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Abstract. Simulated annealing has been applied to a wide variety of
problems in image processing and synthesis. However, particularly in
scientific applications, the computational complexity of annealing may
constrain its effectiveness, in that the demand for very high resolution
samples or even three-dimensional data may result in huge configuration
spaces. In this paper a method of hierarchical simulated annealing is
introduced, which can lead to large gains in computational complexity for
suitable models. As an example, the approach is applied to the synthesis
of binary porous media images.

1 Introduction

In this work we are motivated by challenges in scientific imaging, in particular,
by the demand for the random synthesis of very high resolution 2D images
or 3D cubes. Our interest in this field is driven by studies in binary porous
media, possessing solid-gas or solid-fluid distributions, two examples of which
are shown in Fig. 1. Although these have been simulated extensively (stochastic
geometry [19, 20], annealing methods [23, 13]) computational issues are at the
heart of further research progress: Larger 2D and 3D simulations are required
to validate scientific models on ever smaller scales. Thus our goal is efficient
synthesis or sampling of huge random images of this type.

It is important the recognize the distinction between the superficially simi-
lar problems of random synthesis, considered here, and the much more common
problem of image estimation. The problem of estimation involves finding that
particular, normally unique, image which optimnizes some criterion (with respect
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Fig.1. Binary image (a) of packed glass spheres (common test data for porous
media applications) and (b) a rock sample

to some model and measurements), an inherently deterministic problem. In con-
trast, the synthesis of appropriate images by sampling is an inherently stochastic
problem, the selection of random samples from a statistical distribution. The dis-
tinction between the two is illustrated in Fig. 2. Although many approaches have
been developed for optimization (including closed-form solvers, linear systems,
and a huge variety of ad-hoc methods), the sampling problem is much more
subtle.

As opposed to relatively well-conditioned problems involving densely-
measured images, such as image denoising and segmentation, our interests in-
volve the sampling of random images subject to prior constraints and sparsely
sampled measurements, normally a very difficult and poorly-conditioned prob-
lem. Applying annealing approaches to such numerical stiffness typically requires
huge numbers of iterations and vast computational requirements.

There is one approach, however, which blurs the distinction between sam-
pling and estimation, and which may hold the key to an efficient sampler. The
method of simulated annealing (SA) (described in §2) has been widely used
for common imaging processing tasks, such estimation from noisy images [7, g],
image segmentation [7, 18, 2], and image synthesis [17, 23]. It is a promising
approach in many imaging applications, in that it can accommodate a wide va-
riety of assumptions and prior image models, even nonlinear ones. Estimation
effectively becomes a limiting case of random sampling, in the limit where only
the most probable samples are accepted. The well-known problem, however, is
that SA is exceptionally slow.

To be sure, a wide variety of accelerated annealing methods have been pro-
posed, many promising ones based on various hierarchical approaches [18, 14,
25, 17]. The basic premise, as with related methods such as multigrid [10, 4, 15],
is that the problem is greatly accelerated by addressing long-range phenomena
and dependencies on a coarse-scale, leaving only more local phenomena to be ad-



196 Simon K. Alexander et al.

zlm

Fig. 2. A comparison of estimation and posterior sampling: the top left panel
shows an anisotropic wood-grain texture and the measured central column m.
The estimates Z|m clearly reveal the pattern of the measurements, and bears
little resemblance to the original texture. The bottom panels show the sampled
posterior estimation error Z|m, in which a low-variance zero-mean band can be
seen where the estimates are good. Finally the posterior sample z|m shows the
random texture, consistent with both the measurements and the prior statistics

dressed on finer scales. It would appear, then, that the success of these methods
should lead to the desired large-scale sampling. Unfortunately, this appearance
is misleading, and underlies our whole research objective.

In particular, virtually every method of accelerated annealing has been aimed
at problems of estimation/optimization, such as image classification [25], seg-
mentation [7, 3, 18], and image restoration [7, 9, 11]. In each of these cases
the finest scale is densely measured (the image to be analyzed), strongly con-
straining the problem, thus both the passing of long-range information and the
constraints imposed by a prior model are relied upon relatively weakly in arriving
at a solution. That is, the hierarchical framework can be relatively heuristic and
approximate and still produce excellent estimates. In sharp contrast, random
sampling proceeds from a blank slate — all long-range structure has to be syn-
thesized explicitly, based on the constraints of the prior model, which therefore
needs to be implemented and followed faithfully.

Secondly, the strong conditioning of an estimation problem implies that
coarse-scale convergence is fairly robust, making it possible to avoid anneal-
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ing at all but the finest scale [25]; thus the coarse scales can be managed by fast,
deterministic methods such as iterated conditional mode (ICM). Again, in dis-
tinct contrast, any hierarchical approach to random sampling will require proper
sampling on each scale, which furthermore raises subtle issues of how to move
from scale to scale and the range of temperatures over which to anneal.

In order to address these difficulties in a hierarchical framework we are moti-
vated by the renormalization group theory approaches originating in statistical
mechanics [24], which suggests that temperature and scale are related. Intu-
itively, at a particular scale and temperature, structures from coarser scales are
‘slushy’ (i.e., relatively frozen for some length of time) while at finer scales are
a ‘boiling froth’ (i.e., highly variable). Hence both the coarser and finer scales
can, to some extent, be ignored while the structure at the given scale is develop-
ing. To be sure, other renormalization-motivated approaches have been proposed
for image modelling in applications such as restoration [9] and vision [6], however
both of these are subject to the limitations of estimation-based approaches, as
discussed earlier.

From the preceding discussion, we see how the application of hierarchical
sampling represents a significant departure from existing methods, and yet rep-
resents a significant problem in scientific modeling and analysis. In this work, we
will discuss how the reduction in the size of configuration space represented by
subsampling (e.g. renormalization) can be used to reduce computation cost, con-
centrating on the potential gains for the computationally expensive applications
of image synthesis.

This paper seeks to initiate discussion of methods to improve the computa-
tional cost of sampling by working in a multiscale/hierarchical framework. One
method to do this is to use a simulated annealing approach, recast in a hierar-
chy of coarse-grained approximations to the configuration space. In the following
sections, we discuss the algorithms involved, the construction of energy functions
to describe appropriate Gibbs random fields, and the resulting image samples.

2 Simulated Annealing

2.1 Background

In this work we are interested in Markov Chain Monte-Carlo (MCMC) sampling
methods [7, 5]. MCMC methods are used to draw samples from Gibbs random
field — that is, a random field whose probability distribution 7 is written in
terms of an energy function &£(z) weighted by inverse temperature 8 = 1/T":

o~ BE()

Tg(x) = 7 (1)

Note that the normalizing partition function Zg, which is particularly difficult
to calculate for most problems, is not needed by the sampling algorithms under
consideration (e.g. Metropolis[16] and Gibbs[7] samplers), which is one of the
primary benefits of MCMC methods.
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Algorithm 1 Simulated Annealing

n<<0

while £(x) not converged do
B <= 1/T,
x <= sample mg(z) { draw a sample from 73}
n<n+1

end while

The simulated annealing (or stochastic relaxation [7]) algorithm is as follows:
Here {T}} describes a general cooling schedule, a sequence of (eventually) de-
creasing temperature values with

T, >0 vk | (2)
Jim Ty =0 (3)

We note, however, that convergence to a global minimum (i.e. global optimiza-
tion of the energy function) is guaranteed [7] only for impractically slow loga-
rithmic cooling satisfying

A

Ty > ———— 4

k_log(k—l-l) ’ (4)

where A is some model-dependent constant. Determining the minimal value
of A is not straightforward [7]. Furthermore, it can be shown that for appro-

priate sampling algorithms, if the energy function has multiple global minima,
the algorithm will sample uniformly from these minima (independent of initial
states) [7, 8]. This property will be employed in §3 to draw samples from a large
class of images.

There are thus two basic considerations for the computational cost of this
class of algorithms:

1. The process of drawing samples (the MCMC algorithm);
2. The cooling schedule of the annealing.

We maintain that these two issues are orthogonal; that is, that they can be sep-
arately addressed, and that gains from accelerated cooling [22] can be applied
more or less equally to both regular and multiscale annealing. Additionally, ex-
tensive research into improving the performance of MCMC samplers has not
resulted in general improvements, although special conditions can result in im-
proved convergence [1, 21].

Therefore the focus of this paper is to reduce the computational cost of an-
nealing by restructuring the process to take advantage of sampling on smaller
lattices where possible. We will construct a hierarchy of coarse-grainings of the
configuration space, in order to allow fast convergence of lower frequency com-
ponents, as discussed in the following section.

If we consider the cost of individual site updates to be fixed (true for a large
class of models), then the computational cost of drawing samples is driven by
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(a) 16x 16 (b) 64x64 (c) 256 256 (d) 512x 512

Fig. 3. A porous medium image viewed at several resolutions: How do local and
non-local features scale and map across resolutions?

the rate of convergence of the Markov chain, which increases with the size of
the domain, as does the number of pixels. For large domains, the number of
iterations can scale to huge proportions.

It is this last aspect, the scaling of computational cost with domain size,
that we will leverage to reduce total computational cost. The key proposal is
that by annealing in a multiscale hierarchy, the computational cost of annealing
is greatly reduced.

2.2 Multiscale Annealing

The purpose of this approach is to take advantage of the lower complexity at
higher levels in the hierarchy, and to have these higher levels precondition, in
a sense, or simplify the task at the lower levels.

Our proposal is to apply the central idea of renormalization group theory to
accelerate computationally burdensome annealing in scientific applications. This
approach is distinct from existing research on hierarchical structures and accel-
erated annealing such as “multi-temperature annealing” [12] which constructs
a hierarchical Markov random field model with scale dependent cooling, but
where the Markov model explicitly couples together adjacent scales. In contrast,
we treat each scale as a single image, only mapping the coarse configuration onto
the finer lattice, i.e. always in the direction of increasing resolution.

As we work down a hierarchy from coarsest to finest resolution, the question
then is to determine what image features are preserved (or lost) across rescaling.
At any particular level in this multiscale hierarchy, what image features are
represented? How may we anneal in such a way that certain features of interest
are represented at the current level and can be meaningfully mapped to the the
next finer level? Figure 3 illustrates this view.

The key insight that we bring from renormalization methods is that the
effective temperature for a given feature size is scale dependent. In particular, for
some temperature at some intermediate scale, coarser scales are cold (meaning
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Fig. 4. Annealing to convergence at several resolutions. (a) Effective tempera-
ture shifts for convergence are evident. Note that the energy axis represents the
energy as measured at finest resolution, regardless of the resolution.(b) Compu-
tations normalized to cost of 32 x 32 pixel flips

that the large, coarse features are ‘frozen’), and finer scales are hot (meaning
that the tiny features, not resolved at the intermediate scale, are still in a state of
flux). What this implies is that we are able to concentrate on one intermediate
scale at a time. To illustrate this approach, Figs. 4(a) and 4(b) illustrate the
convergence process at several scales (empirical curves based on the model in
§3), plotting the energy (that is, the convergence) versus both temperature and
computational cost. We note the following:

— Each curve is characterized by a rapid drop in energy, followed by conver-
gence.

— The computational cost of a single sweep at fine levels can be high relative
to the total cost of convergence at a coarse level.

— The finer the scale, the better the ultimate convergence.

— Some features of these plots are model dependent; the large difference be-
tween minimal energy at finest resolution and all the other resolutions is an
artifact of the sensitivity of the model to blocks (i.e. from supersampling
coarser resolutions) in the high resolution image. This is not a measure of
distance in configuration space.

From which it follows that, in general, we want to be working on the coarsest,
unconverged scale.

The benefit of this approach stems from two observations. First, the size of
the coarse domains is small, allowing rapid sampling. Second, and much more
significant: At an intermediate scale the algorithm needs to be iterated only
enough to allow relatively local structure to converge, since the larger structures
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Algorithm 2 Multiscale Annealing

k<0
for s =S to 0 do
while £,(X;) not converged do
= 1/Tk
X, < sample 7g { draw a sample from 7g}
k<k+1
end while
Xso1 <= Ms(Xs) {map to next finer resolution}
end for

already converged at coarser scales. Our goal, then, is to work in a decimated
configuration space (at less computational cost) for sufficient time and then map
onto the next larger space and to continue annealing. Clearly this idea may be
applied hierarchically, leading to a succession of coarse-grained configuration
spaces. If we consider the Gibbs field X at the target resolution, we can denote
a hierarchy {X,}9_, of coarse-grainings of the configuration space where each
increase in level represents decimation by a factor of two (and where X is finest
resolution). We note that this is not the only possible renormalization map [9].

Annealing with too low an initial temperature (not enough energy) ap-
proaches a greedy algorithm, prone to finding local minima. On the other hand,
too much energy may destroy the larger structures passed down from coarser
scales. Since the above holds true at any level in the hierarchy, clearly there is
a delicate balance in achieving computational gains while retaining good opti-
mization performance.

An analysis of interactions between the cooling schedule of the annealing,
the mappings in the annealing hierarchy, and the convergence of the stochastic
sampler is not straightforward. At present, we rely on heuristic rules to determine
the cooling and mapping schedule. Future work will concentrate on an analysis
of this process. It is worth noting that since we employ a single cooling schedule
across the entire hierarchy, the ‘shape’ of this schedule will strongly effect overall
computational costs. From a computational point of view, the more time spent
in the coarser levels of the hierarchy the better. Of course this must be balanced
against the effects of the cooling schedule on convergence.

The model presented in the next section uses the following heuristic. At
each higher level in the hierarchy, the energy function can be viewed as an
approximation for the energy function at the final resolution, denoted as &;.
Denote the mapping operator (coarse to fine) from one level to the next as Mj :
X5 — Xs_1. Multiscale annealing is performed as shown in Algorithm 2.2.

While in no sense is this heuristic considered to be “optimal”, in the next
section it is applied to a simple model and shown to be effective.
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3 A Simple Model for Synthesizing Porous Media

We have intentionally chosen a simplistic model in order minimize computational
cost, as well as model parameters and clutter in order to interpret the results
more easily. In particular we will work with binary images, which have the ad-
vantage of smaller configuration spaces (compared to non-binary images of the
same size) while still being important for many application areas. Henceforth
the two pixel states will be referred to as white (1) and black (0).

We consider local neighbourhoods of fairly small order. Using a common
notation, neighbourhoods are determined by increasing Euclidean distance from
the current pixel. The k + 1*® order neighbourhood contains all of the pixels
in the k' order neighbourhood, and so on. Figure 5 illustrates the first four
neighbourhoods.

We denote the neighbourhood (of some fixed order) of a pixel as A/, and let b
denote the size of the neighbourhood (i.e the number of pixels). Since each pixel is
binary, the size of the set of all possible configurations within a neighbourhood
is 2°. For reasonably small order, it is computationally feasible to count the
instances of each local configuration in an image.

For this purpose, there is a natural bijective mapping constructed by labelling
each pixel in the neighbourhood uniquely from 1 to b, and treating the m'® pixel
state as the state of the m'™ bit in a b bit binary representation of an integer
in 0...2°—1. For example with 3rd-order neighbourhoods there are 12 pixel
locations. Figure 6 shows one possible indexing scheme forming a map onto
0...4095. Under such an indexing scheme, each location in the image has, via
the neighbourhood structure, a mapping:

.7:1')]‘ : Xi)j —0... 2b—1 . (5)
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Given this indexing of local configurations, one possible approach is to consider,
for some class of bitmap images, the global distribution of local configurations.
Designate target probability mass functions (pmfs) for the two cases of white
central pixel and black central pixel as the following:

Where N = 2°.

Figure 7 shows several such pmfs for the packed spheres data (Fig. 1(a)),
demonstrating the difference in mass distribution at several different resolu-
tions. For any given image (i.e configuration) the pmf may be approximated by
a histogram:

h¥[n], hZ[n], n=0...N—-1, (7)
with total counts C, C?, respectively. Thus the sample probability of configura-
(%]

maintained while performing stochastic sampling.
Given the above, one possible energy function (used in (1)) at level s is
a weighted sum of errors with respect to the target pmf at level s in the hierarchy:

@ =3 [az (i~ "E00) 4 1 (it - hc[?])

n=0

tion k for a white central pixel is hg . These sample statistics can be efficiently

(8)

At each level in the hierarchy, the target pmfs define a new energy function. This
can, however, be viewed as an approximation to the energy function at the final
resolution.

More complicated energy functions may be proposed to allow more sophis-
ticated modelling of particular image classes. In particular, nonlocal terms may
be needed to accurately reflect image morphology. These considerations, while
interesting, are separate from the issues surrounding hierarchical annealing pro-
posed here. Additionally, the best choice of distance metric (or for that matter,
including a non-metric such as the Kullback-Leibler distance) is not clear for
this process. No claim of optimality is made the example given in (8).

3.1 Implementation

In this experiment, target pmfs were measured as the mean of sample distri-
butions from sets (50 — 100 images) of training data. Weights in (8) are taken
as 1 for this experiment, but need not be in general. The pmfs shown in Fig. 7
correspond to the resolutions shown in Fig 3, illustrating how mass distribution
in the pmf varies with scale. This approach allows a very simple training of our
model.

Samples were drawn from the models using a Metropolis [16] sampler with
random site location. In all cases annealing was performed using a geometric
cooling schedule [22]:

T,=ao"Ty, O<a<l. (9)
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Fig. 7. Target pmfs at several resolutions. These particular pmfs are the sample
mean distributions given a white central pixel at various resolutions for a set of
packed glass spheres, see Fig. 3. The mass of the distribution is mostly located
at homogeneous white neighbourhoods at the finest resolution (index 4095 cor-
responds to all white pixels). At low resolutions, the mass distribution exhibits

a more interesting structure
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In the experimental data presented here, the cooling parameter was taken as
a = 0.9. This parameter could, of course, be tuned to particular applications.
As previously discussed, issues of ‘optimal’ cooling are considered to distract
from the purpose of illustrating hierarchical annealing. Improvements may be
made with analysis of particular models and cooling characteristics.

The heuristic rules discussed in §2.2 were used to define progression through
the hierarchy while annealing. In these experiments such an approach proved
capable of reaching globally minimal energy states. It is expected that work
with more complex energy functions (and therefore more expensive to compute)
would reveal limitations for this simple heuristic and present directions for more
sophisticated approaches.

It is worth noting that, by construction, (8) does not allow for zero energy
states in general. The size of the image domain will constrain the quantization,
or step size, of the histogram approximations to the target probability mass
functions. Hence in the general case for each non-zero value in the target pmf
we can expect an error on the order of the inverse of the number of pixels. If
we denote the number of pixels in an image domain D as |D|, and take b as the
number of bits in the mapping (5) then we may estimate the minimal energy as

11
oAb 10
min 2 ‘DP ( )

4 Results

The results that follow are demonstrative of typical runs of the hierarchical
annealing method presented in this paper. Two training data sets were used,
one of a pack of glass beads, the other, natural rock.

Figure 8 shows a plot of computational cost vs. energy. This graph is identi-
cal to the one given in Fig 4(b) with the addition of a curve for the hierarchical
annealing. Here, as previously, the energy for all curves is measured in the finest
resolution lattice (the convergence in higher levels is governed by the energy
function at that level, of course) in order to make comparison possible. This
plot clearly demonstrates the computational advantages of the approach. Addi-
tionally, it is shown that both methods converge to a minimal energy. As noted
above the histogram quantization does not allow zero energy configurations.

Figure 9, similarly, contains the data of Fig. 4(a) along with the hierarchical
annealing values for comparison purposes. This figure demonstrates how the
annealing schedule for a hierarchical annealing compares to ‘flat” annealing at the
highest resolution 512x512. Initial convergence is slower (relative to temperature)
as the hierarchical method roughly follows the profile of coarser resolution curves.
After mapping to the highest resolution, extremely fast convergence shows the
‘preconditioning’ effect of the method.

Figure 10 shows examples of synthetic images resulting from this algorithm,
along with representative samples of the training data used to define target pmfs
for both cases.
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Fig.8. Computation vs. energy for hierarchical and ‘flat’ annealing. Geomet-
ric cooling schedule with a = 0.9. The target resolution is 512 x 512, and the
hierarchy has 5 levels, with the coarsest level (s = 4) being 32 x 32. The two
approaches converge to a similar minimal energy, however the hierarchical ap-
proach converges much more quickly. The repeated convergence/saturation of
the energy is visible in the hierarchical curve, preceding shifts to the next scale

These images serve to demonstrate the capabilities (and limitations) of our
simple model. Locally, the agreement seems qualitatively quite good; in terms
of smooth edges, homogeneous regions, etc. Unsurprisingly, larger scale mor-
phological features of the training data are not captured by our simple local
model.

Computation times are very reasonable. The 512 x 512 samples shown here
were generated in a few minutes on a 1Ghz PC workstation. By comparison, the
synthesis of much smaller images has been reported to take on the order of 20-30
hours on an RS6000 workstation, by another stochastic relaxation approach [23].

5 Conclusions

This paper has described a method of hierarchical annealing that can result
in large computational gains for appropriate models. A simple model for bi-
nary porous media images was presented to demonstrate its effectiveness. The
heuristic approach to multiscale annealing given here is supported somewhat by
these simple experiments, but may prove to be naive when generalizing to more
complicated models. Future work must be performed with an aim to analyze
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Fig.9. Comparison of hierarchical annealing method with (flat) annealing at
several resolutions. Hierarchical annealing results in highly accelerated conver-
gence after mapping to the highest resolution

the complicated interaction between sampling, annealing, and refinement in the
hierarchy.

Thus there are several directions open to future work in developing this ap-
proach. Of primary importance is analysis of the process for mapping to finer
resolutions in the hierarchy. Other interesting questions abound; for example,
convergence issues for the Markov chain samplers and relation to grid size, cool-
ing schedule improvement, and introducing more complicated models as men-
tioned previously.

As illustrated in the previous section, the simplicity of this model restricts the
class of appropriate images for direct application. It is interesting to consider the
local features that are captured by this simple model, as well as the morphological
differences that lie beyond the representation capability of the model.

Simple extensions to more complex models involving some non-local at-
tributes such as chord-length [23] could prove to be quite effective, while still
very computationally tractable. Extension to 3D data should be straightforward
in principle, and yield even greater computational savings than seen in 2D.

In addition to refining this method, other applications are of interest. Con-
straining synthesis with particular data is one possibility, and could be extended
to 3D reconstruction from 2D data.
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images for two data sets; sandstone (top four) and packed glass spheres (bottom
four)
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