to model a HR field X, a reconstruction can be achieved by

p(x|y) ∝
[ ∏
s∈SL

p(ys|x)
]
·
[M−1∏
k=0

p(xk|xk+1) · p(xM)
]

(5.3)

where k = M denotes the coarsest scale of X and the prior is defined as FSHF.

A FSHF can work well in modeling stationary scale-dependent structures, however not

with nonstationary, piece-wise behaviour, because conditioned on Xk+1, Xk will still have

nonstationary features which cannot be captured by a single model.

5.3 Hidden Hierarchical Markov Fields

The considerable success of hidden field models (Section 3.1.2 and 3.2) for modeling com-

plex nonstationarities is highly motivating in the sense that they allow more complex

models than would otherwise be possible. At the same time, the computational efficiency

of the FSHF (Section 3.3.2) approach strongly motivates the use of hierarchical discrete

fields. However, the combination of these two ideas has not yet been explored; in this

chapter, we propose a Hidden Hierarchical Markov Field (HHMF) (Fig. 5.3(d)) model to

model complex scale-dependent behaviours.

5.3.1 Single Hidden Hierarchy

We start with the simplest possible hidden model, in which the nonstationarity in X can

be entirely attributed to a single binary hidden field U . Both X and U are hierarchical,

asserted to be Markov in scale, so the joint relationship can be written as

p(x, u) = p(x|u)p(u) =

[∏
k

p(xk|xk+1, uk)

][∏
k

p(uk|uk+1)

]
(5.4)
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We select the coarsest scales of X and U , kx and ku respectively, at which determinable

state structure appears, such that (5.4) becomes

p(x, u) =

[
kx−1∏
k=0

p(xk|xk+1, uk)

]
p(xkx|ukx)

[
ku−1∏
k=kx

p(uk|uk+1)

]
p(uku) (5.5)

Since U describes the model behaviour in X, the determinable state in X is expected to

vanish at a finer scale than in U (kx < ku).

As illustrated in Fig. 5.5(e) versus Fig. 5.5(c,d), the introduction of a hidden field allows

for a superior behaviour separation. However two clear issues remain: first, a great many

problems (e.g., Fig 5.1(d)) cannot be represented by a single binary hidden field; second, in

Fig. 5.5(e) the hidden field U was given or known, whereas in practice it must be estimated.

These issues form the basis for the following two sections.

5.3.2 Multiple Hidden Hierarchies

In most cases, the behaviour of a random field X will be determined by more than one

spatial variable, such that X remains nonstationary when conditioned on a single binary

field U . The obvious solution to this problem is to define U as a multi-label field; for

example, the behaviour of Fig. 5.6(a) is determined by two binary variables of scale and

shade, corresponding to a quad-label hidden field.

Although multi-label models (e.g., Potts [93]) do exist, in practice the established set

of spatial binary models is much richer, and the size Nc of the configuration space of a

local joint model grows terribly large, Nc = Nn2

l for Nl labels in an n× n two-dimensional

neighbourhood. However more troubling is the representation of uncertainty in the frozen

hierarchy, since Nl labels imply
(
Nl
2

)
pairwise uncertainties,

(
Nl
3

)
three-way uncertainties,

etc.

To address the challenge of multi-label modeling, we extend the HHMF with a single

hidden hierarchical field to a more general parallel HHMF. The key idea of the parallel

HHMF is to maintain tractability by introducing multiple binary hidden label fields U =

{Ui, i ∈ (0, · · · , Nv−1)}, such that each field Ui is on a hierarchy {Uk
i }, where each hierarchy

{Uk
i } is used to capture a single binary structure or model behaviour. The hidden fields
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(a) Ground truth,
∗
x, 512× 512 (b) LR, noisy y, 32× 32

(c) HR estimate x̂ based (d) HR estimate x̂ based (e) HR estimate x̂ based

on single MRF, 512× 512 on FSHF, 512× 512 on HHMF, 512× 512

Figure 5.5: The reconstruction of a two-scale image (a) from low resolution measurements

(b) with different Markov field frameworks. The clear scale separation of the result from

the hidden hierarchy [69] (e) should be compared to the results from a single flat MRF

model [80] (c) and a single hierarchical model [20] (d). In (e), the hidden field u is given,

and not estimated.

remain Markov in scale, so (5.4) becomes

p(x, u) = p(x|u)p(u) =

[∏
k

p(xk|xk+1, uk)

][∏
k

p(uk0, · · · , ukNv−1|uk+1)

]
(5.6)
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(a) HR image with two spatial variables (b) LR, noisy y, 32× 32

(c) HR estimate x̂ from HHMF with two

binary hidden hierarchies, 512× 512

Figure 5.6: To reconstruct a two-scale image with multiple intensity states (a) from a low

resolution measurements (b) requires two hidden fields: one for scale and one for shading.

The modeling capability of a hierarchical model with two independent hidden fields is

demonstrated in (c), showing that the reconstructed result has a clear scale and shade

separation.

As in (5.5) we limit the scales for X and U , so (5.6) becomes

p(x, u) =

[
kx−1∏
k=0

p(xk|xk+1, uk)

]
p(xkx , ukx)

[
ku−1∏
k=kx

p(uk0, · · · , ukNv−1|uk+1)

]
p(uku) (5.7)

The key question is what may be assumed regarding the hidden fields {ui}. In rare cases

(e.g., Fig. 5.6) the hidden fields may be independent, however normally (e.g., Fig. 5.1(d))
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Figure 5.7: An example of the proposed parallel Hidden Hierarchical Markov field model

with two hidden fields U1, U2, such that the hidden label field U is a joint field only at

coarse scales. As the features of different model behaviour become separable at some scale

kd, U is decoupled to multiple parallel hierarchical fields. At scales coarser than kx the

entire random field X of interest is uncertain, and so only U is represented to scale ku.

that will not be the case. However, very likely that the fields are conditionally independent

at sufficiently fine scales. That is, if the coupling between hidden fields (e.g., a spatial

exclusion) is asserted by the coarser scales, with finer scales primarily serving to refine the

hidden-state boundaries, then the fine scales uk, k < kd become conditionally independent:

p(uk0, · · · , ukNv−1|uk+1) =
∏
i

p(uki |uk+1
i ) k < kd (5.8)

Joint fields {Uk, k > kd} may be needed at coarse scales k > kd, however the limited

number of state elements at coarse scales make such a joint model feasible:

p(u) =

[
kd∏
k=0

∏
i

p(uki |uk+1
i )

][
ku−1∏
k=kd+1

p(uk|uk+1)

]
p(uku) (5.9)
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Fig. 5.7 shows an example with two hidden variables (Nv = 2). At finer scales, the

hidden fields are spatially decoupled, binary, and simply modeled. The complex, joint

hidden structure appears only at very coarse scales, where the small number of state

elements allows such a structure to be computationally tractable.

This approach simplifies modeling in three significant ways: first, the parallel HHMF

consists entirely of simple models, both local and stationary. Specifically, although Xk and

Uk may have complex, non-local behaviour, the conditional residuals (Uk|Uk+1), (Xk|Xk+1, Uk)

are local, by virtue of the fact that all non-local matters have been absorbed into the con-

ditioned (coarser) scale.

Second, in general the hidden fields will be dependent upon each other. However, they

can be conditionally independent at finer scales, because the dependency among the fields

will be captured at coarse scales. Therefore, conditioned on those coarse scales, the hidden

fields at finer scales are in fact conditionally independent. At coarse scales, k > kd where

only few pixels exist, it is computationally tolerable to assert a joint model for Uk, where

the joint model is needed to allow the hidden models to interact (Fig. 5.8(b)). In most

problems, empirically, the assumption of conditionally independent fine-scale hidden field

is therefore reasonable.

Third, because {Xk} and {Uk
i } are modeled using simple, binary models, {Xk} and

{Uk
i } are easily defined as hierarchical frozen states, leading to the computational cost of

the parallel HHMF being linear in the number of hidden fields Nv, except at coarse scales.

5.3.3 Reconstruction

For image estimation, the hidden fields are invisible to the measurements, therefore p(y|xk, uk) =

p(y|xk), and so the reconstruction model illustrated in Fig. 5.7 can be written as

p(x, u|y) ∝
∏
s∈SL

p(ys|x)p(x, u) (5.10)

where p(x, u) is the parallel HHMF prior, defined as in (5.7) and (5.9), and where the

measurements p(ys|x) are taken at some scale km.

Given measurements Y contaminated by i.i.d. noise, the posterior distribution of

(X,U, Y ) can be represented as a Gibbs distribution

p(x, u|y) ∝ exp
(
− 1

T
H(x, u|y)

)
(5.11)
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(a) Label field u (b) u7 (c) u6

(d) u61 (e) u62

Figure 5.8: An example of label field U with two dependent features (a). At some coarse

scale the features of different behaviours interact and lead to complex joint states (b),

however at some finer scale the two behaviour in U become separable (c), and can be

decoupled to multiple independent ternary fields (d,e).

where T is the temperature, such that H is the energy function implying the probability

density p. Finding a good estimate x̂ therefore corresponds to maximizing p(x, u|y), corre-

spondingly minimizing H, the sum of hidden joint Hk
u(uk|uk+1), decoupled Hk

ui
(uki |uk+1

i ),

visible Hk
x|u(x

k|xk+1, uk), and measurement Hm(y|x).

The prior models can be learned in many ways, since a huge number of Gibbs priors

have been developed (Section 2.2). For simplicity, and to limit the assumptions made,

we have selected as prior model a nonparametric joint local distribution, the exhaustive

joint distribution of a local 3 × 3 neighbourhood of ternary state elements. The models

are learned separately on each scale, based on downsampled training data x̃k =⇓k (x̃0|ũ0),

ũki =⇓k (ũ0
i ). The resulting energy function is the least-squares difference between the

model and observed joint histograms (Section 2.2.3).

The measurement energy function is inferred from the given forward model g(). As with

the prior model, a variety of measurements could be defined, depending on the measuring

instrument, however in this chapter we focus on reconstruction from low-resolution images,
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making g() a downsampling operator.

To minimize H(x, u|y), we need to anneal (Section 2.3.3) on each scale k in each field

X,Ui, with consequent open questions: whether to minimize hidden states separately or

jointly with the observable state, whether to minimize the scales in parallel or sequentially,

and whether to have scale-dependent annealing schedules.

Normally the solution to the estimation problem, found by minimizing (5.11), is straight-

forward in principle. Here the minimization is much more subtle, in that (5.11) is defined

over a hierarchy of multiple scales, in principle requiring the joint, simultaneous minimiza-

tion over all fields and all scales. Because finer scales are highly dependent on coarser ones,

joint minimization over scales is difficult, and the minimization almost certainly needs to

proceed sequentially from coarse to fine scales. However at a coarse scale, it is not possible

to interpret p(x|u) if the hidden field is uncertain (u = 1
2
). Therefore, we propose, some-

what at odds with conventional practice in hidden fields, to first estimate U over all scales,

such that the estimated hidden field is definitive (not uncertain) at every point, and then

to estimate X.

The above argument, together with empirical testing, suggests that a constant anneal-

ing schedule, with sequential minimization over scales, and sequential minimization from

hidden (U) to visible states (X), lead to a reliable and robust reconstruction. When es-

timating the hidden field U , in which case X is unknown, a model for p(y|u) is required,

and needs to be inferred empirically.

5.4 Computational Complexity

In this section, we discuss the computational complexity of our proposed model, from the

perspective of both computational time cost and storage cost. The complexity of processing

the proposed HHMF model is composed of the complexity of processing the image field X

and the hidden field U .

Since we proceed estimations sequentially from U to X, the total processing time cost

is

CHHMF = CX + CU (5.12)
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where CX and CU denote the time cost of processingX and U respectively. CU is dominated

by the time of processing binary hidden label fields {CUi}

CU '

{
max { CUi , ∀i ∈ (0, · · · , Nν) } if parallel computing∑Nν−1

i=0 CUi otherwise.
(5.13)

For each of those fields, the computational time is the time for processing a hierarchical

field from coarse to fine scale, such as

CX =
Mx∑
k=0

Ck
X (5.14)

In this work, at a scale k > 0 an estimated field is represented as a ternary field with

frozen state (3.18), and is generated from the posterior model (5.10) by Gibbs sampler

(Algorithm 2.23) with Simulated Annealing (SA) (Algorithm (2.3.3). According to the

strategy of the frozen state hierarchical annealing (Section 3.3.2), at a given scale only the

pixels with undetermined state (1
2
) are processed and others are frozen . Consider αkg to

be the fraction of undetermined pixels, so that a sampler need to scan Nk
g = αkg ·Nk pixels

instead of a total of Nk (Nk = 1
4k
N0) pixels at k scale. Therefore, the computational time

per scale Ck (Ck
X or Ck

U) is determined by the number of SA updates τ k, the fraction of

pixels for sampling Nk
g , and the processing time for each pixel ts, then we have

Ck = τ k ·Nk
g · ts (5.15)

where ts is determined by the measurement energy (Hm), the prior energy (Hk
u|x,H

k
u), and

the number of label states (Nk
l ) in a field. Consider the time of calculating energies for a

label state l at site s is tsl, then we have

ts =

{
3 · tsl forXs ∈ {0, 1

2
, 1}

2 · tsl forXs ∈ {0, 1}
(5.16)

Now the only thing that remains unclear is the actual number of iterations required for

SA convergence τ k. In fact, τ k is highly problem dependent and cannot be discussed

quantitatively in the computational complexity. However, it has been demonstrated that

the number of Monte Carlo updates (τ) can be approximated by a quadratic function of

the correlation length (ξ2) (2.27), which has been validated for Gaussian model [42]. Thus,

for each scale we have

τ k ∼ (ξk)2 (5.17)
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Table 5.1: A comparison of the storage complexity

Model Single MRF FSHF Proposed HHMF

Number of 2 · 28 = 2 · (Mx · 39 + 28) = 2 · (Mx · 39 + 28) + 2 ·Nν · (Mu · 39 + 28) =

parameters 512 Mx · 13122 + 512 (Mx +Nν ·Mu) · 13122 + (Nν + 1) · 512

Size of domain N N (Nν + 1) ·N

At same time, consider a fraction αkξ = ξk+1

ξk
, then the number of SA updates is approxi-

mately reduced (1− (αkξ )
2) after subsampling.

In practice, because the number of SA updates is highly variable from model to model

and from image to image, the total time cost of the proposed HHMF method CHHMF is

difficult to predict and only can be obtained experimentally. For example, according to

our implementation with matlab and running in windows xp, it took an intel core 2 Duo

2.4GHz processor about 5 hours to obtain the result shown in Fig. 5.11(d), close to 2 hours

to get the reconstruction shown in Fig. 5.13(d).

The storage cost of the proposed HHMF method is mainly decided by the size of the

HR estimated fields N , the number of the HR fields Nν + 1, the number of prior model

parameters, such as the parameter number of a local histogram model (2.19). In details,

the major storage cost is listed and is compared with other MRF based methods, as shown

in Tabel 5.1.

5.5 Experimental Results

In this section, we present the results of the proposed HHMF reconstruction in three

experiments based on the measurement sets shown in Fig. 5.10. In order to assess its

advantage in modeling complex multi-scale behaviour, the proposed approach is compared

with both discrete-state and continuous-state methods. Since the HR images are discrete,

reconstructions from the continuous-state methods are thresholded.

To reconstruct a scale-dependent, near fractal, piece-wise nonstationary image such as

the porous medium in Fig. 5.1(c) is a major modeling challenge. The image in Fig. 5.1(c)

displays three types of behaviour: large-scale pores, regions of high density, and background
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areas of low density. We therefore propose the ternary hidden field U to be decoupled into

two parallel binary hierarchies, where {Uk
1 } identifies the presence of large pores, and {Uk

2 }
identifies regions of high density. From Fig. 5.1(c) we can see that, clearly, U1 and U2 are

not independent, since a porous state is not permitted to assert in both fields at the same

time.

The relationship p(y|u) is found empirically and is modeled as shown in Fig. 5.9, which

plots the empirical distribution p(y) as a function of the nine possible joint relationships

in U1 and U2. Because the hidden fields are decoupled, four of the nine joint relationships

are inadmissible (shown as shaded, in the figure), and are modeled as uniform, with a low

marginal probability.

We will be comparing the proposed HHMF against both related Markov methods and

against conventional and state-of-the-art methods in wavelet reconstruction. In terms of

Markov methods, we will compare to a single, non-hierarchical MRF [80] and the frozen

state (FSHF) approach [20], hierarchical but with no hidden state.

For the same noisy observation, estimates are also obtained by thresholding the re-

sults from several continuous-state methods: zero-pad wavelet interpolation (ZPWT) [74],

wavelet based parametric texture model (WTPM) [91], example-based super-resolution

(EBSR) [37], and wavelet based example-driven parametric model (WTEDPM) [65]. For

the ZPWT and the WTPM cases, we first de-noise based on biorthogonal wavelet filters

(bior4.4) at the measurement scale (km), then enhance the resolution to the finest scale.

For the ZPWT, a fine scale image is directly obtained from the inverse wavelet transform

(WT) by zero-padding the fine scale bands. For the WTPM, parametric models are learned

from the training sample (x̃) to constrain interpolation. When using the EBSR, we reduce

the LR noise by matching patches of y with the training sample at the measurement scale

x̃km and build x̂km based on the best matching patches: at finer scales we estimate x̂k by

cubic interpolation and use it to get matches from x̃k−1 to build the finer estimate x̂k−1 [37].

In the WTEDPM [65], every best matching patch is only taken as the initial driving data,

then the WTPM follows to get the final finer scale patch.

In the first experiment, we reconstruct a two-scale porous media sample (Fig. 5.11(a))

from its LR noisy observation y (Fig.5.10(a)), with MRF and wavelet reconstructions shown

in Fig. 5.11 and Fig. 5.12. The proposed HHMF with a single hidden hierarchy is used

in this case. In comparing the estimated results (x̂) with the true sample, we see that
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Figure 5.9: An example of the conditional target measurement histograms of the training

measurements ỹ = g(x̃) corresponding to Fig. 5.10(c) for decoupling a joint field Ukd

into two simpler fields Ukd
1 , Ukd

2 . Each panel shows the distribution of ỹ for one of nine

possibilities on U1, U2. Since the hidden fields are asserted to be decoupled, those cases

where both fields are asserted (shaded distributions) are never observed, and so are assigned

a uniform distribution with low marginal probability. To the extent that the joint state

configuration of (Ukd
1s , U

kd
2s ) relates to distinguishable model behaviour in ỹ, we expect the

hidden fields to be estimatable.

the HHMF (Fig. 5.11(d)) achieves better large-scale structure than the local flat MRF

(Fig. 5.11(b)), and better small-scale details than the FSHF (Fig. 5.11(c)). Even the most

superficial examination of the non-MRF results in Fig. 5.12 shows that the example-wavelet
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(a) (b)

(c)

Figure 5.10: Noisy LR measurements y = g(
∗
x) + ω are generated from three micro-

scopic samples (
∗
x) in Fig. 5.1 by downsampling g(), with added Gaussian noise ω (σ=0.1,

SNR=14dB).

approach of the WTEDPM greatly outperforms the three other implemented methods —

ZPWT, WTPM, and EBSR.

In the second experiment, we reconstruct a near-fractal multi-scale porous media sample

(Fig. 5.13(a)) from its LR noisy observation (Fig.5.10(b)). Here, we use the HHMF with

a single hidden hierarchy to get the reconstruction (Fig. 5.13(d)). Although the visible

piecewise-flat facets in
∗
x are not able to be fully reproduced, x̂ from the HHMF in recovering

multi-scale characteristics is clearly better than the other MRF methods (Fig. 5.13(b)(c)).

The reconstructions based on the continuous state methods are shown in Fig. 5.14,
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(a) True sample,
∗
x (b) Single, local MRF [80]

(c) FSHF [20] (d) Proposed HHMF

Figure 5.11: Reconstructing a two-scale porous media sample from the measurements

shown in Fig. 5.10(a). Although (c) provides a good reconstruction, (d) is more faithful

to
∗
x in the details (e.g., the shapes of the large pores and the small-scale structures along

pore edges).

where the x̂ based on the WTEDPM performs the best and provides a good recovery

of facets. However, many small-scale structures fail to be recovered by the WTEDPM

since those structures do not appear at the measured scale and cannot be reproduced by

enhancement.

In the third experiment, we reconstruct the complex, multi-model porous media sample

(Fig. 5.15(a)) from its LR noisy observation (Fig. 5.10(c)). For this difficult problem, we

build a HHMF with two parallel hidden hierarchies (U1, U2). During the reconstruction,
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(a) ZPWT (b) WTPM [91]

(c) EBSR [37] (d) WTEDPM [65]

Figure 5.12: Reconstructing a two-scale porous media sample (Fig. 5.10(a)) with non-MRF

methods. Only (d) provides a credible result.

first we estimate U1, U2 and then X, as proposed. The parallel HHMF based estimates x̂,

û1 and û2 are shown in Fig. 5.15(d-f). The performance of the HHMF with two hidden

hierarchies is clear from the comparison to other MRF methods (Fig. 5.16(b-d)). The

reconstructions based on the continuous state methods are shown in Fig. 5.17.

5.6 Evaluations

To evaluate the performance of different reconstruction methods, we consider three metrics.

First, to study the statistical similarity between estimate x̂ and ground truth
∗
x, we evaluate
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(a) True sample,
∗
x (b) Single, local MRF [80]

(c) FSHF [20] (d) Proposed HHMF

Figure 5.13: Reconstruction from Fig. 5.10(b) by MRF methods. Although the flat facets

in
∗
x are not fully reproduced in (d), the improvement in recovering the multi-scale char-

acteristics are clearly better than in (b) and (c).

the inconsistency in terms of chordlength models (Section 2.2.4) learned from x̂ and
∗
x, the

chordlength inconsistency measured as count differences |cx̂(n)− c∗
x
(n)|. A second, related

metric is to compare on the basis of porosity, the fraction of black pixels. Third, to

demonstrate the structural consistency between x̂ and
∗
x, the correlation coefficient ρ(

∗
x, x̂)

is calculated as a function of scale, which is defined as the average number of decimations

leaving a pixel value unchanged (see appendix A for details). Clearly, very tiny structures

fail to exert much influence on the measurements, therefore the correlation ρ is expected

to decrease at finer scales.
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(a) ZPWT (b) WTPM [91]

(c) EBSR [37] (d) WTEDPM [65]

Figure 5.14: Reconstruction from Fig. 5.10(b) by non-MRF methods. Method (d) provides

the best result, however it fails to recover many small-scale structures.

Because the proposed HHMF and the competing WTEDPM quite obviously visibly

outperform all other implemented methods, for the quantitative tests our focus will be on

the comparison of HHMF and WTEDPM.

Fig. 5.18 plots the correlation coefficient ρk between truth and reconstruction as a

function of scale k. The results reveal a significant correlation between estimates and

truth one to two scales finer than measured. The proposed method performs similarly to

or outperforms the WTEDPM.

As an independent test of the reconstruction, Fig. 5.19 plots the chordlength inconsis-

tency |cx̂(n)−c∗
x
(n)| between estimated field x̂ and true field

∗
x, measured by the prevalence
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(a) True sample,
∗
x (b) True label field,

∗
u1 (c) True label field,

∗
u2

(d) HR estimate, x̂ (e) Label field Estimate, û1 (f) Label field Estimate, û2

Figure 5.15: A sample of a complex porous media reconstruction with the proposed HHMF

method, for the measurements in Fig. 5.10(c). Although (d) is not able to fully reconstruct

some subtle structures (e.g., a line-like structure connecting two large pores at the top

right), the improvement in relevant detail of (d) over Fig. 5.10(c) is stunning. The HHMF

here demonstrated its capability in modeling multiple spatial nonstationarities.

of a given chordlength, where the chordlength is a statistic not captured explicitly in any of

the wavelet or Markov models. The better consistency of the proposed HHMF is striking,

especially at shorter lengths (finer scales) in (b) and (c).

Finally, researchers in porous media are very sensitive to the preservation of aggregate

behaviour, such as overall porosity, thus a final comparison is made in Table 5.2. In all

three experiments the aggregate porosity is better preserved in the HHMF, compared to the
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(a) True sample,
∗
x (b) Single, local MRF [80]

(c) FSHF [20] (d) Proposed HHMF

Figure 5.16: Reconstructing complex porous media image Fig. 5.10(c) by MRF methods.

With two parallel hidden hierarchies, (d) provides the best reconstruction among the re-

sults, although there are some small-scale structures in the highly dense regions and the

boundaries along large pores which are lost.

wavelet WTEDPM. Most significant is the consistency in the most complex reconstruction

of Fig. 5.10(c), where the absence of an explicit hidden model greatly compromises the

WTEDPM relative to the HHMF.

For the first experiment, the correlation coefficients are plotted in Fig. 5.18(a); the

chordlength inconsistencies is plotted in Fig. 5.19(a). Corresponding to different behaviour

region (smalls/large scale structure) in Fig. 5.11(a), the proportions of black pixels are

calculated for reconstructions and the true sample, and listed in Table 5.2(a), where the
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(a) ZPWT (b) WTPM [91]

(c) EBSR [37] (d) WTEDPM [65]

Figure 5.17: Reconstructing a complex porous media image (Fig. 5.15(a)) from Fig. 5.10(c)

by non-MRF methods. The fine-scale statistics in (d) are not matched as well as those in

the HHMF (Fig. 5.16(d)).

proportions of the proposed HHMF method is closer to the true proportion than the

WTEDPM method. As checking all those evaluations, although Fig. 5.19(a) shows that

the WTEDPM works better than the HHMF in reconstructing the small detail structures

(chordlength < 5), we can see the overall superiority of the HHMF is still overwhelming.

For this experiment, the performance evaluations are plotted in Fig. 5.18(b) and Fig. 5.19(b)

respectively. For the structure based correlation, the WTEDPM based x̂ is more consistent

with
∗
x than the HHMF except at fine scales. For the similarity of the statistical character-

istics, the HHMF outperforms with the WTEDPM at most significant chordlength entries.

75



Table 5.2: Porosity comparison of ground truth and reconstruction

Fig. 5.10(a): True sample WTEDPM Proposed HHMF

Background 0.448 0.401 0.459

Large pores 1.000 0.973 0.988

Fig. 5.10(b): True sample WTEDPM Proposed HHMF

Whole image 0.140 0.108 0.115

Fig. 5.10(c): True sample WTEDPM Proposed HHMF

High density background 0.428 0.278 0.445

Low density background 0.140 0.074 0.164

Large pores 1.000 0.960 0.992

From this experiment, we see that even a phenomenon with numerous scale-dependent

behaviours creates a challenge for a HHMF with limited number of hidden hierarchies, the

reconstruction is still comparable to the WTEDPM based result.

Whereas, the HHMF exhibit its stronger capability to handle the piece-wise multi-model

behaviours in Fig. 5.15, as demonstrated in Table 5.2(c). Moreover, the evaluation plots

both from a correlation aspect (Fig. 5.18(c)) or a chordlength model respect (Fig. 5.19(c))

also indicates the HHMF outperforms with the WTEDPM in this experiment. Besides, it

is worthwhile to clarify that although Fig. 5.19(c) indicating the MTPM possesses smallest

inconsistency at some short chordlength entries, the actual performance of the MTPM

is doubtable due to the strong artifacts caused by the intrinsic limitation of the wavelet

transform.
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Figure 5.18: The correlation ρk between ground truth
∗
x and reconstruction x̂ as a function

of structure scale k for (a) a two-scale reconstruction from Fig. 5.10(a), (b) a fractal multi-

scale reconstruction from Fig. 5.10(b), (c) a multi-model behaviour reconstruction from

Fig. 5.10(c), where km denotes the resolution scale of the measurement, where km denotes

the measurement scale. The proposed HHMF performs similarly to or better than the

competing wavelet methods.
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Figure 5.19: The inconsistency of the reconstruction result x̂ with ground truth
∗
x assessed

in terms of a chordlength model [105], plotted as a function of chordlength. With the

exception of long chordlengths in (b), the inconsistency of the HHMF is consistently better

(lower).
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Chapter 6

Tree-structured Hidden Hierarchical

Markov Fields for Remote Sensing

Image Synthesis

The systematic evaluation of data analysis tools, such as segmentation and classification

algorithms for geographic information systems (GIS), is difficult given the unavailability

of ground-truth data in most cases. Therefore, testing is typically limited to small sets

of pseudo-ground truth data collected manually by trained experts, or primitive synthetic

sets composed of simple geometries. In this chapter, to address this issue, we will pro-

pose a more substantial approach on the basis of hidden hierarchical fields to synthesize

remote sensing data for use as a reliable evaluation test-bed. Given the scale-dependent,

non-stationary nature of remotely sensed data, a new modeling approach that combines

a resolution-oriented hierarchical method with a region-oriented binary tree structure is

introduced to synthesize such complex data in a realistic manner. Experimental results us-

ing operational RADARSAT SAR sea-ice image data and SIR-C/X-SAR land-mass image

data show that the proposed hierarchical approach can better model complex, nonstation-

ary scale structures than local MRF approaches, thus making it well-suited for synthesizing

This chapter is written based on the paper: Y. Liu, A.Wong and P. Fieguth, Synthesis of remote

sensing label fields using a tree-structured hierarchical model, accepted by IEEE Trans. on Geoscience

and Remote Sensing, Nov. 28, 2010.
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remote sensing data.

6.1 Introduction

The use of aerial and satellite remote sensing imagery has become an integral part of

terrestrial ecological studies and environmental monitoring, ranging from sea-ice monitor-

ing in polar regions [117] and land-use and land-cover change analysis [56, 61], to flood

risk and damage assessment [33]. Given the large volume of high-resolution remote sens-

ing data being acquired on a daily basis and the time consuming nature of manual data

manipulation, considerable research effort in the design of geographic information sys-

tems (GIS) has been spent on the development of tools for analyzing remote sensing data

in an automated fashion. Two classes of automatic data analysis tools that have great

importance to GIS are automatic segmentation [52, 94, 99, 102, 117] and classification

algorithms [11, 33, 55, 78, 87].

A major challenge in the design of automatic segmentation and classification algorithms

for the purpose of remote sensing image analysis is the reliable, systematic evaluation of

algorithmic performance for assessing the potential for transition from the research stage

to real-world operational use in GIS. While a plethora of quantitative assessment metrics

are available for evaluating the performance of such automatic data analysis tools [76],

it is not feasible in the case of polar regions to acquire ground-truth segmentation and

classification information pertaining to the remote sensing data. As such, the evaluation

of automatic segmentation and classification techniques have been limited to the use of

small sets of pseudo-ground truth data collected manually by trained experts in a time-

consuming manner, or primitive synthetic sets composed of simple geometric shapes [117].

The reliability of performance assessment using pseudo-ground truth data is limited not

only by the small set of test data available, but also by the limited time and accuracy

of trained experts who are able to produce manual segmentations and classifications on

a pixel level. The performance assessment using primitive synthetic sets is more reliable

than that using pseudo-ground truth data given the large amount of test data available

and pixel-level accurate ground truth. However, such primitive synthetic tests are a poor

representation of real remote sensing imagery and as such do not provide a realistic testing

scenario for evaluating the operational potential of an automatic data analysis algorithm.
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To address these issues associated with the evaluation of automatic analysis algorithms,

we propose an alternative approach where the systematic evaluation of analysis algorithms

is performed using realistic-looking remote sensing data, generated from real data, and

corresponding synthesized ground truth. This approach allows for the generation of large

test sets that are representative of real-world operational scenarios and have known ground-

truth. Furthermore, the randomness associated with the synthesis process improves the

reliability of testing by reducing bias towards algorithms tuned to work well with specific

test data.

Much of the research literature in remote sensing image synthesis deals with model-

based texture synthesis [14, 15, 21, 115]. However, such methods are designed to capture

and generate textural characteristics only and as such are ill-suited for generating realistic-

looking remote sensing data as they do not capture the complex structural characteristics

found in operational settings. More recent general nonparametric texture synthesis meth-

ods (e.g., [34, 66, 108]) are able to better capture both textural and structural character-

istics, but exhibit two main limitations. First, while such methods are able to capture

small-scale structural characteristics, they are ill-suited for capturing large-scale structural

characteristics, which will be illustrated later in the experimental results. Second, and

crucially, no texture method provides a corresponding label field, which is the necessary

ground truth in the evaluation of data analysis tools.

In this chapter, we aim to address the issues faced by existing image synthesis methods

in generating realistic-looking remote sensing data by decoupling the synthesis of texture

and structure into two different modeling structures. That is, we will first explicitly synthe-

size the discrete-state label field, which hidden under the remote sensing image contains

the complex structural characteristics of the image, then separately synthesize the tex-

tures of remote sensing images using a modification of the nonparametric texture synthesis

strategy proposed by Efros and Leung [34]. We introduce a practical approach to synthe-

sizing underlying multi-label discrete fields by combining a resolution-oriented hierarchy

with a region-oriented hierarchy. Multi-resolution representations have a long history and

the method of representing an image or a label map with binary partition trees has been

previously discussed [32, 90, 98]. Indeed, recently there has been growing interest in a gen-

eralization of hierarchical partition fields [38, 100] for segmentation or hidden hierarchical

fields [68]. However, the idea of using partition trees and hierarchical models for synthesis

is novel.
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6.2 Related Work

While texture synthesis approaches for remote sensing data have been proposed in pre-

vious research literature [14, 15, 21, 115], little attention has been paid to synthesizing

remote sensing data with complex structural and textural characteristics. One can view

the problem of generating structures for synthetic remote sensing data as a label synthesis

problem, where a label corresponds to a particular class of structure or feature (e.g., ice

type, vegetation type).

While there is a large research literature [24, 39] on texture classification and processing,

in most cases the problem involves comparatively simple labels or lies at a single scale. In

particular, many approaches utilize blob-like priors that enforce boundary smoothness and

as such assert little in terms of subtle structures and complexity in the simulation of

the field. Therefore for synthesizing complex label fields, such as those in Fig. 6.1(c,d)

illustrating structures in remote sensing imagery, a more subtle model is required.

The simplest method to improving the modeling of subtle structures is through the

use of a Fourier basis for a Gaussian Markov Random Field (GMRF) model kernel (Sec-

tion 3.1.1) method with threshold. Unfortunately, this approach is able to give only a

stationary binary field and, even more problematic, only at a single scale. To capture

complex scale structures, we are unable to uese single-scale models such as local MRF

(Section 3.1.1), chordlength and local histogram (Section 2.2.3).

On the other hand, creating a prior based on a hierarchical structure provides a more

natural way to introduce scale-dependent models. The Frozen State Hierarchical Field

(FSHF) model, as discussed in Section 3.3.2, defines an inter-scale relation for computa-

tional efficiency with only annealing relatively small structures at each scale. Although it

is possible to apply the FSHF to directly model a binary label map (Fig. 6.1(c)), this ap-

proach cannot be used directly in the cases with more than two labels or with nonstationary

behavior (Fig. 6.1(d)), both of which are common in remote sensing imagery.

In Chapter 5, we have proposed a Hidden Hierarchical Markov Field (HHMF) model

with parallel hidden hierarchies to capture heterogenous behaviours. Although this model

can be adapted to synthesize multi-label fields, an assumption has to be satisfied: the

multi-label behaviours have to be either independent to each other or conditionally inde-

pendent. However, in the remote-sensing case, the label field may have highly spatially
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(a) (b)

(c) (d)

Figure 6.1: Sea-ice texture samples (a,b) and their underlying label maps (c,d). Many

remote sensing textures have underlying label maps with multi-scale structures which can

be binary (c) or multi-labeled (d). The scale-dependent behavior in (c, d) will usually not

be well captured by a single random field.

dependent structures (Fig. 6.1(d)) which can be well represented by two or tree independent

or conditional independent stationary fields.

There is an established literature on the use of partition trees to decompose multi-

label problems in image segmentation, compression, and synthesis [4, 32, 90, 98]. In this

approach, a multi-label problem is repeatedly partitioned to yield a set of simple problems.

In the past, the simple partitioned problem were solved using simple models, such as a single
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MRF. However, a tree of simple random fields does not gives the modeling flexibility to

represent complex structures. For example, a sea-ice label map (Fig. 6.1(d)) is set apart

into a set of simple component fields (Fig. 6.2), however some partitioned label fields, even

with binary states, may still possess sufficiently complex scale-dependent structures which

are not modeled well by single random field, such as Fig. 6.2(b). Thus, to model those

partitioned fields requires a sophisticated model, such as the FSHF.

In this chapter, we are proposing to combine the ideas from the two preceding para-

graphs, combining hierarchical modeling with partitioning methods. This modeling ap-

proach will allow us to reliably capture multi-label structures as a function of scale, which

is very important for the realistic synthesis of complex data.

6.3 Hierarchical Markov Fields

6.3.1 Hidden Label Field Synthesis

In this chapter, we propose to synthesize remote sensing images on the basis of first syn-

thesizing the label field. There are a variety of approaches to synthesize label fields and,

in particular, we are using methods taken from MRFs (Chapter 3). In modeling a given

underlying label field U , a MRF (Section 2.1.2) characterized by a local neighbourhood

Ns,
p(us|uS\s) = p(us|uNs),

cannot assert the presence of structures on more than one scale (Section 3.1), whereas

learning a huge nonlocal model which can, in principle, learn such structures, is prohibitive

to learn and to use. Instead, to model a label field U having multi-scale structure, we

would propose using scale-dependent modeling, such that U is defined via a sequence of

fields {Uk, k ∈ K = (0, 1, · · · ,M)}, where k = 0 denotes the finest scale and k = M the

coarsest. At each scale k, Uk is defined on site space Sk and results from the downsampling

of U ≡ U0. A hierarchical model can be written as

p(u0, · · · , uM) =
[M−1∏
k=0

p(uk|uk+1)
]
· p(uM) (6.1)

The advantage of hierarchical modeling is that nonlocal large-scale features become local

at a sufficiently coarse scale, therefore at each scale a single MRF can be used to capture
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the features local to that scale, inherently allowing for scale-dependent structures. We will

define uks to be the label state at site s on scale k, with an associated local neighbourhood

N k
s and parent uk+1

℘(s) on the next coarser scale. As synthesizing binary images, a label field

U can be represented by FSHF model with a ternary state uk(s) ∈ {0, 1, 1
2
} at coarse scales

(k > 0).

6.3.2 Multi-state Hierarchy

In general, extending beyond binary modeling leads to rather complex representations and

models, as well as to significant computational complexity. Although the FSHF model

is effective in binary modeling, extending the method to multi-state modeling is not a

trivial step [20, 68]. The problem related to modeling all pairwise, triplet-wise, etc. label

interactions at coarser scales is quite complicated even for the ternary case.

However, for some ternary-state phenomena, if there is an intermediate medium acting

as a physical separation or layer between two others, we have a particularly convenient

context for modeling the ternary phenomenon. We can change the state definition of the

FSHF by letting grey (1
2
) denote the intermediate layer or undetermined, with the effect

that the FSHF method can be directly applied and the intermediate state will lead to a

ternary rather than binary field at the finest scale. Noticeably, here we insist a spatial

decoupling assumption that the intermediate state conditionally separates the other two

states. In most cases it will be simpler to decompose a complex multi-label structure into

a set of simpler components as discussed in the Section 6.4.

6.4 Tree-Structured Hidden Hierarchical Markov Fields

The FSHF method discussed in Section 6.3 offers a compelling approach to modeling,

which is computationally highly efficient, and admits a scale dependent model for the

synthesis of binary label maps. However there are two obvious issues that need to be

addressed for the synthesis of more complex label fields as encountered in remote sensing:

first, we generally have to solve a multi-label problem. Second, the label maps may be

nonstationary, meaning that there are different behaviours in different parts of the image,

which cannot be well modeled by a single hierarchy: forcing a single hierarchy to learn the
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variability of a nonstationary behaviour leads to an averaging effect, so we need more than

one model.

There is an existing literature on partition trees [32, 98] which allows a given image

or label map to be partitioned into pieces. The general idea behind the partition tree is

that behaviours are split and successively subdivided until homogeneous portions of images

are found. In general, such binary partition trees can be used in problems of classifica-

tion. Here, we choose to use them equally suitably in image synthesis, as a proposed

Tree-Structured Hidden Hierarchical Markov Field (Tree-Structured HHMF) for modeling

underlying label field. The assumption is that a given multi-label image can be produced

as a tree-structured conditional sequence of binary or ternary images, such that the domi-

nant large-scale structure is produced first (the root node of the partition tree), then with

further details inside and outside of this structure developed in the child nodes, a detailed

example of which will be seen in the experimental results. The key idea is to use the

existing method of partition trees to combine multiple hierarchical models to allow the

nonstationary and nonbinary representation that we are seeking, and at the same time to

preserve the scale-dependent computational efficiency of the hierarchical approach. The

modeling structure of tree-structured HHMF is shown in Fig. 6.3.

In the proposed modeling approach, the structural components of U are progressively

specified by a sequence of nodes in a binary tree (6.2) from mixed to pure labeled states.

T = {U i|Qi, 0 ≤ i < N} (6.2)

Every node is defined as a conditional hierarchical field U i|Qi = {U i,k|Qi, k ∈ (0, 1, · · · ,M i)},
where Qi denotes the set of fields on which U i depends. The partition tree starts at the

root U0 = {U0,k|Q0 = 1}, used to capture the most significant structure of U .

The influence of U i on the partition tree is mediated through the up to two children

of U i, conditional on U i or Ũ i, such that binary field U i controls the spatial extent of its

children. The conditioning is encoded in Qi, which consists of one or more fields, such that

Qi = Ua → U i
s = 0 if Ua

s = 0

Qi = Ũa, U b → U i
s = 0 if Ua

s = 1 or U b
s = 0

(6.3)

etc. Since each node under T only models simple binary/ternary structures, each field

U i|Qi can be well modeled by the FSHF, as discussed in Section 6.3, and each scale of each
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field U i,k|Qi can be sampled as

Û i,k|Qi ← p
(
U i,k|Qi

∣∣ Û i,k+1
)
. (6.4)

This process proceeds recursively, first over all scales in U0, then over scales on fields further

down the partition tree.

The process by which we infer a partition tree structure T from a given training label

field ũ is a creative one, requiring human input, and is highly problem dependent. The

main example of this paper, the field shown in Fig. 6.1(d), has as its dominant large-scale

structure the binary behaviour u0|1 (Fig. 6.2(a)). Since both foreground and background

in Fig. 6.2(a) correspond to mixed labels, the partition process needs to continue. The

foreground is partitioned into two binary fields (Fig. 6.2(b,c)), whereas the background

is decomposed into a ternary field (d) and two minor, residual binary ones (e,f). The

original label field ũ has thus been decomposed, represented as a partition tree as shown

in Fig. 6.6(i).

Having specified a partition tree, the inverse step, the process of recombining of the

synthesized conditional fields {U i|Qi} to get û = J( {ûi|Q̂i} ), is straightforward.

Thus, the proposed tree-structured HHMF method synthesizes a label field in two ways:

in terms of shape complexity, the structure is gradually refined hierarchically from coarse

to fine resolution; in terms of label complexity, the states are specified through a partition

tree from coarse to fine labeling. The proposed modeling approach, with both resolution-

oriented and region-oriented hierarchies, provides a capability to model complex discrete

fields using simple models while maintaining high computational efficiency. A hierarchical

model on its own, such as the FSHF, can be considered as a special case of the tree-

structured HHMF with only one region-oriented component.

Admittedly, one of the limitations of the proposed approach is its spatial decoupling

assumption, which assumes that a multi-label field can be decomposed into multiple bi-

nary/ternary fields. In some cases in which the different label regions are highly interacting

this assumption may not hold true, however our tests show that a variety of SAR and other

data can indeed be modeled in this way.

The overall modeling process (Algorithm I) is therefore to select a partition tree, to

find ground truth for each state in the partition, and to learn a histogram model H i
k in

(2.19) from the empirical histogram of the ground truth data for each scale k in model i.
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Algorithm I: Tree-Structured HHMF Modeling

1: Initialize a training partition tree T = {U i|Qi, 0 ≤ i < N};
2: Learn a hierarchical histogram model H i

k at k scales for each

conditional node U i|Qi in T;

3: Initialize each sampling hierarchy randomly at the coarsest scale;

4: Sample each hierarchical model from coarser to finer scales by using

simulated annealing;

5: Combine the generated fields to the partition-tree structure and obtain

the synthesized label field.

With modeling performed, the sampling process follows the dependency structure of the

partition tree. Each hierarchy is randomly initialized at the coarsest scale, and sampled at

progressively finer scales using simulated annealing. When all of the frozen state hierar-

chies have been sampled, the generated fields are combined according to the partition-tree

structure to obtain the label synthesis.

6.5 Image Synthesis

The textured images in Fig. 6.1(a,b), having a complex, non-local, non-stationary be-

haviour are difficult to model. Therefore the direct synthesis

x̂← p(x) (6.5)

is a complicated undertaking. On the other hand, because U represents the salient features

of interest in X, what remains in X, given U , are the fine-scale details not of interest:

noise, speckle, quantization, blurring, etc., all of which are comparatively simple and local

textural phenomena. That is, the synthesis

x̂← p(x|û) (6.6)

is comparatively straightforward, therefore we are deliberately picking an existing texture

synthesize method [34] to generate the fine-scale texture on top of û.

The method in [34] is a sample based approach to synthesis, such that a pixel xs is

synthesized by comparing its neighbourhood XNs to all possible neighbourhoods in the
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training data x̃, and selecting xs at random from among the matching x̃ neighbourhoods.

This allows a synthesis x̂← p(x), as in (6.5), with the problem that a small neighbourhood

Ns fails to reproduce large-scales structures, and large neighborhoods tend to memorize

the structure of x̃, failing to generate a random sample.

We slightly modify the method of [34] to allow a synthesized texture x̂ to be sampled

from the conditional MRF X|U :

x̂s ← p(xs|xNs , us), (6.7)

rather than directly from the texture field X. Given the conditioning on us, we now search

for a set of closely matching patches in x̃, for which the training label ũ also matches.

We will see in Section 6.6 that this simple texture synthesis approach leads to good

results. There is nothing inherent necessitating the use of [34] with our approach; indeed,

any other advanced texture synthesis method may be used as well.

6.6 Experimental Results and Evaluation

This chapter has two goals:

i) The synthesis of realistic remote sensing imagery.

ii) The synthesis of the underlying label field as ground truth.

To demonstrate the effectiveness of the proposed tree-structured HHMF model, the image

synthesis approach described in Sections 6.4 and 6.5 was used to generate random SAR

sea-ice imagery based on operational RADARSAT-1 SAR sea-ice imagery of the polar

region provided by the Canadian Ice Service (CIS), as well as SIR-C/X-SAR land-mass

imagery of Hong Kong, China provided by NASA JPL. The SAR sea-ice data used to learn

the model for generating sea-ice imagery are acquired in the microwave band (C-band),

with HH polarization, 100m pixel spacing, and three ice types. The sea-ice imagery of the

polar region is difficult to model and synthesize given the complex sea-ice structures and

formations, as well as non-homogeneous texture characteristics. The SAR land-mass data

of Hong Kong, China used to learn the model for generating land-mass imagery are acquired

in the microwave band (C-band). The sea-ice and landmass imagery are very different from

one another, with the intent of illustrating that our method is not specialized to a single

type of imagery.
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6.6.1 Single Hierarchical Approach

A single hierarchical field model, such as the FSHF, can be considered as a special case

of the tree-structured HHMF with only one component. As the first test for the proposed

model, we apply a single FSHF model to synthesize a scale-dependent binary field. This

initial test is undertaken to demonstrate the morphological modeling performance of a

single hierarchy in modeling a binary field. The model is trained by the binary field ũ

shown in Fig. 6.1(c). Two synthesized samples û are shown in Fig. 6.4(a,b). We can see

the structures in the synthesized fields essentially resemble the multi-scale phenomena of

the training data.

The texture at each pixel x̂s is sampled, as described in Section 6.5. In the synthesized

texture samples, Fig. 6.4(c-d), we see that the created texture skin is consistent with the

texture characteristics in the training data shown in Fig. 6.1(a).

6.6.2 Tree-Structured Hidden Hierarchical Approach

A more general test for the proposed tree-structured HHMF is the image shown in Fig. 6.1(b),

with a corresponding label field in Fig. 6.1(d). Based on the tree-structured modeling rep-

resentation of Section 6.4, a partition tree of binary or ternary component fields ũi is

constructed, as shown in Fig. 6.6(i), such that the hidden field is produced from the com-

ponents as

û = J ( {ûi|Q̂i} )

= û0|1 + û1|û0 − û2|û0, ¯̂u1 + û3|¯̂u0 − û4|û3, ¯̂u0 + û5|¯̂u3, ¯̂u0
(6.8)

where the partition tree structure is subjectively inferred, by hand, from the training data.

We thus obtain a complex, synthesized, multi-label field (Fig. 6.6(g)). By comparing

Fig. 6.6(a-f) to Fig. 6.2(a-f), respectively, we can see that the synthesized components

generally resemble the multi-scale structure in their corresponding training components.

Since the structured features of each training component can be well captured by each node

hierarchy, the final label field should possess similar statistical characteristics to the training

data, comparing Fig. 6.6(g) to Fig. 6.1(b). Given the synthesized label field (Fig. 6.6(g)),

the sea-ice texture may be generated (Fig. 6.6(h)), and can be compared with Fig. 6.1(b).

90



To emphasize the variability in the synthesized samples and the suitability of our ap-

proach in generating ground truth test data, three additional results based on the same

training data are shown in Fig. 6.7. We can see that the synthesized label fields provide

substantial variations, and yet share similar statistical characteristics.

The hierarchical model in the proposed modeling structure is evaluated, as plotted

in Fig. 6.5, using a chordlength model (Section 2.2.4) from a large (2048 × 2048) binary

sample (Fig. 6.5(a)). This test sample, a microscopic image of a physical porous medium,

contains a wide variety of multiscale structures, exactly the sort of structure our proposed

hierarchical model is expected to model. Comparing the chordlength plots between the

synthesized and true fields (Fig. 6.5(b)) the chordlength model, which is unrelated to our

model in (2.19), validates the consistency of the synthesized samples with each other and

with the true sample. The sensitivity of the free parameter ε in (2.19) is assessed by

generating samples as a function of ε; as shown in Fig. 6.5(c) the proposed algorithm is

insensitive to small ε.

To illustrate the strength of the tree-structured HHMF, we compare our proposed

method with other methods in label field modeling and texture synthesis. First, a single

MRF is used to synthesize both binary and ternary fields based on Fig. 6.1(c,d). The

synthesized label fields are shown in Fig. 6.8(a,b) where we see that the synthesized struc-

tures are local and stationary, rather than presenting the multi-scale structures appearing

in the true label maps. In contrast, the FSHF and the tree-structured HHMF models

exhibit their capabilities of capturing complex structures in the label fields by capturing

the presence of scale-dependent behavior in Fig. 6.8(c,d).

As a second comparison, we compare our proposed data synthesis method with two

non-parametric texture synthesis methods: one a pixel-based sampling [34] and the other

a patch-based sampling [66]. The basic idea of both non-parametric methods is to directly

sample the given image by using self-similarity, a concept widely used in texture synthesis.

For the relatively simple sea-ice training data in Fig. 6.1(a), the generated textures from

the two comparison methods are given in Fig. 6.9(a,b), which provide a good reproduction

of the training sample. Similarly, given training data with more complex structure in

Fig. 6.1(b), the nonparametric methods also provide quite attractive results in Fig. 6.9(d,e)

and demonstrate a good ability in structure representation.

However, there are three significant issues. First, the nonparametric methods are sensi-
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tive to the synthesis staring seed, such that for certain seeds the synthesis may fail to sense

certain significant structures present in the training data, as may be seen in comparing

Fig. 6.9(e) with Fig. 6.1(b). Second, the nonparametric methods are sensitive to window

size, such that a small window fails to sense large-scale structure, whereas a large window

can lead to copying portions of the training image, as may be seen in Fig. 6.9(d), rather

than random sampling. Finally, and most significantly, the texture synthesis methods syn-

thesize only the texture, and have no notion of the underlying label field, which is essential

for the testing of classification and segmentation algorithms.

A third experiment compares to a recent method [114] in which a nonparametric method

does generate the label field as part of synthesis. Developed from the patch-based sampling

method of [66], the method inherits the same advantages and disadvantages of patch-based

methods. Because the focus of [114] was on texture synthesis, and not necessarily the

quality of the underlying field, the synthesized ground-truth is relatively poor, as shown in

Fig. 6.10. In particular, the synthesized label field is rather sensitive patch size (Fig. 6.10(a-

c)), and suffers from blocky and repetitive artifacts (Fig. 6.10(c,d,f)).

As a final experiment, in contrast to the sea-ice imagery shown in previous exam-

ples, land-mass imagery in Fig. 6.11(a), with a corresponding label field in Fig. 6.11(d),

are also used as training samples. The synthesized label field and texture are shown in

Fig. 6.11(e,f). Compared to the results in Fig. 6.11(b,c) from the nonparametric meth-

ods [34, 66], our proposed approach shows more flexibility in producing random syntheses,

particularly given the similar structures which appear in the nonparametric syntheses,

copied from the training data.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: A complex multi-label map (training label field) can be manually decoupled

as several binary or ternary fields with relatively simple structures. For example, the label

map from Fig. 6.1(d) is decomposed here in (a-f). Although some fields, such as (a), (b)

and (d), still contain structures at multiple scales, each decomposed field becomes much

simpler than the original.
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0U |1

1U 0|U 4U 0|U

2U 1|U ,
3U 1|U 0U

Figure 6.3: The modeling structure of tree-structured HHMF. The partition tree has a

hierarchical field at each node, where the field U i is conditioned on the behaviour of its

parent, or both parent and grandparent.
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(a) (b)

(c) (d)

Figure 6.4: Binary-label sea-ice samples synthesized using a frozen state hierarchical model.

Trained by the label sample in Fig. 6.1(c), the synthesized label maps (a) and (b) not only

maintain similar structure statistics of the training sample, but have significant variations.

From (a) and (b), it is straightforward to conditionally sample the textures shown in (c)

and (d), which are comparable to the true sea-ice sample of Fig. 6.1(a).
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(a) Binary test sample
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(b) Chordlength of syntheses with multiple runs (c) Chordlength of syntheses as a function
of ε,showing limited sensitivity.

Figure 6.5: The hierarchical model of the proposed modeling structure is evaluated using

a chordlength model [104]: (a) A large binary microscopic excerpt (2048× 2048) for model

evaluation. (b) Chordlength distributions from multiple synthesis runs, (c) Chordlength

as a function of parameter ε in (2.19).
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(a) û0|1 (b) û1|û0 (c) û2|û0, ¯̂u1

(d) û3|¯̂u0 (e) û4|û3, ¯̂u0 (f) û5|¯̂u3, ¯̂u0

0U

1U 0U

3U,1U, 3U,4U

0U 3U

0U 0U5U0U2U

1

(g) û = J(û0, · · · , û5) (h) x̂ (i) Partition tree

Figure 6.6: A multi-label synthesis with the proposed tree-structured hidden hierarchical

model. The synthesized component fields are shown (a-f), corresponding to the training

samples shown in Fig. 6.2. The simple binary / ternary fields can be combined, based on

the tree structure (i), to achieve the final label map (g), which is clearly similar to the true

label map in Fig. 6.1(d). Given (i), a synthesized sea-ice texture sample (h) is produced.
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(a) (b)

(c) (d)

Figure 6.7: Multi-label sea-ice samples synthesized with multiple runs, based on the same

training samples from Fig. 6.2 and the same tree structure in Fig. 6.6(i).
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(a) Two phase black/white (b) Local histogram model [2]

Chordlength model [104]

(c) FSHF (d) proposed method

Figure 6.8: Sea-ice label map synthesis comparison. Panels (a,b) show label fields result-

ing from single Markov fields, based on chordlength and local-histogram models, whereas

panels (c,d) show the label fields from the scale-dependent FSHF and the tree-structured

HHMF, respectively. It is clear that the single Markov models can only provide stationary

fields, with structure on one scale, as opposed to the nonstationary and scale-dependent

structures possessed by the real label maps in Fig 1(c,d), and which are well captured by

the multi-scale models in the FSHF and the tree-structured HHMF.
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(a) Method of [34] (b) Method of [66] (c) Proposed method

(d) Method of [34] (e) Method of [66] (f) Proposed method

Figure 6.9: Sea-ice texture synthesis comparison, based on the pixel-based non-parametric

sampling method [34] (a,d), patch-based sampling method [66] (b,e), and our texture syn-

thesis method proposed in Section 6.5 (c,f). The top row shows two-label synthesis results,

and should be compared to Fig. 6.1(a). The bottom row shows three-label syntheses,

compared to Fig. 6.1(b).
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(a) Block size 10× 10 (b) Block size 40× 40 (c) Block size 100× 100

(d) Block size 10× 10 (e) Block size 40× 40 (f) Block size 100× 100

Figure 6.10: Sea-ice label map synthesized by the IceSynth2 method [114]. Based on the

binary and ternary label samples of Fig. 6.1(c,d), samples (a-c) and (d-f) are synthesized

with the stated patch sizes. The sensitivity of the result to patch size is clear, as is the

blockiness and repetitive artifacts in (c,d,f).
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(a) Land-mass image (b) Method of [34] (c) Method of [66]

(d) True label field of (a) (e) Synthesized label field (f) Synthesized texture from (e)
from proposed method

Figure 6.11: Land-mass imagery (a) with its given label field (d). Both the synthesized

label field (e) and texture (f) resemble the true label map (d) and texture (a) well.
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Chapter 7

Conclusions and Future Directions

7.1 Summary

The contributions of this thesis research are in both methodologies and applications. In

methodology, HHMF models are proposed (Chapter 5, 6) for addressing significant chal-

lenges of modeling scale-dependent, heterogeneous structures. In application, the proposed

HHMF models have been successfully applied to porous media image reconstruction (Chap-

ter 5) and remote-sensing image synthesis (Chapter 6).

The basic idea of the HHMF is to combine hierarchical field modeling with multi-

ple hidden field partitioning methods, so that the heterogenous behaviors of the original

discrete field can be decomposed into several simpler fields, at the same time, the com-

putational complexity can be taken care of by an efficient hierarchical modeling method,

such as the FSHF. Thus, the proposed methods provide a practical and reliable way for

dealing with multi-model behaviours, multi-label states, and scale-dependency. However,

how to infer HHMF modeling structures is highly problem-dependent. Through two real

problems with complex data we have illustrated the design and implementation of the

proposed HHMF models. From both reconstruction and synthesis results, we can see that

the proposed HHMF methods have exhibited positive effects in handling different com-

plex scale-dependent situations. In summary, in this thesis we have achieved the following

accomplishments:

• A Parallel HHMF model has been proposed to handle complex scale-dependent struc-
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tures with nonstationary, piece-wise heterogeneous behaviours. Given joint fields at

coarser scales, the proposed model represents multi-model behaviours by a set of

conditionally independent fields at finer scales, so that each of those parallel fields

contains a simpler behaviour and can be captured hierarchically by simple, local

models. This proposed modeling approach has been applied to porous media im-

age reconstruction [68, 69, 70], where the significant reconstruction results show the

flexibility and capability of the proposed model in dealing with complex, multi-scale

structures.

• Alternatively, a highly heterogeneous arrangement of hidden fields, which is not par-

allelly separable but arranged more as a partition tree, leads to the proposed Tree-

Structured HHMF model. This modeling approach integrates a region-oriented bi-

nary tree structure with a resolution-oriented hierarchical approach to allow for com-

plex, multiscale structure modeling while maintaining high computational efficiency.

Although inferring the tree structure makes a forward problem with measurements

difficult, such a tree structure can be easily used to synthesize highly complex hidden

fields. Given the scale-dependent, non-stationary nature of remotely sensed data, we

have applied the proposed model to remote sensing image synthesis [71].

7.2 Future Research Directions

To extend the work of this thesis, potential research directions can be considered from both

methodology and application points of view:

• Setting up an efficient model for representing multi-label states, especially for the dis-

crete field, is still a challenge. For example, in a four-label case to represent a joint

relationship among the eight neighboring pixels surrounding a central pixel requires

a model with 48 = 65536 parameters per scale. On the basis of this parameter explo-

sion, the local histogram model used in the FSHF modeling suffers a critical problem,

since a multi-label state, rather than binary, will bring too many degrees of freedom

in defining the unfrozen-state. To avoid increasing parametrization and to keep the

computational efficiency of the FSHF, the proposed HHMF approaches apply parallel

or tree partition to decompose a multi-label field into multiple binary/ternary fields.
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However, this modeling simplification is based on a spatial decoupling assumption

which may not hold true for regions with highly spatially interrelated structures.

Therefore a further study for efficient, multi-label modeling is required.

• Another prospective direction is to generalize to 3D discrete-state models. This

is interesting topic that has been little touched but is related to many unsolved

research problems. For example, how could we model a 3D discrete-state field with

scale-dependent structures? Could we address a 3D modeling problem by a 2D

HHMF sequence? Or, how could we develop a 3D hierarchical model with a tractable

computational complexity? Besides, more challenges will rise in the situations where

we need to associate a 3D prior with measurements. For example, issues related to 3D

porous media image reconstruction may include how to match a high resolution 3D

prior with a low resolution 2D sequence, how to train the 3D prior model with high

resolution 2D images, how to reduce the computational complexity of 3D sampling,

and so on.

• Although the HHMF model has offered a powerful, flexible modeling approach to

handle the heterogenous behaviours of scale-dependent structures, in this thesis in-

ferring a modeling structure still requires human input. An automated algorithm is

desired for this purpose. Since the modeling structure is highly dependent on the

behaviours and properties of the image in question, there is no general automatic

way to go about this, but at least for some particular, actual data, an automated

algorithm for model learning is worth a study.

• For the image application problems we have solved in this thesis, there is still a

lot of further work to do. For example, for the problem of HHMF based remote

sensing image synthesis, more than synthesizing samples, its impact on classification

processes would be an interesting problem to study, such as the differences between

the synthesized ground-truth and the true ground-truth in training a classifier.

Although in this thesis the proposed HHMF has been demonstrated to reconstruct porous

media images and synthesize remote-sensing images, it should not limited in those two

applications. In the future work, we would like to work on extending the HHMF to solve

other image processing and analysis topics, such as denoising, segmentation, and feature

extraction, where scale-dependent, discrete-state fields are associated with problem solving.
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Appendix A

Correlation Evaluation

The quantification of our results is challenging because we are seeking to reconstruct the

actual measured sample at a finer resolution, and not just to synthesize a statistically

similar sample. Standard statistical comparisons, such as comparing the overall porosity

or chordlength distributions, assesses the statistical similarity of the true sample
∗
x and the

reconstruction x̂, but fails to assess whether the reconstruction is actually revealing the

structures of the original sample. The mean-squared-error between
∗
x and reconstructed

field x̂ could be computed, however the MSE fails to quantify the ability to reconstruct

large-scale as opposed to small-scale features. Here a correlation method proposed by Dr.

Paul Fieguth for evaluating discrete field reconstructions, to assess structural consistency

between x̂ and
∗
x as a function of scale.

The scale of a feature is defined to be the average number of scales nk over which a

pixel value xs is unchanged under repeated decimation. The decimation qk(x) at the kth

scale for binary field xs ∈ {−1, 1} is a majority-vote decimator, returning zero in the case

of a tie. The decimation can be a function of the dyadic origin o, therefore we refer to

the decimation qko (x) as a function of o. The scale associated with the feature at pixel s is

therefore

nk(s) = averageo
{

min
{
k 3 {qko (x)}s = xs

}}
(1)

With a feature scale defined, we can therefore correlate x̂ and
∗
x, calculated over a subset

Q as a function of feature scale nk:

ρnk(
∗
x, x̂) = correlation(

∗
xQ, x̂Q) over Q =

{
s 3 |nk(s)− nk| <

1

2

}
(2)
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Appendix B

Example Reconstruction Procedure

The overall procedure of the proposed parallel hidden hierarchical field method for porous

media image reconstruction (Chapter 5) includes model training, learning, and sampling.

Training data preparation

The training data used for a reconstruction example is a large, high resolution binary

image x̃ (4096× 4096) for a particular type of porous media. For example, to reconstruct

a two-scale porous media image (X) (Fig. 5.1(b)) from its observation Y (Fig. 5.2(b)), an

excerpt of training image is used and shown in Fig. 1(b). The number of model behaviours

Nν in the training sample x̃ is inferred manually, such as Nν = 1 for Fig. 1(b). Then,

according to Nν , x̃ is segmented as a label field ũ under human supervision.

For example: the training image x̃ (Fig. 1(b)) is first segmented by a morphological

method to close small scale pores (black pixel). Then, the small pores are further merged

by thresholding the region size, where the threshold is set empirically. Finally, a binary

segmentation result ũ = {ũi, i = 0} is obtained, such as shown in Fig. 1(c), which has been

used as the training data for modeling a hidden label field U .

For a more complicated type of training image field x̃ where we are not able to get an

appropriate segmentation easily, we label the image manually to get a multi-label field ũ

All the porous media data are provided by Professor M. Ioannidis, Dept. of Chemical Engineering,

University of Waterloo for providing sample porous media images.
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and decompose it to a set of binary label fields {ũi, i ∈ (0, · · · , Nν−1)}, where

ũi,s =

{
ũs if ũs = i, ∀s ∈ S
0 otherwise.

(3)

Given the label field ũ and its decomposed binary fields {ũi}, we can have conditional

training data x̃|ũ and {x̃|ũi} which are used to train image models for a particular hidden

state or every model behaviour.

Model learning

After we obtain the training data, we can start setting up a hidden hierarchical field model

similar shown in Fig. 5.7. At first, to find the coarsest scales (Mx, Mu) for each hierarchy,

we keep down-sampling training image ⇓k (x̃), and training hidden field ⇓k (ũ) with a

ternary state representation {0, 1, 1
2
} (3.18). At some scale k, as the majority states of x̃k

become undetermined, we set the coarsest scale for hierarchical field {Xk} to be Mx = k.

Similarly, {Uk} can find its coarsest scale Mu under the same procedure. Meanwhile, if

at some scale k the different behaviour labels of ũk start touching, we record this scale k

as kd, then {Uk, k > kd} needs to be modeled as a joint-label field; otherwise {Uk} can

always be decoupled as multiple independent fields {Uk
i }.

Then, given the coarsest scales Mx,Mu and the decomposition scale kd, we represent

training samples ({x̃|ui}, {ũ}, {ũi}) as frozen state hierarchical fields (3.18) and correspond

them to a modeling structure, such as Fig. 5.7. Then, at each scale target histograms

h̃kx|u, h̃
k
u, and {h̃kui} are defined by a local histogram (Section 2.2.3), and learned from

hierarchical training image field x̃k|(x̃k+1, ũk), training hidden field ũk|ũk+1, and training

decoupled hidden field {ũki |ũk+1
i }.

The relationship p(y|u) is defined by histogram and learned from the training data

x̃ and ũ. The measurement histogram h̃ky|u is learned at each scale from training data

ỹ = g(x̃k) given every possible configuration of a joint field ũk = (ũk0, · · · , ũkNν−1), such as

shown in Fig. 5.9. Here, g(·) denotes a forward operation which down-samples ⇓k (·) (as a

bottom-up process for Fig.3.8) or up-samples ⇑k (·) (as a top-down process for Fig.3.8) a

field to the measurement scale (k = km).
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(a) A noisy low resolution sample shown in Fig. 5.2(b)

(b) An excerpt train data

(c) The hidden label field of (b)

Figure 1: For reconstructing a noisy low resolution sample (a), the high resolution training

data (b) is selected with the same porous media image type, and its corresponding hidden

label field of (b) is inferred and shown in (c).
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The estimation process

In estimation, we first estimate hidden field U over all scales, such that the estimated

hidden field û is definitive (not uncertain) at every point, and then estimate an image field

X. This estimation procedure suggests that a constant annealing schedule, with sequen-

tial minimization over scales from coarse (k = Mu,Mx) to fine (k = 0), and sequential

minimization from hidden (U) to visible states (X), lead to a reconstruction x̂.

When estimating the hidden field U , in which case X is unknown, U is estimated

according to a measurement model p(y|u) and prior p(u). The hidden field U is estimated

as joint fields {uk} only at some coarse scales k > kd

p(uk|uk+1, y) ∝
∏
s∈SL

p(ys|uk) · p(uk|uk+1), k > kd, (4)

Then, as we learned from the training hidden field ũ, different model behaviour become sep-

arable at some scale kd and U is estimated separately as multiple independent hierarchical

fields {ui}
p(uki |uk+1, y) ∝

∏
s∈SL

p(ys|uki ) · p(uki |uk+1), k = kd, (5)

p(uki |uk+1
i , y) ∝

∏
s∈SL

p(ys|uki ) · p(uki |uk+1
i ), k < kd, (6)

After U is estimated, image field X is estimated given the estimated hidden hierarchical

fields {ûi}, therefore at each scale we have

p(xk|xk+1, uk0, · · · , ukNν−1, y) ∝
∏
s∈SL

p(ys|xk)· (xk|xk+1, uk0, · · · , ukNν−1), k < Mx, (7)

At each scale, the above posterior distributions (4)-(7) are represented as a Gibbs

distribution (2.10). Finally, at each scale {Xk} and {Uk
i } can be estimated by minimizing

their posterior energies using MCMC method (Section 2.3).

In this work, all the prior energy functions are defined by local histogram model (2.19)

H(n) =

Nh−1∑
n=0

|h(n)− h̃(n)|
ν(n) + ε

where h(n) is the estimated local histogram, h̃(n) is the target histogram learned from

training data, Nh is the number of possible neighborhood configurations, ε is empirically
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set as 0.001 to control the penalty for the unallowed local configurations, and ν normalizes

coefficients, such as ν(n) =
√
h̃(n) [20].

Measurement energies Em(y|xk) evaluates the inconsistency between the hierarchical

reconstruction xk and the observed field y, and is defined as

Hm(y|xk) = ‖y − g(xk)‖ (8)

Measurement energies of {p(y|uki )} and {p(y|uk)} are inferred empirically from the

training data.

Model sampling

With modeling performed, we first sample hidden fields {ûi}, i ∈ (0, · · · , Nν), then sam-

ple image field X, given the hidden estimates. For each estimated hierarchical field, the

sampling process follows the structure of frozen state hierarchical field (3.20) from the

coarsest scale to the finest scale. Each hierarchy is randomly initialized, and sampled at

progressively finer scales using Gibbs sampler (Algorithm 2.23) with Simulated Annealing

(SA)(Algorithm 2.3.3).

The SA process is started at a high temperature (T0 = 100), then we decrease the

temperature slowly according to a geometric scheme: Tn = ρ(Tn)Tn−1, where n is the

number of the iteration, and ρ(Tn) is separately set to be 0.996, 0.993, 0.99, 0.98, 0.96, 0.93

as Tn in the different interval: [100 30], [30 10], [10 3], [3 0.1], [1e− 1 1e− 2], [1e− 2 1e− 4].

When all of the hidden hierarchical field have been sampled {(̂u)i}, the image field X

is sampled based on (7) to obtain the reconstruction x̂.
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Appendix C

Example Synthesis Procedure

Remote sensing image synthesis (Chapter 6) includes two steps:

• Synthesize hidden label field U as ground truth (Section 6.4).

• Synthesize realistic imagery X given the given hidden label field U (Section 6.5).

The implementation procedure of the two steps is described as follows.

Training data preparation

To train the models for representing both label field and texture field of a remote sensing

image, the data need to be prepared for three purposes:

• to infer a tree-structure T (6.2) which is used to combine multiple binary/ternary

node fields to be the hidden label field U ,

• to train frozen state hierarchical field models (6.4) which represent the multiple bi-

nary/ternary fields,

• to train a conditional nonparametric model (6.6) which describes the image field X

conditioning on the state of an underlying label field U .

The sea-ice images used in this work are provided by Professor D. Clausi, and their corresponding

true label fields are provided by former Ph.D. student A. Wong, both from Department of Systems Design

Engineering, University of Waterloo.
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In our preparation, first a true label field sample (with L label states), such as shown

in Fig. 6.1(d), is used as training data ũ for inferring a partition tree structure T . After

the partition process, the complex training label field ũ has been decomposed as a set of

simple binary/ternary fields {ũi|Q̃i, 0 ≤ i < N}, such as shown in Fig. 6.2. Then, we

just take {ũi|Q̃i} as training data for learning the conditional hierarchical fields {U i|Qi}.
Meanwhile, since the true label ũ of the training image x̃ is known, for every label state

{l, l ∈ (0, · · · , N − 1)} its corresponding training imagex̃|ũ|l (ũ|l = {ũs|ũs = l,∀s ∈ S})
can be easily obtained, which is taken as training data for learning the image’s texture

behaviour, such as shown in Fig. 6.1(b), given every label state l in its label field ũ.

Inferring a partition tree

The process for inferring a partition tree structure T from a given training label field ũ

requires human input. We manually partition a training label field from a multi-label,

multi-scale field to a set of binary/ternary fields and each partitioned field contains spatial

structures at similar scales. A successful tree inference requires that the training label field

is spatially separable at each partition.

An inference example (Fig. 6.2) has been discussed in Section 6.4, however we would

repeat it here to make the implementation step complete. For a training label sample ũ

(Fig. 2(a)) which has a dominant large-scale structure, we manually extract the dominant

structure and represent its spatial behaviour by a binary field ũ0|1 (Fig. 2(b)). Then, given

ũ0|1 the original label is partitioned as two label fields, as shown in Fig. 2(c)(d), where the

scales of the spatial structures are less variant than the original field (Fig. 2(a)).

Since both foreground and background still contains mixed labels and multiple scale

structures, the partition process continues until ũ is decomposed as binary/ternary fields,

such as shown in (Fig. 6.2). Finally the original training label field ũ has been represented

as a partition tree T as shown in Fig. 6.6(i) and the relationship J(·) among the partitioned

fields is recorded, such as (6.8).

Conditional hierarchical field learning

After a partition tree structure has been inferred, to train the conditional hierarchical

fields at each node is straightforward. The partitioned binary/ternary label fields {ũi|Q̃i}
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(a) Training Label field shown in

Fig. 6.1(d)

(b) Dominant large-scale structure

of (a) shown in Fig. 6.2(a)

(c) Foreground field given (b) (d) Background field given (b)

Figure 2: An example of partition tree inferring. A complex label field (a) is manually

partitioned as two simpler fields (c) and (d) according to its dominant large-scale structure

(b).

are used as training data. Those partitioned fields are represented as frozen state hierar-

chical fields, where the coarsest scale M i for each hierarchy is learned by down-sampling

ũi,k|Q̃i,k =⇓k (ũi|Q̃i) until the majority of label states in ũi,k|Q̃i,k become undetermined

(1
2
), then set M = k. For all of the training hierarchies, at each scale a target histogram

h̃kui|Qi is defined by a local histogram (Section 2.2.3).
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Hidden label field sampling

With modeling performed, the sampling process follows two steps sequentially: First, a set

of binary/ternary fields {ûi|Q̂i} are sampled from the learned conditional hierarchical fields

separately. Second, according the learned tree-structure T the synthesized fields {ûi|Q̂i}
are combined together to be the final synthesized label field û.

In the sampling process, each hierarchy is randomly initialized at the coarsest scale, and

sampled at progressively finer scales using Gibbs sampler (Algorithm 2.23) with simulated

annealing (Algorithm 2.3.3). The cooling scheme is a geometric scheme: Tn = ρ(Tn)Tn−1,

where ρ(Tn) is set to be 0.996, 0.993, 0.99, 0.98, 0.96, 0.93 separately as Tn in the different

interval: [100 30], [30 10], [10 3], [3 0.1], [1e− 1 1e− 2], [1e− 2 1e− 4].

When all of the conditional hierarchies {ûi,k|Q̂i,k} have been sampled, recombining the

synthesized conditional fields {ûi|Q̂i} to obtain û is straightforward based on the specified

partition tree T with a recorded relationship of partitioned fields j(·), such as the example

shown in (6.8).

Image synthesis

For image synthesis, we slightly modify an existing method [34] to allow generating the

fine-scale x̂ on top of a synthesized underlying label field û (6.6)

x̂← p(x|û)

where p(x|û) is assumed to be a MRF. The sampling process (6.7) generates a pixel xs

based on its neighbourhood xNs and its corresponding hidden label state ûs:

x̂s ← p(xs|xNs , ûs).

The MRF can be specified nonparametrically by an empirical histogram. In our imple-

mentation, same as [34] we directly sample image field X from the training image sample

x̃ instead of constructing a model. However, differently from [34] we search for a set of

matching patches in x̃ given the conditioning on us rather than just based on an image field

matching. The distance between two image neighbourhoods given a hidden label state us

is defined as

d (Nxs ,Nx̃s′ |us) = ‖G (Nxs −Nx̃s′ |us)‖2 (9)
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where G is a Gaussian kernel (7× 7) and used to emphasize the local structure [34]. The

size of matching neighbourhoods (Nxs and Nx̃s′ |us) has been set as 7×7 for our experiments

in Chapter 6.

After comparing a matching neighbourhood xNs to all possible neighbourhoods {Nx̃s′ |us}
in a conditional training subset x̃|us, we can find the minimum distance

dmin = arg min
d

d (Nxs ,Nx̃s′ |us), ∀s′ ∈ S. (10)

Then, a group of close matches Λx̃s′
are selected by thresholding d

Λx̃s′
= {x̃s′ | d (Nxs ,Nx̃s′ |us) < (1 + τ) · dmin} (11)

where τ is a relaxation coefficient and is empirically set to be 0.3 in our experiments.

Finally, the texture of the image is sampled randomly from Λx̃s′

x̂s ← Λx̃s′
. (12)
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