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Abstract 
There is a substantial signal-processing chal- 
lenge associated with large-scale (especially 
global-scale) remote-sensing problems: solv- 
ing the statistical inverse problem (i.e., de- 
ducing the properties of the sensed field from 
measurements) by brute force, that is by co- 
variance matrix inversion, is completely im- 
practical for fields involving millions of pix- 
els. This paper reports on the ongoing de- 
velopment of an alternative technique, in 
which the statistical problem is modeled on 
a multiscale tree, applied to estimating sea- 
surface temperature (SST) based on infrared 
radiance observations from the Along-Track 
Scanning Radiometers (ATSRs). 

1 Introduction 
. The atmospheric and oceanographic sciences 
have recently experienced an explosion in 
the rate of remotely-sensed measurements, 
which has opened tremendous opportunities 
to study the ocean and associated climate 
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Figure 1: The standard quad-tree hierarchi- 
cal structure on which a statistical model is 
built. 

at substantially improved time and space 
resolutions. Modern global climate models 
are running at resolutions as fine as one- 
twelfth degree, corresponding to global fields 
of 2000x4000 pixels, and remotely sensed ob- 
servations, particularly of SST, are available 
at comparable resolution. The statistical 
manipulation and estimation of such large- 
scale models is the signal-processing chal- 
lenge here: solving problems by brute force 
(matrix inversion) is completely impractical 
for fields involving millions of pixels. 

A number of methods have been proposed 
to address such large problems; FFT and 
multigrid techniques have both been used, 
however these make strong stationarity as- 
sumptions (FFT) or do not readily produce 
error statistics (multigrid). An alternative 
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technique[2] has been developed which uses 
a hierarchical statistical structure on a tree 
(Figure 1). The approach is essentially one 
of divide and conquer: at each node on the 
tree, statistics are sought to conditionally 
decorrelate the subtrees extending from that 
node, consequently allowing each of the sub- 
trees to be processed independently. In prin- 
ciple we are solving a classic estimation prob- 
lem - widely known in the signal-processing 
community as the Kdman filter. This hier- 
archical model is already relatively mature, 
having been applied to oceanographic[3, 61) 
radar, medical, and groundwater[l] estima- 
tion problems; however the scale of recent 
global oceanographic problems presents sub- 
stantial new challenges: 

1. The problems are very large, in excess 
of one million pixels. At such dimen- 
sions it becomes difficult to satisfy the 
required conditional decorrelation, and 
numerical problems become prevalent. 

2. The statistics of the prior model un- 
derlying the problem are nonstationary 
which complicates the parameterization 
of the problem. 

3 .  Whereas previous applications of the 
multiscale framework have been to 
static problems, the nature of the SST 
estimation problem suggests assimilat- 
ing data over time. 

We will be illustrating our approach in 
the context of estimating the ocean-surface 
temperature (Figure 2)) based on data from 
the ATSRs[7, 81 - a series of instruments 
mounted on the ERS-l/Z and ENVISAT re- 
search satellites. They use a unique scan- 
ning geometry to view the same point on 
the sea surface twice in rapid succession at 
two different angles through the intervening 
atmosphere, permitting SST to be retrieved 
with unprecedented accuracy. Global SST 
fields are generated at one-sixth degree res- 
olution, but these are interrupted by clouds 
and by the width of the satellite swath, and 
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Figure 2: Problem context: 35-day mean 
sea-surface temperatures (one-degree con- 
tours) for April-May 1992 in the equatorial 
Pacific. The boxed region is analyzed in Sec- 
tion 3. 

so need to be statistically interpolated to a 
regular grid for use in atmospheric or ocean 
modeling[9]. 

2 Multiscale Estimation 
The multiscale statistical estimation 
method[Z, 31 has, at its core, the following 
statistical model: 

~ ( s )  = A ( s ) z ( s r )  -I- B ( s ) w ( s )  (1) 

where s is an index on a tree with parent 
sy, A and B are deterministic matrices, and 
w is a white-noise process. This equation 
essentially states a conditional decorrelation 
principle: the whiteness of w implies that 
the state z(s7) must conditionally decorre- 
late all child states connected to s7. The sig- 
nificance is that given a model in the form 
of (I) and a linear measurement model 

34s)  = C ( S ) + )  + 4 s )  (2) 

then a very efficient, scale-recursive estima- 
tion algorithm is known to exist[Z]. 

3 Application to SST 
Figure 3 shows the state-vector definition 
which we will use: the state vector at a node 
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Figure 3: The definition of the state vectors: 
each node samples the boundaries of its four 
child-nodes. 

s is made up of samples of the boundaries 
of its children, where the samples are spaced 
proportionately to the correlation length of 
the statistical process being estimated. For 
example, if the process being estimated were 
a first-order Markov random field, then sam- 
pling every pixel along the boundaries of the 
children of s would perfectly decorrelate the 
random fields of the children, thus perfectly 
satisfying (1). In practice we prefer to ap- 
proximately satisfy (l), leading to subopti- 
mal solutions but at vastly reduced compu- 
tational effort. 

Figure 4 shows a 256x256 array of mea- 
surements on the finest scale multiscale tree. 
The resulting estimates and error statistics, 
computed in about 15 seconds on a Sun 
Ultra-SPARC, are shown in Figures 5 and 6. 
The estimated field is smooth and relatively 
free of artifacts; the large-scale structure 
of the error variance field is correctly de- 
pendent upon the measurement distribution, 
although some the multiscale model intro- 
duces some patterning. 

4 Extensions 

The preceding section illustrated the estima- 
tion of large static random fields. The com- 
putational efficiency of the approach is mo- 
tivating further research along two avenues: 
the estimation of much larger or higher reso- 
lution fields, and the dynamic estimation of 
processes over time. 

160 165 170 175 180 185 190 195 200 
Longnude (East) 

Figure 4: Spatial distribution of ATSR mea- 
surements, for a 3-day period using night- 
time observations only, in the central Pacific. 
Note the sampling irregularity due to clouds. 

Figure 5: Estimates of SST anomalies (units 
in cK) about a 35-day mean based on the 
model of Figure 3, using 3 samples per cor- 
relation length on the node boundaries. 

The estimation of very high-resolution 
fields is not a computational issue but a 
numeric one: as the state dimension is in- 
creased, at some point the matrix operations 
become unstable, illustrated in Figure 7. A 
square-root alternative to the estimation al- 
gorithm represents a possible solution, how- 
ever we should not seek arbitrary increases 
in state dimension: a few measurements do 
not justify a plethora of finely-spaced state 
elements . 

Dynamic estimation[4], much more com- 
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Figure 6: Estimation error std. dev. cor- 
responding to the estimates of Figure 5. 
Our statistical model introduces some back- 
ground patterning, which can be attenuated 
via finer sampling or reduced prior variances 
(eg, from improved mean fields). 
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Figure 7: Estimates from a state model hav- 
ing 3.8 samples per correlation length, lead- 
ing to numerical instabilities. 

plicated than its static counterpart, is highly 
desirable in that it allows measurements dis- 
tributed over time to contribute to estimates 
at some time instant without assuming that 
the field being estimated is static over time. 
We will start by using the estimate from one 
3-day period as the prior mean for the next, 
yielding a simple causal filter. The next step 
is to incorporate some prior knowledge of 
ocean dynamics to improve on this simple 
“persistence” model, but this is the subject 
of future research. 
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