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Abstract—The posterior sampling problem computes a random sample
from a posterior distribution. Typically this problem is solved through
Markov-Chain Monte-Carlo / Simulated Annealing, however these can be
computationally challenging and slow to converge.

In this paper we use a little-known property of multiscale statistical
models to formulate a posterior sampler, exact in the case of Markov ran-
dom fields, and approximate for other distributions. The proposed ap-
proach benefits from and builds upon past work on multiscale model infer-
ence and approximation, yielding a fast approach to sampling continuous-
state images.

I. INTRODUCTION

The estimation of images and random fields from sparse and/or
noisy data is a highly-developed discipline, to the point where meth-
ods such as least-squares estimation, simulated annealing, and wavelet
shrinkage appear in standard textbooks[3], [20]. Indeed, beyond the
standardization of such methods, there also exists a variety of mature,
efficient estimators.

For the majority of current image analysis problems, characterized
by densely-measured images from a camera, typically showing macro-
scopic scenes (e.g., people, faces, houses, trees, cities, etc.), available
estimation algorithms are more than adequate, and the challenge lies,
instead, in the high-level modeling and interpretation of such images,
not the subject of this paper.

However there exists a comparatively small, but important, class of
problems, mostly scientific, in which the “image” is governed by some
mathematical behaviour (the prior model), and the measurements are
sparse (constrained by physics, time, and/or cost), of which impor-
tant examples include satellite remote sensing (sparsity by orbital con-
straints) and imaging-MRI (sparsity by time constraints). In particular,
the research of this paper is motivated by a current interdisciplinary re-
search project at the University of Waterloo involving the imaging and
modeling of porous media, such as limestone, concrete, cartilage, or
sand. Although many studies of porous media are discrete-state (e.g.,
rock versus pore), we focus on continuous-state models, appropriate in
our MRI context (in which we measure pore density, since pores may
be too small to resolve) and in many remotely-sensed contexts.

Throughout this paper we assume that the prior model is known.
That is, we focus exclusively on the computational aspects of posterior
sampling. The system identification problem to learn such models is
of great importance, but beyond the present scope.

Suppose we have a Gaussian random field z (equivalently, a grid of
image pixels) on a lattice £, with a prior probability density p(z) and
linear measurements

m=Cz+uv 1)

with measurement noise v, where all quantities are column vectors. A
random sample from the posterior distribution is typically solved via
Markov-Chain Monte-Carlo / Simulated Annealing [11], [12], [13],
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[21], [22], which can be computationally challenging and slow to con-
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decomposition of the multiscale approach leads to an efficient pos-
terior sampler which benefits from a variety of previously-developed
multiscale tools and models.

Section 2 briefly describes the mathematical background behind
sampling, followed by a development of the multiscale approach in
Section 3 and experimental results in Section 4.

I1. BACKGROUND

We briefly move through the sequence of Prior Sampling, Estima-
tion, Posterior Sampling, and Dynamic Models. Suppose an n-element
random field z € R™ has a known Normal distribution

z~ N(ﬁ7 P) (2)
Finding the eigendecomposition of P, we write
P=VAVT, L =VAY? 3)

where L is referred to as a matrix square-root of P. In practice there
are a variety of ways to compute a matrix square root, most notably
the O(n®) Cholesky decomposition. From L, a random sample may
be found as

z=p+ Lw, w-N(0,I). 4)
Next, given linear measurements

m=Cz+u, v-N(0,R) (5)
the linear least-squares estimates may be computed, as usual, as
Elzlm) = u+ (P7' +C"R™'C) " C"R™ (m — C(6)
cov(z) = (P71 +C"R7'C) ! @

z =

P =

The former computation of Z is relatively straightforward, typically
O(n*®) to O(n?), and is easily cast into a linear-systems framework
for iterative solution; the latter O(n>) computation of P is much more
difficult, and is omitted in many contexts.

A posterior sample of z is one constrained by the measurements m,
that is, a random sample of

zlm ~ N2, P). ®)

If the O(n?®) computation of Pin (7) can be undertaken, then the pa-
rameters of this distribution are known. If we let L be the matrix square
root of P, then the posterior samples are given by

(z2lm) = 2+ L, w~N(0,1). 9)

This requires finding 2 O(n'®), the posterior covariance P O(n®)
and its square root O(n?).

Finally, if pieces of the random field obey a dynamic relationship
then sampling may be simplified. For example, if the columns z, of an
image Z = [z, z, ...] obey a standard Gauss-Markov model

Ziy1 = Aiéi + Biw“ z

N (i Po), (10)

0
where w, is a white Gaussian noise process, then only matrix P, =
L,L7 need be decomposed and the sampling process proceeds itera-
tively, per (10), initialized with

2z, = Low,, w,~N(0,I). (11)



This appears to be a convenient solution to the sampling problem, how-
ever two issues remain:
1) Inmany cases the process parameters B; are not, in fact, known;
rather (10) takes the form

Ziy1 = AZEL +£ZZ-, Zo ~N(H07P0)7 q, ~N(07 Ql) (12)

where g, is a noise process with covariance Q;. To generate
a posterior sample requires finding the square root of each Q;.
The key to efficiency is to keep the state dimension of z,, and
thus the size of matrix @, as small as possible.
2) In order to do posterior sampling, it is really a dynamic relation-
ship for the estimation errors Z = z — Z which we require:
§i+1 ZALZ'FQN 20~N(§Ag7ﬁo)7 Q~Z~N(O7Q~L) (13)
The error process of the Kalman smoother does obey such a dy-
namic process [1], [2].

I11. MULTISCALE SAMPLING

Motivated by the long history of success of the Kalman filter, there
have been efforts to similarly model random processes over scale
rather than over time. One particular hierarchical framework, the mul-
tiscale one[4], [8], [14], [17], has seen considerable effort and model
development. A scale-to-scale Gauss-Markov process is asserted,
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Fig. 1. A typical state arrangement at the coarsest level of a 2D multiscale
quad-tree (light grey) and the top-left state at the next scale (dark grey). The
state F'(s)z is a subsampled set (circles) of boundary pixels. The degree of
subsampling is a function of the prior statistics, accuracy requirements, and
computational limitations.

The key benefit of the multiscale framework, for the context of this

2(s) = A(s)z(ps) + B(s)w(s), w(s)~N(0,1), 2(0)~N(upy,Po), @ﬁer, is a mostly-overlooked result [16] which shows that the multi-

where s is an index on the nodes of a tree, 0 is the node corresponding
to the tree root, and p is an operator, returning the parent ps of node
s. This model has a clear relationship with (10), except that in (14) a
given node s may have more than one descendant.

The usual arrangement, for two-dimensional random fields, is a
quad-tree representation, in which the leaf-nodes of the tree repre-
sent the pixels of the random field of interest, whereas the higher-level
nodes serve to produce (to the extent possible) the desired statistical
structure at the finest scale.

The immediate question is to what extent (14) can model random
fields of interest. Two-dimensional Markov random fields can be
represented exactly [17], and there have been successes in modeling
fractals [5], 1/f-like processes [8], [9], and results for more general
stochastic realization [6], [15].

We define states z(s) = F(s)z, where F'(s) is highly sparse (such
as the sparse sampling of boundary pixels in Figure 1). The node-to-
node cross-statistics can be computed as

P(Sl,SQ) = F(Sl)PFT(SQ) (15)
where P is the covariance of z. The multiscale model parameters fol-
low as

(16)
(17

A(s) =
B(s)BT(s) =

P(s,ps)P~" (ps, ps)
P(s,s) — A(s)P(ps,ps)AT(s).

The estimator [4], [8], [17] which follows from (14) greatly resem-
bles the Kalman smoother, producing estimates Z(s) and error covari-
ances P(s) at each node, based on all of the measurements on the
entire tree. The computed estimates are exact, and any approximation
lies in the choice of model itself.

The algorithm is normally highly efficient, although this depends
greatly on the dimension of z(s) at coarse scales [14]. A typical ex-
ample is shown in Figure 1; although the sparse pixellation in the state
is exaggerated in the figure, the key point is that the size of the state
will, in any case, be only a tiny fraction of the size of the entire image.

scale error process Z(s) also obeys a multiscale model:

Z(s) = A(s)Z(ps) + @(s), @(s)~N(0,Q(s)), Z(0)~N(2(0), Fo), (18)

where A(s), Q(s) are expressed [16] in terms of the model parameters
A(s), B(s), prior covariances P(s), and estimation error covariances

Pu(s):

A(s) Pu(s)GT (s) P, (ps) (19)
Qs) = Puls) — Puls)GT(8) P (p9)G(5)Puls)  (20)
G(s) = Pps)A"(s)P™'(s) (21

The original intent of the smoothing-error model was predominantly
for other purposes — for data fusion, incorporating new measurements
into existing estimates by running the estimator on the new model
A(s), Q(s), and for the computation of inter-node posterior estimation
error covariances. However in the context of this paper the availability
of a multiscale smoothing error model leads to an approach to hierar-
chical posterior sampling, following the dynamic approach discussed
in the previous section:

The multiscale estimator computes 2(s), P(s) at each node on

the tree.

We then compute the smoothing error model A(s), Q(s).

Use a Cholesky decomposition compute the matrix square-roots

L) = (P(0)"?, L(s) = (Q(s))"* s #£0

Sample the smoothing error process, starting from the root node
and proceeding down the tree:

(22)

(Zlm)(0) = L(0)@(0), @(0)~N(0,T) 23)

(Zm)(s) = A(Zlm)(ps)+ L(s)d(s), @(s)-N(0,(34)
Finally, add the mean (the estimates) to produce the posterior
sample:

(zlm)(s) = Z(s) + (Zlm)(s) (25)



If the state z(s) has dimension d(s), then each of the estimation,
smoothing, and square-root steps have complexity O(d(s)?) per node.
For a two-dimensional n-pixel Markov process, modeled as in Fig-
ure 1, d(0) o 4/n and thus total complexity is O(n'-).

With the principle of the method in place, the following section
demonstrates the approach, its versatility, and computational issues.

IV. RESULTS

Two prior models were used to illustrate and assess the proposed ap-
proach: a thin-plate* Markov model and a Markov wood-grain texture,
the coefficients shown in Table I.

Figure 2 illustrates the posterior sampling process. Because of sta-
tionarity and periodicity, the prior samples can be generated very effi-
ciently using standard FFT methods, however the aperiodic structure
of the measurements implies that the FFT cannot be used for poste-
rior sampling®. The sampled estimation error z|m shows that part of
the stochastics not constrained by the measurements; indeed, the con-
strained domain is clearly visible down the middle of the image.

The multiscale model makes no assumptions regarding symmetry
or stationarity, so it applies to non-isotropic models, such as in Fig-
ure 3, or a spatially nonstationary case such as in Figure 4. This latter
figure shows a process consisting of two independent parts (inside and
outside of a disk). The nonstationary structure of the decoupling is pre-
served, clearly visible in the sampled images. Note that the decoupled
model is not in any way learned from the measurements; it is specified
apriori.

Figure 5 shows sampled results for the types of scenarios motivat-
ing this work. The imaging-MRI device being applied to 3D samples
of porous media can take measurements pointwise, in planes, or vol-
umetrically. Limiting our studies to the two-dimensional domain, we
can approximate these scenarios by looking at a single 2D cross sec-
tion, such that measured planes become lines (here rows or columns),
and low-resolution volumetric measurements become low-resolution
planar ones.

It should be noted that cases (a-c) and (d) are fundamentally dif-
ferent: in (a-c) we measure a subset of the finest-scale pixels, in (d)
we measure only low-resolution averages of 4 x 4 blocks of pixels,
with no measurements at all at the finest scale. Because the multiscale
framework does model the process at coarser scales, accommodating
such low-resolution measurements is straightforward and natural.

In each case, two posterior samples are shown to emphasize the ran-
dom sampling process. Itis quite clear that the degree to which the two
posterior samples are similar is a function of the degree to which the
random field is specified by the measurements, with significant varia-
tions visible in (a), and much less so in (c) and (d). Although (d) may
appear to take on aspects of super-resolution methods[7], [18], in pos-
terior sampling we are adding details from the error process Z which
is, by definition, orthogonal or not inferable from the measurements,
whereas super-resolution methods seek to infer fine-scale details which
are inferable from the measurements.

Finally, Figure 6 looks at issues of computational complexity related
to multiscale posterior sampling. Given a prior model, there are two
questions to ask in undertaking a multiscale implementation:

1) What state sampling F'(s), as in Figure 1, is needed / required

to produce adequate results?

2) Are there other multiscale ideas, such as averaging multiple

models [8], overlapping trees [14], model realization [6], [15]
or possibly multiply-rooted trees [10] which may be used?

1The discretization of a second-order model, penalizing first and second order
spatial derivatives, like a steel plate.

21n the artificial, special case that both prior and measurements are station-
ary / periodic, then indeed the FFT can be used to compute estimates, error
variances, and posterior samples.

Panel (a) of Figure 6 has a dense state definition, in which every bound-
ary pixel is included in the state, such that the coarsest state contains
759 elements. If we do not require the model to be top-bottom and
left-right periodic, then by eliminating boundary pixels in the coarse
scales (b), a huge reduction in effort is realized. Next (c), because of
the substantial horizontal correlation in this particular model, it is not
necessary to keep every pixel in the horizontal direction, so further re-
ductions are possible. Of course, if the state reduction is continued too
far (d) decorrelative artifacts will appear along tree boundaries. Finally
(e), an overlapping approach [14] may allow a reduced-state model to
produce good results, as is the case here.

Although the results are shown here for only one example, exten-
sive work in model inference and realization implies the extensibility
of these results to other contexts. In any event, very reasonable results
can be obtained for 128 x 128 images in less than 30 seconds. By
comparison, a direct approach to sampling via Cholesky decomposi-
tion would take hours on a 2GHz workstation, in addition to problems
with matrix storage, whereas FFT and steady-state Kalman filters may
be used only in special circumstances with stationarity.

V. CONCLUSIONS

We have developed a multiscale approach for posterior sampling -
the random sampling from the posterior distribution of a prior model
plus constraints due to measurements, a method particularly useful in
contexts of sparse measurements.

The method of this paper does not, to be sure, address all of the
challenges raised by the 3D modeling and imaging of porous media. In
particular, the most pressing extension to this work is the development
of more meaningful prior models, in particular, the inference of prior
models from data.
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Fig. 2. The process of posterior sampling. The leftmost two panels show a sample from the prior model and estimates based on the central measured column.
The third panel shows the sampled estimation error, where a low-variance zero-mean band can be seen where the estimation uncertainties are small, around the
measurements. The final panel shows the sampled posterior.
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Fig. 4. As in Figure 2, but for a nonstationary model. We have two decoupled domains - one inside the circle, and the other outside. Measurements are taken in
the central column and row.
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Fig. 5. Sampling for various measurement contexts: (a) sparse pointwise, (b) sparse columns, (c) dense rows/columns, and (d) densely at lower resolution (one
measurement of each 4 x 4 pixel block average). Two posterior samples are shown in each case; their similarity depends on the degree to which the estimation
errors are constrained by the available measurements, which increase in density from top to bottom.



a) Dense State b) Aperiodic c) Sparse Horz. d) Very Sparse e) Sparse, Overlapped
303 sec. 74 sec. 21 sec. 10 sec. 20 sec.

Fig. 6.  An illustration of computational complexity and tradeoffs. The examples differ in the nature of the multiscale state of Figure 1, corresponding to (a)
dense pixel-wise sampling, (b) a reduction in the coarse states to relax boundary periodicity, (c) a reduction in horizontal sampling density, (d) a further reduction
in density (so that artifacts appear), and (e) a reduced state on an overlapped tree[14]. Bold state elements appear at all scales, unbolded ones only at finer scales.
The running times, in seconds, are for the entire process — multiscale model computation, estimation, estimation error variances, and posterior sampling. Direct
posterior sampling using Cholesky decomposition would require several hours.

[12] S. Geman, D. Geman, “Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images”, IEEE Trans. PAMI (6) #6, pp. 721-
741, 1984

[13] K. Hanson, G. Cunningham, “Posterior Sampling with Improved Effi-
ciency,” Proceedings of the SPIE (3338), pp.371-382, 1998

[14] W. Irving, P. Fieguth, A. Willsky, “An Overlapping Tree Approach to
Multiscale Stochastic Modeling and Estimation”, IEEE Trans. on Image
Processing (6) #11, pp.1517-1529, 1997

[15] W. Irving, A. Willsky, “A Canonical Correlations Approach to Multiscale
Stochastic Realization,” IEEE Transactions on Automatic Control (46)
#10, pp.1514-1528, 2001

[16] M. Luettgen, A. Willsky, “Multiscale Smoothing Error Models”, IEEE
Trans. on Automatic Control (40) #1, 1995

[17] M. Luettgen, W. Karl, A. Willsky, R. Tenney, “Multiscale Representa-
tions of Markov Random Fields”, IEEE Trans. Signal Processing (41)
#12, pp.3377-3396, 1993

[18] N. Nguyen, P. Milanfar, G. Golub, “A Computationally Efficient Super-
resolution Image Reconstruction Algorithm,” IEEE Trans. on Image Pro-
cessing (10) #4, pp.573-583, 2001

[19] H. Rauch, F. Tung, C. Striebel, “Maximum Likelihood Estimates of Lin-
ear Dynamic Systems”,AIAA Journal, (3) #8, 1965

[20] J. Starck, F. Murtagh, A. Bijaoui Image Processing and Data Analysis,
The Multiscale Approach, Cambridge University Press, 1998

[21] M. Tanner, W. Wong, “The Calculation of Posterior Distributions by Data
Augmentation,” J. American Statistical Association (82), pp.548-550,
1987

[22] G. Winkler, Image analysis, random fields, and dynamic Monte Carlo
methods : a mathematical introduction, Springer-Verlag, 1995.



