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The introduction of a hierarchical annealing algorithm addresses the very large computational costs associated
with simulated annealing for the synthesis of binary porous media images. In real-world examples, the large
configuration space of such models has led to disappointing performance of annealing approaches. We demon-
strate orders-of-magnitude improvement compared to existing results, and discuss the inherent computational
difficulties encountered with these types of approaches.
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I. INTRODUCTION

A great variety of porous media (see Figure 1) and compos-
ites have a random heterogeneous microstructure. The gen-
eration of 3D (or large 2D) replicas of such materials from
limited (usually 2D) morphological information by stochas-
tic methods is an intriguing problem of broad technological
and scientific significance [27, 32]. The significance of this
problem follows from the fact that the macroscopic properties
(mechanical, transport, capillary and electromagnetic) of such
materials cannot be predicted from knowledge of the volume
fractions of the constituent phases alone. Instead, the geome-
try and topology of the convoluted 3D boundary surface sep-
arating the constituent phases must be accounted for.

From a practical standpoint, stochastic reconstruction from
limited morphological information is linked directly to the
computation of macroscopic properties of engineering mate-
rials from first principles. Much progress has been made in
this direction. For example, efficient methods are now in place
for computing elastic properties [7, 23], absolute permeability
[14, 28, 29] and formation resistivity factor [2, 11, 14, 25] of
fluid-saturated porous media, relative permeability and elec-
trical conductivity under two-phase flow conditions [4], cap-
illary pressure-saturation relationships [16], nuclear magnetic
resonance properties [20] and adsorption/condensation char-
acteristics [12] of porous solids from 3D digital representa-
tions of the microstructure. From a theoretical standpoint,
stochastic reconstruction is a valuable tool for uncovering the
information content of different descriptors of the morphol-
ogy of a microstructure. Such knowledge is essential for se-
lecting appropriately the morphological descriptors to be used
as reconstruction constraints (i.e., the reconstruction model)
for different classes of microstructures.

Two general approaches to stochastic reconstruction have
been actively pursued in recent years. The first approach is
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FIG. 1: Examples of binary porous media images a) sintered glass
beads b) Berea sandstone.

based on the conditioning and truncation of Gaussian Ran-
dom Fields [1, 5, 13, 24]. Though mathematically elegant
and computationally very efficient, this method is model-
dependent, since it cannot impose constraints other than the
volume fraction and the two-point correlation function. This
is a serious drawback, because first- (volume fraction) and
second- (two-point correlation function) order statistics are,
in general, insufficient for accurately reproducing the mor-
phology of a microstructure [13, 22]. The second approach
is based on simulated annealing (SA) [26, 31, 33]. This ap-
proach is model-independent, since in principle it can impose
on the reconstruction process any type and number of mor-
phological constraints (e.g., chord-length distributions). This
advantage, however, is rapidly offset by the method’s high de-
mand for computational resources.

The presence of structure at multiple length scales is a well-
established fact for natural porous rocks [e.g., [21] and refer-
ences therein] and the need to account for it in stochastic re-
constructions is beginning to receive recognition [18, 19]. For
example, sandstones often contain significant amounts of mi-
croporosity in addition to inter-granular porosity, whereas car-
bonate rocks often contain vugs and solution channels of sizes
much greater than the sizes of inter-particle pores. The pres-
ence of structure at multiple length scales creates unique chal-
lenges for the reconstruction process. To cope with models of
rapidly increasing resolution[26], the efficiency of stochastic
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reconstruction algorithms must increase by orders of magni-
tude. New stochastic reconstruction algorithms must be de-
veloped that can accommodate and, if possible, capitalize on
the scale-dependence of morphological descriptors.

In an important paper, Gidas [9] introduces the idea of
renormalization to image processing contexts, and indeed ad-
dresses simulated annealing for the restoration of images in
such a context. The current work is naturally related, but pri-
marily differs in two important aspects. Firstly, Gidas dis-
cusses estimation, for example the denoising of an image. In
such a problem, one wishes to construct an energy surface
with the nominallycorrect image as a global minimum. In
practice the problem is conditioned by the fact that in some
sense we expect the correct image to be nearby in configura-
tion space. In pure synthesis, by comparison, we are interested
in exploring all minima of a complicated energy surface. Sec-
ondly, we are not only considering proper renormalizations of
our configuration space, but rather we will are interested in
the characteristics of a more general hierarchical approach.

In this paper, we propose a HSA algorithm for the recon-
struction of random microstructures from limited morpholog-
ical information. The hierarchical scheme allows large com-
putational gains to be realized when applying this algorithm
to models previously described in the literature [31], thus the
focus of this work is on the computational benefits of this ap-
proach, as applied toexistingmodels. Although it is natural
to ask about the capabilities of such an approach to proposing
newmodels, this question is the focus of ongoing research and
lies beyond the scope of this paper.

II. RANDOM FIELDS, SIMULATED ANNEALING

We will model our porous media images as realizations of
a Markov/Gibbs random field. Hence for synthesis of images
from this (prior) model, we wish to sample a density:

πβ(x) =
e−βE(x)

Zβ
. (1)

Herex denotes the image (i.e. current configuration), where
β = 1/T is the inverse temperature parameter. andE(x) is an
energy function or Hamiltonian.Zβ is a normalization con-
stant, known as thepartition function. We are interested in
drawing samples from this density,πβ . Due to the size of
the configuration space, calculatingZβ directly is impracti-
cal. For this reason, a family of Markov-Chain Monte-Carlo
(MCMC) algorithms have been developed [8, 17], whereZβ

is not needed. In what follows, we will consider the Gibbs
sampler [8], but the approach generalizes to other sampling
algorithms [6, 8, 17].

In addition to a MCMC sampling algorithm, simulated an-
nealing requires acooling schedule, {Tn}, or sequence of
non-negative values for the temperature parameter. As the
name suggests, this may be a strictly decreasing sequence, but
this is not necessary. While there are convergence results for
logarithmiccooling, in practice other schedules are used, for

(a)512× 512 (b)128× 128 (c)64× 64

(d)512× 512 (e)128× 128 (f)64× 64

FIG. 2: Lightly fused glass spheres (top row) and Berea sandstone
(bottom row) at full resolution and two subsamplings.

example a geometric schedule such as:

Tn+1 = αnT0, 0 < α < 1 . (2)

In this framework, the standard orflat (as opposed to hier-
archical) annealing algorithm looks like:

Algorithm 1 Simulated Annealing
k ⇐ 0
X ⇐ initial state
while E(X) not convergeddo

β ⇐ 1/Tk

X ⇐ apply Gibbs sampler toX
k ⇐ k + 1

end while

Heuristically then, an image synthesis algorithm is using
simulated annealing to draw (approximate) samples from low
energy states of the distribution. This is computationally dif-
ficult primarily due to a phenomenon often referred to ascrit-
ical slowing down[10]. Intuitively, this is due to the difficulty
of building large-scale structures by the cumulative effects of
local interactions. For this reason, even with relatively sim-
ple energy functions, a simulated annealing approach may be
too expensive. This motivates a multiscale approach, since at
coarser scales, large structures become local, or at least the
number of local interactions needed is greatly reduced. Fig-
ure 2 illustrates the way local (to a pixel) neighbourhoods lo-
cal look quite different at different scales. Consider the rel-
ative likelihood of homogeneous white (or black) regions at
512 × 512 scale, compared with64 × 64 (see Figure 2).
For example, the neighborhood local to a given pixel is much
more often homogeneous in the high resolution images (a) and
(d), than in the coarser (c) and (f) (where rescaling has made
individual pixels easily discernible).
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III. HIERARCHICAL ANNEALING

We propose attacking this problem by use of a hierarchy
of scales. The construction of this hierarchy comes from two
key ideas. Firstly, there is a natural way to rescale our prob-
lem. Secondly, there is a relationship between temperature
and characteristic scales of structure in the field.

To expand upon the latter point: Clearly there is no ab-
solute stability of structures under MCMC sampling. How-
ever, structures of particular scales are metastable for particu-
lar temperature ranges. This is strongly related to the idea of
critical slowing down, and its relation to the local nature of
interactions. To wit, construction or deconstruction of struc-
tures beyond the local neighborhood structure of the field
can require energetically non-favorable events, which occur
only with a certain probability (i.e. transition probabilities
in the Markov chain). The larger the extent of these struc-
tures, the more consecutive such events may be needed, lead-
ing (roughly speaking) to an ever decreasing product of prob-
abilities. Hence large structures take a long time to build (they
may be easier to destroy, by way of multiple locations need-
ing only one energetically unfavorable state change). A high
enough value of the temperature parameter will simply de-
stroy all structure in the field. Equally clearly, very low tem-
peratures result in near gradient-descent behavior, which will
freeze structures in a local minimum energy configuration. As
it turns out, analyzing the effect of various cooling schedules
is difficult [6, 8, 30]

In considering a hierarchical approach, we want to concen-
trate on particular scales of structure at particular levels of the
hierarchy. For appropriate temperature ranges we expect the
following relative to a particular scale:

• Larger scale is ‘frozen’ (metastable)

• Current (or medium) scale tends to be ‘slushy’ at char-
acteristic temperatures

• Smaller scale is rapidly changing.

This is borne out empirically.
These ideas taken together suggest a natural hierarchical

approach. To take advantage of these observations, we con-
struct a hierarchical approach that will concentrate, at each
level of the hierarchy, only on the medium scale structure,
leaving the large scale structure intact (or at least not vary it
inconsistently). We are not concerned about small scale struc-
ture as it is transient anyway. Small structure becomes single
or sub-pixel, while the current scale of interest is practically
attainable with local interactions, not requiring large numbers
of energetically unfavorable events. Algorithm 2 shows this
process.

IV. MODELS/ENERGY FUNCTIONS

The purpose of this work is to describe the computational
benefits made possible by using a hierarchical approach to
simulated annealing. As such, discussion of the relative merits

Algorithm 2 Hierarchical Annealing
k ⇐ 0
X ⇐ initial state at coarse resolution
for scales from coarsest to finestdo

while Es(Xs) not convergeddo
β ⇐ 1/Tk

Xs ⇐ apply Gibbs sampler toXs

k ⇐ k + 1
end while
Xs−1 ⇐ Ps−1(Xs) {project to next finer resolution}

end for

of particular models is eschewed. Rather, we present results
on common models found in the appropriate literature, with
little comment on efficacy or verification.

In particular, there are several components of energy func-
tions that have been used [15, 31, 32] in related approaches,
and we demonstrate how the increased performance of the
HSA approach improves results with these models.

In general, our energy/cost functions will be made of one
or more components. In the hierarchical case, these energy
functions will exist for every scales. Since we can look at
separate scales, and also mixtures of these models, the general
formulation will be

Es(x) =
∑

i

ciEs
i (x) ci > 0 ∀i . (3)

Here for each scales the energyEs of a particular imagex
is given as weighted (by coefficientsci) sum of component
energiesEs

i .
Particular components of interest would be [31–33]:

• one-point correlation function

• two-point correlation function

• chord-length distribution

• lineal path distribution

• “pore size distribution”

In this work we use a method of targeting of mean distribu-
tions such as described in [31, 33] Note that in principle a
modelling approach may seek to address each scale in (3) sep-
arately. This hierarchy allows approaches that are not possible
with a single scale algorithm.

V. EXPERIMENTS

A. Synthetic Data

Physical porous media samples tend to have complicated
morphology, and it can be difficult to evaluate the perfor-
mance of a sampling algorithm (for recent approaches, see
for example, [3]). In addition to such data, then, it is informa-
tive to construct synthetic data to emphasize the benefits of a
hierarchical approach.
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(a)512× 512 (b)64× 64

FIG. 3: GRF data generated with two characteristic scales, as shown
in a). A strong bias toward black pixels in the shorter length scale
GRF has the effect that after several rescalings, the coarse resolution
images such as b) are much simpler.
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FIG. 4: Convergence flat(red) and hierarchical (blue) annealing for
GRF data set. Note spikes in HSA profile due to projection.

First, we consider a set of 300 images generated by means
of two Gaussian random fields (GRF)s (for ease of sampling),
and chosen to exhibit two characteristic length scales. Fig-
ure 3 shows an example of this data set, which allows us to
concentrate on two characteristic length scales and on a mor-
phology simpler than may be found in some physical samples.
This set is particularly illustrative of the difficulty in conver-
gence offlat annealing. Intuitively, this is easy to see in the
evaluation of chord-length distributions. At the highest reso-
lution, there are small isolated chords, some small chords on
the edges of large features, and longer chords comprising large
features. In the annealing algorithm, moving between iso-
lated small chords through isolated medium length chords to
eventually collate into larger structures is not energetically fa-
vorable, so we havecritical slowing downas structure begins
to emerge. By comparison, coarse levels of the hierarchical
annealing do not have any small isolated chords, so we may
expect convergence to be quicker. Indeed, empirical results
support this conjecture. Figure 4 compares flat and hierarchi-
cal sampling runs on a log-log plot of energy vs. computa-
tions. The energy ‘spikes’ in the hierarchical annealing curve
are due to projection. Immediately after projection, local con-
figurations are high energy due to artifacts of the projection.
Since these high energies are due to local configurations, they

(a)GMRF sample: E=5.874e-5 (b)SA: E=1.48e-3, 3 days

(c)SA: E=3.38e-3, 15 min (d)HSA E=5.456e-5, 15 min

FIG. 5: GRF training data. Each panel gives the final energy,E,
and approximate runtime (on a 3Ghz Pentium IV class machine).
Shown are a) example training data, b) ‘best case’ sample from SA
with very slow geometric cooling c) sample from SA with equivalent
computation to the hierarchical case, and finally d) sample from HSA
method. Model used was twopoint probability and both white and
black phase chord-length distributions. Images are512×512 pixels.

are easily remedied and energy levels immediately drop as the
sampling algorithm progresses.

Figure 5 shows512× 512 images sampled from this model
by three methods: the best ‘flat’ SA result allowing about 3
days computation, the best HSA result, taking about 15 min-
utes, and the best SA we could do (i.e. with a different cool-
ing schedule) in the same number of computations as the HSA
sample. As can be seen here, and in a ‘zoom’ view given by
Figure 6, the complex morphology is not represented in the
SA samples. The long-run result lacks medium size struc-
tures, and the fast SA sample is very poor. The HSA result,
while clearly less than perfect from a modeling point of view,
shows both visually and by final energy a much better result.

B. Computational Benefits

Separate from issues of convergence (analysis of which is
difficult for non-logarithmic cooling schedules, and more so
where multiple scales are concerned), there are clear sources
of expected computational benefit from the HSA approach.
At each level of the hierarchy, we are running a Gibbs-type
sampler in a smaller configuration space than at the follow-
ing levels. In the cases described here, each level in the hi-
erarchy reduces the image size by a factor of four (in 3D the
gain is much larger, of course), so we have a geometric reduc-
tion in the size of the configuration space. Beyond this sim-
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(a)GMRF sample: E=5.874e-5 (b)SA: E=1.48e-3, 3 days

(c)SA: E=3.38e-3, 15 min (d)HSA E=5.456e-5, 15 min

FIG. 6: ‘zoom’ views of images shown in Fig 5

ple reduction, there are data-dependent benefits. Since large
scale structures are built by local interactions, the probability
of constructing something when the intermediate steps are not
energetically favorable is reduced as the the number of steps
increases (i.e. the product of the probabilities of individual
steps). In the hierarchical approach, large structures are put
togetherwith fewer intermediate stepsat a coarser resolution.
As this is data dependent, it is difficult to quantify, however
the less probable the intermediate steps (in some sense, the
morecritical slowing downexperienced) the more it will ben-
efit from a hierarchy.

Evidence of both of these effects was already presented in
Figure 4 for our synthetic data. Figure 7 shows the results of
many hierarchical runs with a simple parameterization on the
cooling schedule. In these simulations, the data set was Berea
sandstone, and the model was chord-length distributions in
both phases. It is important to note that the parameterization
allowed for poor choices of cooling schedule (i.e., that would
allow high enough temperatures to tear apart structure after
projecting to a high resolution), and these paths are especially
evident at the top-right of the ensemble. Many parameteriza-
tions allow for very good performance, as evidenced by Fig-
ure 8. This figure compares several HSA results, to geometric
cooling schedules (2) for flat simulated annealing at the high-
est resolution but with various values for the parameterα. As
expected, increasingα improves the final energy at the cost of
more computations. Both figures are presented with log-log
scales, so demonstrate a computation vs. energy gain of more
than an order of magnitude.

As noted in the previous section, an interesting demonstra-
tion of the slow convergence of some models is an energy
function made up of both positive (white) and negative (black)
chord-length distributions. When attempting to build large
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FIG. 7: Energy vs. Computation for many parameterizations of a
simple chord-length model.
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FIG. 8: Energy vs. Computation: several hierarchical annealing runs
with flat annealing (dashed lines) for various cooling schedules (in-
creasingα trades more computations for better final energy).

scale structures, such as in our GRF data set, there is very
little energy difference made by any intermediate step, as in
some sense the white and black chord distributions are at odds,
hence very slow convergence results. While this is definitely
not a good model to capture the morphology in question, it is
interesting that even allowing many days, flat annealing will
not converge at all usefully, while hierarchical-annealing gen-
erates large scale structure in a few minutes. Figure 9 demon-
strates this.

C. Physical Data

While empirical results on the synthetic data described in
the previous section is valuable, it is of course of interest to
apply the approach to real data. It is worth re-iterating that the
purpose of this current work isnot to address modelling issues
in the problem domain. For this reason validation of resultant
images is difficult, at least in an absolute sense. While sub-
tle issues of validation are beyond the scope of the paper, in
comparison to flat annealing, improvements can beextremely
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(a)GMRF sample: E=0.0261 (b)SA: E=0.142, 4 days

(c)SA: E=0.510, 15 min (d)HSA E=0.0261. 15 min

FIG. 9: Similar to Figure 5, these panels show results for the (more
difficult) case where the energy function is a mix only of white and
black phase chordlength.

clear.
Figure 10 shows the same computational methods as Fig-

ure 9 but with a data set of lightly fused glass beads. Note
again the complete failure of convergence for the flat anneal-
ing cases.

In comparison, Figure 11 shows similar samples, but for
a more realistic model, of chord-length distribution and two-
point correlation. This isstill not a sufficient model to cap-
ture the morphology of the training set. We can see, though,
that the samples are drawn from a class of images with chord-
length distributions that are strongly in agreement with the
mean chord-length of the training set, as Figure 12 demon-
strates. So we see that the process under the HSA algorithm
is converging to something with reasonably low energy under
this model. Of course, this in no way addresses the question
of whether or not the mean distribution is the correct way to
model these images.

VI. CONCLUSIONS

We have demonstrated the computational benefit of a hier-
archical approach to simulated annealing in the computation-
ally expensive approach of pure synthesis (i.e. sampling) from
low temperature Gibbs distributions (1). This approach now
allows researchers to attempt more difficult synthesis prob-
lems, on large images with multiple natural length scales.
Clearly, in such an approach, there is a modeling component
not addressed in the current work. While some comments rel-
evant to modeling in such a hierarchy have been made, this
aspect is the subject of another paper. As an example, though,

(a)sintered beads sample:
E=0.0385

(b)SA: E=0.623, 3 days

(c)SA: E=1.12, 5 min (d)HSA: E=0.0661, 5 min

FIG. 10: Sintered beads data set. Again, each panel gives the final
energy,E, and approximate runtime. Shown are a) example training
data, b) sample from SA with very slow geometric cooling c) sam-
ple from SA with equivalent computation to the hierarchical case but
with enforced volume fraction (to the mean of the training set), and
finally d) sample from HSA method described herein. Model is (cf
Figure 9) both white and black phase chord-length distributions. Im-
ages are256× 256 pixels.

(a)sintered beads sample:
E=0.221

(b)SA: E=3.94, 3 days

(c)SA: E=11.0, 15 min (d)HSA: E=0.483, 15 min

FIG. 11: Sintered beads data set with a slightly more realistic en-
ergy function, the mixture of twopoint probability and chordlength
distribution. In this case the images are512× 512.
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FIG. 12: Chordlength distributions for spheres data set (shown in
Fig 11). The dashed line is mean chord-length distribution over train-
ing set, and dotted lines give one standard deviation. The solid line
is final distribution of an HSA sample, while dot-dash line shows a
typical sample from the training set.

Figure 13 shows preliminary results of reconstruction based
on HSA of local (to a neighborhood) distributions of pixels,
and chordlength distribution. This reconstruction was done
for a8192× 8192 image, in approximately 4 days of compu-
tation time. The left column of Figure 13 shows training data
at -a full resolution, and two sub-images -b (1024×1024) and
-c (128 × 128), the sub-image regions as indicated on previ-
ous resolution. The right column shows similar regions for
our reconstruction. Finally, Figure 14 shows autocorrelation
for these two images, showing good agreement.

Two obvious extensions of this work are to apply it to three-
dimensional data, and to further address modelling questions.
Both of these directions are currently being pursued. Further-
more, the question of validating synthetic imagesfor the rele-
vant applicationsis important.
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