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Abstract. This paper presents a multiscale-based analysis of the sta-
tistical dependencies between the wavelet coefficients of random fields.
In particular, in contrast to common decorrelated-coefficient models, we
find that the correlation between wavelet scales can be surprisingly sub-
stantial, even across several scales. In this paper we investigate eight
possible choices of statistical-interaction models, from trivial models to
wavelet-based hierarchical Markov stochastic processes. Finally, the im-
portance of our statistical approach is examined in the context of Bayes-
ian estimation.

1 Introduction

This paper presents a hierarchical multiscale (MS) model to describe the statis-
tical dependencies between the wavelet coefficients as a first-order Markov pro-
cess. The model is premised on the fact that, regardless of their spatial locations,
wavelet coefficients are highly correlated across scales, even those separated by
several scales. The virtue of this model is its ability to capture coefficients corre-
lations by concentrating on a very sparse statistical structure. Furthermore, the
within-subband coefficients in MS model framework exhibit a clear a Markovian
nature.

Our motivation is model-based statistical image processing. That is, we are
interested in the statistical manipulation of images, which requires some prob-
abilistic description of the underlying image characteristics. The image pixel
interactions in the spatial domain lead to extremely complicated (in particular,
highly correlated) statistical structures, which are computationally inconvenient
to be used in estimation algorithms. In order to simplify the raw statistics of
pixel values, a spatial transformation is considered. The transform is chosen
to simplify or nearly decorrelate, as much as possible, the starting statistics,
analogous to the preconditioning of complicated linear system problems. The
popularity of the wavelet transform (WT) stems from its effectiveness in this
task: many operations, such as interpolation, estimation, compression, and de-
noising are simplified in the wavelet domain, because of its energy compaction
and decorrelative properties [1,2].
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A conspicuously common assumption is that the WT is a perfect whitener,
such that all of the wavelet coefficients are independent, and ideally Gaussian.
There is, however, a growing recognition that neither of these assumptions are
accurate, nor even adequate for many image processing needs. Indeed, signifi-
cant dependencies still exist between wavelet coefficients. There have been sev-
eral recent efforts to study the wavelet statistics; mostly marginal models. Each
statistical wavelet model focuses on a certain type of dependencies, in which a
relatively simple and tractable model is considered. We classify them into the
following two categories:

1. Marginal Models:
(a) Non-Gaussian, i.e., heavy tail distribution [3],
(b) Mixture of Gaussians [3],
(c) Generalized Gaussian distribution [2],
(d) Bessel functions [4].

2. Joint Models:
Hidden Markov tree models [1].

In virtually all marginal models currently being used in wavelet shrinkage [2],
the coefficients are treated individually and are modelled as independent, i.e.,
only the diagonal elements of wavelet based covariance matrix are considered.
This approach, however, is not optimal in a sense that the WT is not a perfect
whitening process.

The latter approach, however, examines the joint statistics of coefficients [5].
Normally an assumption is present that the correlation between coefficients does
not exceed the parent-child dependencies, e.g. given the state of its parent, a child
is decoupled from the entire wavelet tree [1,6].

It is difficult to study both aspects simultaneously: that is, the development
of non-Gaussian joint models with non-trivial neighborhood. The study of in-
dependent non-Gaussian models has been thorough; the complementary study,
the development of Gaussian joint models, is the focus of this paper. The goal,
of course, is the ultimate merging of the two fields. However for the purpose of
this paper, we are willing to limit ourselves to simplifying marginal assumptions
(Gaussianity) which we know to be incorrect, but which allow us to undertake
a correspondingly more sophisticated study of joint models.

The main theme of this paper is, then, to concentrate on studying within and
across scale statistical dependencies of the wavelet coefficients for a variety of
wavelet basis functions and random fields. These correlations are modelled: from
complete independent assumption to full dependency between the wavelet coeffi-
cients over the entire resolutions. Since correlations are present both within and
across scales, we are interested to model them in a wavelet-based MS framework.
Finally, the effectiveness of our statistical-based approach is tested through nu-
merical experiments by exploiting Bayesian estimation technique and we show
that adding significant dependencies to the wavelet prior model causes dramatic
RMSE reductions.
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Fig. 1. Illustration of a typical coefficient d along with its parent and children
within one wavelet tree subband

2 Discrete Wavelet Transform

The WT of an image f is a process in which the low and high frequency compo-
nents of f are represented by separate sets of coefficients, namely the approxima-
tion {aJ} and the detail {dj}, 1 ≤ j ≤ J , with J denoting the coarsest resolution.
If, as usual, we define the linear operators Hj and Lj as high- and low-pass filters
respectively, then clearly the coefficient vectors may be recursively computed in
scale j

aj = Lj−1Lj−1aj−1, dh
j = Hj−1Lj−1aj−1,

dv
j = Lj−1Hj−1aj−1, dd

j = Hj−1Hj−1aj−1 (1)

with {dh
j , dv

j , d
d
j} denote the horizontal, vertical, and diagonal subbands of the

wavelet decomposition at scale j, respectively. The maximum decomposition
level for a discrete image with size n = N × N , would be J = log2N , with n/4j

detail coefficients in every subband at scale j.
Figure 1 illustrates a natural tree of wavelet subbands. Each wavelet coef-

ficient d is shown as a node with dp as its parent and {dci} 1 ≤ i ≤ 4, as the
set of its four children, which represent information about this node at the next
finer scale. As the scale j decreases, the children add finer and finer details into
the spatial regions occupied by their ancestors [1].

2.1 Basic Notations of Wavelet Image Modeling

In order to perform a precise assessment of correlation between the wavelet
coefficients of the finest-scale image f ∼ (0, Σf), we consider a variety of prior
models based on Gaussian Markov random field (GMRF) covariance structures.
The chosen priors, shown in Figure 2 are the tree-bark and thin-plate models.
They are spatially stationary, an assumption for convenience only and is not
fundamental to our analysis.

The selected covariance structure Σf is transformed into the wavelet domain
by computing the 2-D wavelet transform W , containing all translated and dilated
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(a) (b)

Fig. 2. Two GMRF models used in our simulations: (a) Thin-plate, (b) Tree-
bark texture

versions of the selected wavelet basis functions:

ΣWf = WΣfWT (2)

where we limit our attention to the set of Daubechies basis functions. As more
regularity is added to the wavelet function, the within scale decoupling effects
increases. Nevertheless, the qualitative structures are similar, and the across-
scale correlations are no less significant.

Although in actual data processing we use the covariance matrix, for con-
venience in understanding the results, the covariance values are normalized, so
that the inter-coefficient relationships are measured as correlation coefficients

ρ =
E[(di − µdi)(dj − µdj )]

σdi σdj

, −1 ≤ ρ ≤ 1 (3)

where di and dj are two typical wavelet coefficients with mean and standard
deviation µdi , σdi and µdj , σdj , respectively.

In [7] we defined a recursive method to calculate within and across scale
covariances for 1-D signals from the covariance Σaj ,aj at the finest scale j = 1:

Σdj+1,dj+1 = HjΣaj ,aj H
T
j , Σaj+1,dj+1 = LjΣaj ,aj H

T
j , etc (4)

Having this tool one can easily assess the extent of correlation between the
coefficients at the same scale or across different resolutions.

Figure 3 illustrates the correlation structure of the 2-D wavelet coefficients of
a 4-level wavelet decomposition. Due to dramatic increase in covariance matrix
size, the empirical results are limited to considering the correlation structure of
32 × 32 images. The main diagonal blocks show the autocorrelation of coeffi-
cients located at the same scale and orientation. Due to the column-wise 2-D to
1-D data stacking, large magnitude auto-correlations of the vertical coefficients
(labeled as v) tend to concentrate near the main diagonal, whereas those of
the horizontal coefficients (h) are distributed on the diagonals 32 pixels apart.
The off-diagonal blocks contain those cross-correlations of across orientations or
across scales.

It is clear that the within-scale correlations tend to decay very quickly, con-
sistent with the understanding that the WT is decoupling the original signal,
while the dependencies across different resolutions remain surprisingly strong,
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Fig. 3. Scaled values of four-level correlation structure of a thin-plate model
decomposed by the Daubechies “db1” wavelet. The main diagonal blocks show
autocorrelation of coefficients located at the same scale and orientation, whereas
the off-diagonal blocks illustrate cross-correlations across orientations or scales

even for coefficients located several scales apart. This result confirms that al-
though the wavelet coefficients are expected to be decorrelated, there exist cases
in which the correlation can be quite significant.

2.2 Numerical Experiments

It is generally infeasible to directly utilize the huge covariance matrix ΣWf in an
estimation process, due to space and time complexities. Our goal is to study the
properties of ΣWf in order to deduce a simple, but still accurate, representation
of the underlying correlation model; that is, to construct a new sparse covariance
matrix, which contains the most significant information from the prior model.
Of course, the study of large covariance matrix is for diagnostic and research
purpose; ultimately any practical estimation algorithm will be based on some
implicit sparse model of the statistics.

In our experiments the wavelet coefficients are treated in various ways, from
complete independence to full dependency among all coefficients over the entire
wavelet tree. As is shown in Table 1, eight different cases of adding more features
to the new covariance matrix are considered. For each case, except the diagonal
case, at least one of the three important neighborhood correlation factors, (intra-
orientation, intra-scale, and inter-scale) is considered.

Figure 4 visualizes all eight structures obtained from the original correlation
matrix. Note that the standard wavelet-based algorithms, in which the coef-
ficients are treated as statistically independent, only consider diagonal entries
of the covariance matrix, shown in Figure 4(a). These structures indicate that
adding intra-scale correlations increases the structure’s density (Figure 4(f))
much more than the inter-scale dependencies (Figure 4(g)). As is evident a large
portion of intra-scale correlation values are very close to zero, which says almost
nothing about the correlation structure. This fact suggests devising a hierarchi-
cal correlation model which keeps its across-scale strength up to several scales,
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Table 1. Eight different ways to obtain a new wavelet-based covariance struc-
ture which contains a combination of three important neighborhood correlation
factors, namely intra-orientation, intra-scale, and inter-scale

intra inter inter
Notation orientation orientation scale

diagonal 0 0 0

interorient 0 1 0

interscale 0 0 1

interorient-interscale 0 1 1

inorient 1 0 0

inorient-interorient 1 1 0

inorient-interscale 1 0 1

full 1 1 1

while reducing the within-scale neighborhood to the very close spatial neighbors,
i.e., 3 × 3 spatially located coefficients.

3 Gaussian Multiscale Modeling

As discussed in Section 2.2, the numerical simulations with covariance structure
have revealed the importance of taking into consideration a small within-scale
correlation range along with a large extent of across-scale dependencies. In order
to meet this requirement, there are two alternatives to consider:

1. Imposing models which describe the long range statistical dependencies, such
as the full covariance matrix. Such models, however, lead to estimation al-
gorithms that are highly complex and difficult to implement.

2. Proposing a statistical model which tends to approximate the structural
correlations over the entire wavelet tree. The advantage of this approach
is the existence of estimation techniques which are fast and very easy to
implement [8].

Therefore, first-order MS modeling is used to devise an approximation model of
the wavelet coefficient correlations. The MS method [8] models each node on the
tree as a stochastic process X(d) and recursively describes the interrelation of
parent and child as:

X(d) = AdX(dp) + Bdνd (5)

As seen in Figure 1, d represents each node on the tree with its parent denoted
as dp. Here νd ∼ N (0, I) is a white noise process and Ad, Bd are parameters to
be determined. At the coarsest resolution (root node), the stochastic process
X(dJ) is assumed to obey:

E[X(dJ)] = 0,

E[X(dJ)XT (dJ )] = PJ (6)
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Fig. 4. Various correlation structures achieved from the original covariance ma-
trix ΣWf . (a-g) Seven structures as in Table 1. As within-scale dependencies are
considered (f), the structural density increases dramatically. The across scale
correlations (g) add significant information, but have less impact on density
increment. (h) The correlation structure presented by a multiscale model

Having the initial conditions defined in (6), one can easily calculate the pa-
rameters A and B given in the first-order MS model (5). The cross-correlation
of each node d and its parent is computed as [8]:

Pd,dp = E[X(d)XT (dp)]

Pd,dp = AdPT
dp

=⇒ Ad = (P−1
dp

Pd,dp)T

BdB
T
d = Pd − AdPdpAT

d (7)

Figure 4(h) shows the correlation structure obtained by imposing a first-
order stochastic process on the original model (Figure 3). Note that inter-scale
correlations, even up to distantly separated scales, are well absorbed by this
stochastic model. Also observe that the clear locality of neighborhood depen-
dencies demands within-scale Markovanity. These advantages plus the sparse
representation of the MS model makes it an elegant tool to capture wavelet-
based hierarchical correlations. The corresponding estimation algorithms can
thus be implemented with very low computational effort [8].

The accuracy of the MS model can be increased from first-order, (the state
of parent is sufficient for a child to be decoupled from all other nodes) to second-
order, (the state of its grand-parent is also needed for a node to be independent
from the rest of the tree), etc. Another important issue is the number of coeffi-
cients that form a node on the wavelet tree. A particular node may contain only
a single wavelet coefficient, or two or more coefficients. To illustrate the tradeoff
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Table 2. Summary of computational effort required for the MS model to be
imposed on a wavelet binary-tree for a 1-D signal of size N . Each number shows
the complexity for a combination of MS order and number of coefficients per
node

MS order

1 2 3 4 · · · (log2N)
th-order

1 - - - · · · -
Pixels 2 3 - - · · · -
per node 4 6 7 - - -

↓ 8 12 14 21
...

...
...

...
...

...
N/2 Σ2

i=1N/2i Σ3
i=1N/2i · · · · · · N − 1

Complexity O(N) · · · PlogN−p
i=0 [

Pi+p−1
j=i 2j ]3 · · · O(N3)

between the order (accuracy) of MS model and computational complexity of the
estimation process, a wavelet binary-tree for an exponentially distributed 1-D
signal of size N is considered. Various ways of MS modeling, from first-order
to log2Nth-order and from single values to vectors of coefficients per node, are
examined. Table 2 summarizes time complexity for each MS model. From top
left to bottom right the correlation structure becomes more dense while the
complexity of even simple estimation algorithms gets harder.

4 Bayesian Wavelet Estimation Approach

A simple estimation algorithm is adopted in this part to evaluate and compare
the achieved various statistical structures . To exploit these statistical dependen-
cies we implement a method that estimates the original coefficients by explicit
use of wavelet covariance structure. Due to the linearity and orthogonality of the
WT, Bayesian Least Square (BLS) method which directly takes into account the
covariance structure is:

f̂ = ΣT
f (Σf + R)−1g (8)

The goal is to estimate f ∼ N (0, Σf) from noisy observation g, where additive
noise v ∼ N (0, R) is decorrelated with original data f . Since the BLS is applied in
the wavelet domain, it is necessary to substitute (2) into (8). Then the orthogonal
wavelet transform of the BLS method is obtained as:

f̂ = W−1[WΣfWT (WΣfWT + WRWT )−1Wg] (9)

In order to perform appropriate comparisons and also to emphasize the im-
portance of considering wavelet coefficient correlations – within and across scales,
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Fig. 5. RMSE measure of noisy observation g and denoised images obtained by
BLS method and different covariance structures shown in Figure 4

all structures of ΣWF illustrated in Figure 4 are considered in BLS framework,
except those shown in Figure 4(c),(d), due to not being positive definite.

Figure 5 displays the RMSE noise reduction achieved as more correlations
are taken into the estimation process. The RMSE performance shows that the
more partial correlations (Table 1) are considered, the lower the RMSE. It is
extremely important to notice that the rate of RMSE reduction is faster espe-
cially if more inter-scale correlations are considered. Larger extent of intra-scale
dependencies, however, does not lead to significant RMSE reduction. This fact
confirms our earlier discussion of reducing the within-scale neighborhood depen-
dency in our model. As seen in this Figure, the MS-based correlation structure
is promising and outperforms the decoupling assumption of the WT, in addi-
tion to being a sparse structure of the huge covariance matrix. The MS-based
structure with relatively few coefficients vastly reduces the RMSE. Regardless
of its well capturing of the across scale dependencies, this model still demands
improvements in describing the within scale relations.

5 Conclusions

A multiscale-based analysis of statistical dependencies between the wavelet co-
efficients was presented. Since correlations are present both within and across
scales, wavelet-based hierarchical Markov stochastic processes were proposed and
investigated.

The proposed MS model exhibits a sparse locality to the coefficient activi-
ties, which results in a dramatic RMSE reduction. The virtue of the model is
its ability to capture the most significant statistical information between tree
parents and children, however the interrelationship of pixels within a scale is
only implicit, and very limited. To complete our development of MS model, we
will consider higher local spatial neighboring activities towards a MRF model-
ing of the wavelet coefficients statistics. The development of MRF methods on
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hierarchies has some past literature, but is still relatively new and we are willing
to extend this work to the proper MRF modeling of statistical dependencies on
spatial neighbors.
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