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ABSTRACT 

There is a growing realization that modeling wavelet coeffi- 
cients as statistically independent may be a poor assump- 
tion. Thus, this paper investigates two efficient models 
for wavelet coefficient coupling. Spatial statistics which 
are Markov (commonly used for textures and other ran- 
dom imagery) do not preserve their Markov properties in 
the wavelet domain; that is, the wavelet-domain covariance 
P, does not have a sparse inverse. The main theme of this 
work is to investigate the approximation of P, by hierarchi- 
cal Markov and non-Markov models. 

1. INTRODUCTION 

Wavelet shrinkage is a widely-used and effective method for 
image modeling and enhancement problems. However, vir- 
tually all wavelet marginal models currently being used in 
wavelet shrinkage [7] assume the coefficients to be decorre- 
lated and treated individually. Although such independent 
models result in simple nonlinear shrinkage algorithms, this 
approach is not optimal in the sense that for most spatial 
statistics or prior models the wavelet transform is not a per- 
fect whitener. 

There have been several recent approaches that exam- 
ine the joint statistics of the coefficients. Xu et al. [9] 
used the scale dependent consistency between wavelet CO- 

efficients for the denoising process. In separate work by 
Simoncelli [8] and Crouse et al. (31, probabilistic models 
were studied that capture wavelet coefficient dependencies, 
mainly across scales. Crouse et al. [3] considered bidden 
states describing each coefficient’s significance. Instead of 
the coefficients values, they propose statistical models for 
a coefficient’s hidden state dependencies. Normally an as- 
sumption is present that the correlation between coefficients 
does not exceed the parent-child dependencies, e.g. given 
the state of its parent, a child is decoupled from the entire 
wavelet tree. 

Having been motivated by these inter-coefficient proba- 
bilistic studies, the primary goal of this work is to propose 
a well-structured wavelet-domain correlation model which 

Fig. 1. Correlation coefficients of a spatial thin-plate model in the 
wavelet domain. The main diagonal blocks correspond to the same scale 
and orientation. whereas off-diagonal blocks illustrate aOSsCOrrelations 
across orientations or across scales. 

is capable of describing coefficient dependency by introduc- 
ing a local neighborhood containing statistics of within- and 
across-scale coefficients. The main novelty is the systematic 
approach we have taken to define a wavelet-based neighbor- 
hood system consisting of 1) inter-scale dependency evo- 
lution, 2 )  within-scale clustering, and 3) across-orientation 
(geometrical constraints) activities. This probabilistic mod- 
eling is directly applied to the coefficient values, hut to some 
extent their significance is also considered. 

It is well-known that the wavelet-domain covariance, 
P, (Figure l), is block-structured. We have observed [I] 
that, although the majority of correlations are very close to 
zero (i.e., decorrelated), a relatively significant percentage 
(10%) of the coefficients are strongly correlated across sev- 
eral scales or within a p d c u l a r  scale but across three orien- 
tation subbands. One approach to statistically model these 
relationships was to implement a multiscale model [I]. Al- 
though the MS model captured the existing strong parent- 
child correlation, spatial and inter-orientation interactions 
are not explicitly taken into consideration. Our most recent 
work [2]  investigated the significance of inter-orientation 
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and spatial relationships, which we seek to model more for- 
mally in this paper. 

2. WAVELET COVARIANCE APPROXIMATION 

Suppose we have a smooth Gaussian Makov Random Field 
(MRF) prior P,, projected into the wavelet domain with 
wavelet prior P, as is shown in Figure 1. Following our past 
work in wavelet statistics [l, 21 we propose to model the 
wavelet coefficients not as independent, but as governed by 
some local stochastic process. Since correlations are present 
within and across scales, clearly a random field model for 
wavelet coefficients will need to be explicitly hierarchical. 

Based on the correlation map of Figure 1, six differ- 
ent symmetric neighborhood structures are chosen. For 
a coefficient wi belonging to the wavelet coefficients set 
IV = {E'*, W,, W,} we define 

P d i )  = {Pl(i),..,,Pk(i)} 
C k ( i ) = { C l ( i )  ,..., C f i ( i ) }  . . ... 

Sud(i):  x s l ( i ) :  . x . s z ( i ) :  . x . . . ... . . 
S Z d ( i )  : x S l , ( i )  : x S:,(w) : x . 

where p"( i )  is the ancestor of wi of a generations (scales), 
~ " ( i )  is the set of descendants of wi of (Y generations 
(scales), and s ; ( i )  defines various sibling sets (same scale 
as wi). This allows us to propose six neighborhood struc- 
tures: 

K ( i )  = { P l ( i ) ,  C l ( i ) ,  Sl( i )}  

W i )  = { P I ( i ) , C l t 9 > S ? ( ~ ) }  
&(i) = { P Z ( ~ ) > C Z ( ~ ) > ~ I ( ~ ) }  

IV4(i) = {PZ(i),CZ(i),SZ(i)~ 

where operators d, U, and h return diagonal, vertical, and 
horizontal subband counterparts. With these hypothesized 
structures in place, the remainder of this article develops 
and tests two associated models. 

2.1. Local Estimation 

We begin with an explicitly local estimator, where only 
those measurements within the neighborhood are used. 
Thus, given the noisy measurements 

y i = w i + v i ,  W ~ - N ( O , T ~ )  (1) 

we form a local estimation problem 

Yi = [Yi Y ( W ) ) l ,  wi = [UJi w ( N ( i ) ) l  

from which the standard estimator follows trivially 

iKi = . A;,' . yi (2) 

and where we are only interested in 

= E[Wi/Yi] 

23. MRF-Based Estimation 

The second approach is to use a local model, for which P;' 
is sparse; that is, a Markov random field. 

As can easily be verified, however, in most cases the 
wavelet prior is not indeed, Markov, therefore an approxi- 
mate Markov model needs to be estimated. Our local model 
; E  

Note that, in distinct contrast to the vast majority of pla- 
nar MRF models in which g is stationary, the structure of 
the wavelet tree (asymmetry between parent and child, or 
between siblings) makes g rather nonstationary and consid- 
erably complicates model estimation [4, 51. 

3. MODEL EVALUATION 

We examine six different wavelet neighborhood structures. 
Clearly each choice of neighborhood will differ in its sta- 
tistical accuracy. The six local and MW-based results are 
compared with the null estimator 

1 - Y i  6. - 

and the pointwise estimator 
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Fig. 2. RMMSE noise reduction as a function of HMRF neighborhood 
systems used in the two approximation techniques. MRF stands far MRF- 
bared method and Local depicts explicil local method. 

with the RMMSE of all cases plotted in Figure 2. It is clear 
that the vast bulk of the benefit is to be obtained from rel- 
atively few coefficients in the locality of the center coeffi- 
cient. Empirica~~y, the presence of within-scale (and across- 
orientation) correlation in these simulations (from NI (w) 
towards Ns(w)) reduces the estimation error. 

The second aspect of comparison is computational com- 
plexity. The complexity is complicated by the presence 
of MRF models, which may be solved in a wide variety 
of ways. In increasing order of complexity we have a) 
Pointwise, b) Local 1-6, c) Multiscale, d) MRF 1-6, e) Full 
model. 

Clearly the pointwise method is a linear approach, 
known as Wiener filtering, with its complexity growing lin- 
early as the number of wavelet coefficients n increases. On 
the other side, the complexity of the Multiscale-based es- 
timator is O(d3n), where d shows dimensionality of every 
node (in the simplest case d = 1) [ I ]  

Let us re-write ( 2 )  to investigate the complexity of local 
models 

iV; = . Ai,' . yj = Liyi 1 i n (4) 

with matrix Li of size m x m, where m, << n denotes the 
neighborhood size. Complexity of calculating L; is of or- 
der 0(m3).  The prior model can be stationary or not. We 
consider both cases at this point: 

stationary prior model: 
In this case the complexity of the model estimation 
process L is fixed to O(m3), because Li = Lj,  if 
j # i. Thus total complexity of the estimation pro- 
cess iV = Ly is O(m3 + n . m'). 

a prior model is not stationary: 
It is known that a stationary prior projected into the 
wavelet domain, changes to nonstationay, because of 
the multiscale nature of the wavelet domain. In this 
case the complexity of the model estimation process 
L is O(n . m3), because L; # Lj .  if j # i. Thus, 
the total complexity of the local estimator w = Ly is 
O(n . (m3 + d)). 

The computational cost for the MRF-based estimators 
is more complicated. In this paper, we only consider the 
simple linear case, i.e, Gaussian prior. Let us consider these 
two pieces of information, respectively the MRF prior (3) 
and the measurement: 

G w = q  17 - N(0, Q )  
y = w + v ,  v - N ( O , R )  

Define a linear estimator to find w which minimizes 

IIY -wIIR- l  + IlcWllQ-' 

=$. (K' + GTQ-'G)W = R-'y (5 )  

which is a linear system of equations to he solved. We ex- 
amined iterative solvers such as Guass-Sidel and PCG to 
solve for w. The computational complexity of these al- 
gorithms is believed to be O(itrn x m x n), where m is 
neighborhood size and itrn shows number of iterations for 
a solver to converge to a predefined tolerance value. The 
experimental results indicate surprisingly fast convergence 
speed. The PCG algorithm was run for six different MRF- 
based neighborhood systems. In these experiments a thin- 
plate prior model with 3 different correlation lengths was 
considered. For the purpose of simplicity we examined tex- 
tures of 32 x 32 size projected by Dauhechies wavelets. 

Figure 3 illustrates the itrn number for the PCG to 
solve (5)  for all six neighborhood systems, where the 
mother wavelet was fixed to be db2. A thin-plate prior was 
simulated with three different correlation lengths. The re- 
sults indicate that for a fixed correlation length itrn num- 
ber remains almost unchanged. However, the increment of 
correlation length, i.e., larger extent of pixels connectivity 
(smoothness), increases the computational cost for the esti- 
mator. 

To examine the sensitivity of the proposed MRF-based 
technique, various Daubechies wavelets were investigated. 
Figure 4 shows the itrn number for the PCG for all N 1  - 
N6 systems, where a thin-plate model with a fixed correla- 
tion length was used. The itrn remains small for all cases 
and increases where more smooth wavelet is considered. It 
shall be noticed that in all experiments the itrn is a rela- 
tively small number which represents the low complexity 
for our wavelet linear MRF-based estimator. 

Figure 5 displays estimation error, reduction based on 
each correlation model as a function of estimator's time 
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Fig. 3. Maximum number of iterations for the PCG solver to converge to 
a predefined tolerance as a function of wavelet domain MRF neighborhaod 
systems proposed in this paper. These simulations were run far thin-plate 
prior texture with three different correlation lengths. The mother wavelet 
was considered io be db2. 

Fig. 4. Maximum number of iterations for the PCG solver to converge to 
a predefined tolerance as a function of wavelet domain MRF neighborhood 
systems proposed in this paper. The simulations were nm for thin-plate 
prior texture w,ith correlation length to be 5 pixels. The mother wavelets 
db? and db4 were considered. 

complexity. The local-based estimators achieve lower error 
rates, hut with higher computational burden. 

4. CONCLUSIONS 

A thorough 2-D wavelet covariance study has been pre- 
sented in this paper. An examination of the coefficient cor- 
relations, within or across scales, revealed the fact the there 
exist local stochastic models (explicit or MRF) governing 
these local dependencies. The proposed hierarchical ran- 
dom fields model exhibits a sparse neighborhood swcmre 
which absorbs correlation of the given ccefficient with the 
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Fig. S. RMMSE noise reduction as a loganthmic function of com- 
putational complexity associated with estimators based on the proposed 
wavelet correlation models. n show number of coefficients. 

rest of the wavelet tree. 
Following the modelling stage, the model accuracy was 

evaluated by comparing it with the common tbresholding 
methods in the RMMSE sense and estimating its computa- 
tional complexity. The principle motivation of this work is 
to devise an estimation or denoising algorithm which takes 
into account this probabilistic model and results in optimum 
error and low computational cost. 
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