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ABSTRACT 

The estimation of images and random fields from sparse 
and/or noisy data is highly-developed, to the point where 
methods such as least-squares estimation, simulated anneal- 
ing, and wavelet shrinkage are quite standardized. The key 
problem, however, is that the estimates are not a realistic 
version of the random field, and do nor represent a typical 
or representative sample of the system being studied. 

Instead, what is often desired is that we find a random 
sample from the posterior distribution, a much more sub- 
tle and difficult problem than estimation. Typically this is 
solved using Markov-Chain Monte-Carlo / Simulated An- 
nealing approaches, however these may he computationally 
challenging and slow to converge. In this paper we use hier- 
archical models to formulate a novel, fast posterior sampler. 

1. INTRODIJCTION 

For the majority of image analysis problems, characterized 
by densely-measured images (e.g., from a camera), standard 
low-level estimation algorithms are more than adequate, and 
the challenge lies, instead, in the high-level modeling and 
interpretation of such images, not the subject of this paper. 

However there does exist an important class of image 
processing problems, mostly scientific, in which the “im- 
age” is governed by some sort of known behaviour (a prior 
model), and the measurements are sparse (constrained by 
physics, time, and/or cost). One key problem in such sparse 
contexts is that the estimates are not a realistic version of 
the random field, as shown in Figure I; typical or represen- 
tative sample of the system being studied may be desired 
for purposes of visualization, further analysis, Monte Carlo 
studies etc. 

Instead, what is required is that we find a random sam- 
ple from the posterior distribution, a much more subtle and 
difficult problem than estimation, and, crucially, one which 
cannot he formulated as an optimization problem. Because 
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Fig. 1. Limitations of estimation m the context of sparsely- 
measured random fields: The left panel shows a random sample, 
of which the middle column is measured, from which estimates 
(right) are produced. The statistics of the estimates are clearly 
very different From the original, true field; in particular, it would 
be exeemely unlikely for a random texNre to be periectly flat for 
80% of the image, as these estimates are. 

the brute-force approach to sampling is computationally in- 
conceivable, the Markov-Chain Monte-Carlo / Simulated 
Annealing approach is nearly universally used, especially 
for finite-state problems, however this approach can still be 
computationally challenging. In this paper we use a little- 
knownproperty of multiscale statistical models to formulate 
a posterior sampler, exact in the case of Markov random 
fields, and approximate for other distributions. 

Section 2 describes the mathematical background be- 
hind sampling, followed by a development of the multiscale 
approach in Section 3 and experimental results in Section 4. 

2. BACKGROUND 

First, suppose the random field has the known Normal sta- 
tistical distribution 

4 - N(IA PI (1) 

Finding theeigendecomposition of P = VAVT,  the matrix 
I, = VA’lZ is referred to as the matrix square-root of P .  
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Table 1. Third-order “Thin-plate” coefficienLs 

0 -0.0091 0.0517 0.0008 0 
0.0058 0.1405 -0.5508 0.1164 0.0085 

-0.0139 -0.2498 1 .OOOO -0.2498 -0.0139 
0.0085 0.1164 -0.5508 0.1405 0.0058 

0 0.0008 0.0517 -0.0091 0 

Fig. 2. A typical state arrangement at the coarsest level of a 2D 
multiscale quad-tree (light grey) and the top-left state at the next 
scale (dark Fey). The spacing between pixels will be a function 
of tlie prior statistics, accuracy requirements, and computational 
needs. Table 2. Fourth-order “Wood-grain” coefficients. 

3. MIJLTISCALE 

The key challenge of Section 2 ,  is how to compute the error 
covariance P and the huge matrix square-roots, both ex- 
tremely difficult! A variety of approaches have been pro- 
posed to decompose large estimation problems into smaller 
pieces; one in particular, the hierarchical multiscale one[7], 
has seen considerable effort and model development. 

The multiscale model asserts a scale-to-scale process: 

Then a random prior sample of 4 may be found as 

2 = E +  Lw, -M(O, I ) .  (2) 

Next, given linear measurements 

- m = Cg+x, 9 -N(O, nj ( 3 )  

then the linear least-squares estimates g and estimation error 
covariance P may be computed, as usual, where f = g-2 is 
the estimation error. Of these two, the former computation 
of g is relatively straightforward; the latter computation of 
P is much more difficult, and is omitted in many contexts. 

Our goal is to find a “typical” sample from random vec- 
tor g, constrained by the measurements 3 that is, we wish 
to find random samples from the distributionp(g1m). From 
the estimation, we have 

E k I d  = I ,  cov(gl3) = P (4) 
If we let = VA’/’ be the matrix square root of P = 
VAVT,  then the desired posterior samples, consistent with 
the measurements and with the prior model, are given by 

(5) 

Finally, ifpieces (e.g., the columns) of z obey a dynamic 
relationship, then sampling may be simplified. For example, 
if the columns 4, of image z obey a standard Gauss-Markov 
model 

(gl3) = 2 + La, 1 - N(0,  I )  

- ~ ( . 3 )  = 4 a ) d p ~ )  + d s ) ,  =Us) - Q(sL d o )  - Po, (8) 

where a is an index on the nodes of a tree, 0 is the node cor- 
responding to the tree root, and p is an operator, returning 
the parent ps of nodes. 

The usual arrangement, for two-dimensional random 
fields, is that ~ ( s )  live on a quad-tree, where the leaf-nodes 
of the tree represent the pixels of the random field of inter- 
est. This approach can model a variety of random fields of 
interest: certainly two-dimensional Markov random fields 
can be represented exactly [7], there has been success in 
modeling fractal and l/f-like processes, and results for 
more general stochastic realization [2, SI. 

The estimator [7] which follows from (8) greatly resem- 
bles the Kalman smoother. As with the Kalman smoother, 
the algorithm consists of only two passes; it is not itera- 
tive. Furthermore the approach is exact, in the sense that .. 
the computed estimates are exact; any approximation lies in 
the choice of model itself. 

The key benefit of the multiscale framework, forthe con- 
text of this paper, is a mostly-overlooked result [6] which 
shows that the multiscale error process Z(S) also obeys a 
multiscale model: 

= 4% + 4, -N(/im P o ) ,  9i - N ( o ,  Qi), (6) 
then we would need to find square roots Po = L&, Qi = 
LiLT; clearly the key to efficiency is to keep the dimen- 
sions of the P; as small as possible. Of course, to do Pox- 
ferior sampling, it is really a dynamic relationship for the 
estimation emrs  which we require: 

g(s) = A ( s ) f ( p s )  + l ( s ) ,  G(s) - Q ( s ) ,  f(0) - Po, (9) 

where A ( s ) ,  Q(s) are expressed [6] in terms of the model 
parameters A ( s ) , B ( s ) ,  pnorcovariances P ( s ) ,  andestima- 
tionerror covariances Pu (s). Althoughthe original intent of 

= A &  +&, g -N(g‘,,Po), si -N(O,Qd.  (7:) 

Although it is not obvious that such a form is obeyed, it 
tumsout that theerrorprocess oftheKalmansmootherdoes 
obey such a dynamic process[ I]. 
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Fig. 3. The process of posterior sampling. The leftniost two panels repeat Figure 1 ,  showing a sample from the prior model, and estimates 
based on the central measured column. The third panel shows the sampled estimation error, where a low-variance zero-mean band can 
be Seen where the estimates are good. The h a 1  panel shows the sampled postenar, consistent with both the measurements and the prior 
statistics. 

deriving the smoothing-error model was predominantly for 
other purposes of data fusion and estimation error covari- 
ance P calculation, clearly the availability of a multiscale 
smoothing error model leads to an approach to hierarchical 
posterior sampling, following from the dynamic approach 
discussed in the previous section: 
I .  The multiscale estimator computesg(s), P(sj: 
2. We then computethe smoothing error model A(s), Q(sj. 
3 .  Compute the matrix square-roots L(O), L(s). 
4. Sample the smoothing error process as 

(ZlEEW) = ~ ( O ) i ( O ) ,  i ( s )  -"I) (10) 

(B"4 = &ZId(PS) + ". (11) 

S. Finally, add in the mean (the estimates) 

(4lEEN4 = d(.) + (ZI%)b) (12) 

With the principle of the method in place, the following sec- 
tion demonstrates the approach, its versatility, and compu- 
tational issues. 

4. RESULTS 

look nothing at all like the underlying texture. The sam- 
pled estimation error shows the random behaviour not 
constrained by the measurements; indeed, the constrained 
domain is clearly visible down the middle of the image. Fi- 
nally the posterior sample g / ~  = g [ ~  + &a is a new ran- 
dom texture, consistent with the original where measured, 
and showing no evidence of the measurement structure*. 

Figure 3 has a fairly regular structure, however the mul- 
tiscale model makes no particular assumptions regarding 
stationarity, so it is just as applicable in cases such as in 
Figure 4, which shows a decoupled process; the decoupling 
is clearly visible in the final, sampled image. 

Finally, Figure 5 looks at issues of computational com- 
plexity. Comparisons with other approaches are difficult 
because of the limited approaches available: MCMC meth- 
ods are iterative, and continuous-state annealing is difficult 
and slow; brute-force approaches are easily implemented, 
but horribly slow (about 28 hours on a 2GHz workstation); 
and FFT and Kalman filter methods apply only to stationary 
problems which are not of realistic interest. 

The panels of Figure 5 proceed from dense to relaxed 
state definition, reducing the computational complexity and 
ultimately introducing artifacts. An overlapping approach 
(e) may allow a reduced-state model to produce good re- 
sults, as is the case here. The largest part of the com- 
putational effort is in setting up the model and computing 
the matrix squareroots. Once these squareroots have been 
computed and saved, any number of posterior samples can 
be produced extremely quickly (less than one second). 

Two prior models were used to illustrate and assess the pro- 
posed approach: a thin-plate Markov model and a Markov 
wood-grain sort of texture, the coefficients shown in Ta- 
bles 1 and 2, respectively. 

Figure 3 illustrates the posterior sampling process, 
building on the motivation from Figure 1. Because of sta- 
tionarity and periodicity, the prior samples can be gener- 
ated very efficiently using standard FFT methods, however 5. CONCLUSIONS 
the aperiodic structure of the measurements implies that 
the FFT The es- 
timates 21% clearly reveal the measurement structure, and 

'In the attificial special case lhal both pior and measurements are sta- 
tionaly I peiodic, then indeed the FFT c m  he used to compule estimates, 
ermi vaisnces, and posle&x samples. 

be used for posterior We have developed a multiscale approach for posterior sam- 
pling- the random sampling from the Posterior distribution 
of a prior model plus constraints due to measurements. 

'The slmctun would, of course, be clearly visible if the measunmenl 
valuesgrossly violaled the prior model. 
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Fig. 4. hi example of niultiscale nonstationaly estimation and sampling. We have two decoupled domains - one inside the circle. and the 
other outside. Measurenients are taken In thc central column and mw. 

a) Dense State b) Aperiodic c) Sparse Horz. d j  Very Sparse e) Sparse, Overlapped 
819 sec. 149 sec. 39 sec. 21 sec. 31 sec. 

Fig. 5 .  An illustration of computational complexity and tradeoffs, illustrated for the wood-gain model, eachpanel showing a multiscale 
posterior sample, based on measurements down the middle column. The panels differ in the nature of the multiscale state: from lefi, a 
densely-sampled state. then a reduction in coarse state sampling. a reduction in horizontal sampling. a fuiflier reduction in density (so that 
adifacts appear). and a reduced state on an overlapped tree. In the state sketches, the bold pixels appear at all scales, the unbolded pixels 
appear only at finer scales. The running times, in seconds, are for the entire process - model building. estimation. estiniativn emor variances, 
and posterior sampling. For comparison, brute-force postenor sampling on a ZGI.17 workstation would require approximately 2R houn. 

The methods of this paper do not, as yet, address all 
of the challenges raised by the 3D modeling and imag- 

Using Gibbs Sampling,” J.  Anierican Sfatistical Asso- 
ciariori (89, pp.972-985, 1990 .. 

ing of porous media. In particular, the two needed exten- 

prior models, and the extension of the multiscale software 
sions to this work are the development o f  more meaningful [AI K. H a ”  G. Cunningham, “Posterior Sampling with 

Improved Efficiency,” SHE (3338), pp.371-382, 1998 
to three-dimensional random fields. 
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