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Abstract

Gibbs Random Fields (GRFs), which produce elegant
models, but which have very poor computational speed have
been widely applied to image segmentation. In contrast to
block-based hierarchies usually constructed for GRFs, the
irregular region-based approach is a more natural model in
segmenting real images. In this paper, we show that the fine-
to-coarse region-based hierarchical regions framework for
the well-known Potts model can be extended to non-edge
based interactions. By deliberately oversegmenting at the
finer scale, the method proceeds conservatively by avoiding
the construction of regions which straddle a region bound-
ary by computing region mean differences. This demon-
strates the hierarchical method is able to model region in-
teractions through new generalizations at higher levels in
the hierarchy which represent regions. Promising results
are presented.

Keywords: hierarchical models, image segmentation,
Markov Random Fields, Gibbs Random Fields, region-
based.

1 Introduction

A key problem in computer vision is to distinguish be-
tween separate objects in an image scene. A critical step is
that of image segmentation, which seeks to separate objects
on the basis of distinct appearance. The image segmenta-
tion process is dependent on two interactive components: 1)
a pixel dissimilarity criterion and 2) a framework for group-
ing similar pixels and separating dissimilar ones.

The focus of this paper is the pixel grouping algorithm.
That is, given a specified dissimilarity criterion, what is an
efficient and effective means of constructing groups of pix-
els or image segments? We consider region-based hierar-
chical methods based on Markov/Gibbs Random Fields [5]
given the ease of constructing such models for segmentation
[7]. Many Gibbs Random Fields methods have been intro-

duced in recent years [3, 5, 7, 9], however, most of these
methods are computationally slow and, therefore, not prac-
tical.

To increase the convergence speed of the algorithm, it
is necessary at some point to move away from processing
individual pixels to processing image patches or regions,
which can be achieved using hierarchical methods. In fine-
to-coarse hierarchical methods, the regions are built from
the bottom up [11]. This allows regions to keep arbitrar-
ily complex shapes at ever higher scales since no square or
other structure is imposed from the top as in a coarse-to-fine
hierarchy. Therefore, the resulting regions can naturally fit
the structures of the image being analyzed. In this paper, the
main question becomes how to properly merge the small re-
gions obtained after the initial classic GRF algorithm has
been applied to the image. In our previous work [11], we
extended the Potts model from a pixel-level GRF into a hier-
archical GRF accelerating the random walk but keeping the
same minimization objective. Here we extend the frame-
work to another region merging modality. Namely, instead
of comparing regions on the basis of boundary gradients we
propose to use the difference of region means.

The hierarchical regions model shares similarities with a
few other models in the literature. Zhu’s region competition
method [10] is similar in that it minimizes an energy func-
tion. However, it differs considerably by fostering “com-
petition” between regions (expanding regions from seeds
and allowing region splitting) instead of a careful merging
strategy adopted here. Angulo’s and Serra’s ordered merg-
ings algorithm [1] is similar in that it creates a hierarchy
of region mergings however it does this in a morphologi-
cal and not stochastic framework. Their algorithm requires
heuristics for merging regions and a stopping criterion for
the algorithm. Other hierarchical methods have also been
used such as coarse-to-fine block-based approaches [3, 7];
however, resulting images contain many block artefacts and
the computational gain is minimal. Finally, Barbu and Zhu
[2] propose a Bayesian method which searches the space of
image segmentations to find the global optimum. They re-
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formulate the Swendsen-Wang algorithm for graphs by al-
lowing the algorithm to split, merge or re-group a sizeable
subgraph (sets of pixels) and thus by achieving fast mix-
ing at low temperatures, it eliminates the slow Gibbs sam-
pling procedure. Although not hierarchical in nature, this
algorithm is similar to ours in that it allows groups of pixel
labels to be flipped at any one time. The major difference
being the splitting of regions/subgraphs in addition to merg-
ing them.

The paper is organized as follows. The second section
describes the hierarchical Gibbs Random Fields framework.
The third section details the new region mean-based hierar-
chical approach. Section four presents results while the fifth
section concludes the paper.

2 Bayesian Framework

The modelling problems in this paper are addressed from
the computational viewpoint by using Gibbs Random Fields
to model the image segmentation process. There are two
primary concerns: how to define an objective function for
the optimal solution of the image segmentation, and how
to find this optimal solution. For the purpose of this pa-
per, the “exact” solution to our segmentation problem will
be interpreted as the optimum solution to the optimization
objective. In principle, the solution is straightforward: sim-
ulated annealing [5] is widely used in solving Gibbs prob-
lems; however, it is very slow. The definition of a hierarchi-
cal approach produces faster annealing.

Suppose we are given an image X with labels [ ona pixel
lattice £ = {4, j} with dissimilarity criterion ®(-). We will
assume L has a first order neighborhood structure on a reg-
ular grid shown in Figure 1a (a second order neighborhood
structure would also be feasible). The energy model is then
written as follows:

U= Z{(I)(Xi,ja Xi,j+l)6li,j,li,j+1 +
,J

q)<Xi,j’ i+1;j)6li,]’;li+l,j+
5 [(1 - 5li,]‘,li,j+1) + (1 - 5li,j7li+1,j)]} (D

where 3 controls the relative constraints on the degree of
region cohesion and fragmentation, while d;, , . .., is the
Kronecker §. This model operates directly on pixels and
is therefore a fine or pixel level model. 3 is usually deter-
mined experimentally. This is essentially a region growing-
type model [8, 6] where decisions to integrate a pixel into
the region are done with respect to the criterion ®. The
major difference between this local GRF model and region
growing methods is that it is non-causal.

Model (1) suffers from a slow random walk of informa-
tion as shown in Figure 2. This implies that only the slow-
est of annealing schedules will successfully converge. One

(a) (b)

Figure 1. lllustration of 3 and ¢ interactions
between adjacent pixels/regions: (a) first or-
der neighborhood on a regular grid for the
finest or pixel-level model, (b) region neigh-
borhood on an irregular grid for higher level
region-based model.

way to overcome this limitation would be to merge adja-
cent regions in successive higher stages after the annealer
has converged on the previous finer level. This would occur
only if the merging would lower the overall energy.

3 Hierarchical GRF Region Grouping

A hierarchical fine-to-coarse region-based approach can
be devised where region merging is an integral part of the
model. We first reformulate model (1) in order to define
interactions between regions:

U — Z

! €R) rr!

(@610, + 816,00} @

where r is a region indicator, s is the level on the hierar-
chy, R(®) is the set of all regions r, @582/ is the dissimilarity

criterion between regions 7 and ' and 55732, is the region
coupling parameter between regions r and 7. When s = 0,
the formulation corresponds to the special case of model (1)
[11] indicating that <I>£‘f2, and ﬁfr), define relationships be-
tween all pixels (and are non-zero only for adjacent pixels).
Furthermore, the neighborhood structure is now defined on
an irregular grid as shown in Figure 1b.

This model is non-local in that it operates on regions
rather than pixels however it is still Markovian as the infor-
mation is preserved between levels in the hierarchy. Indeed,
the region-to-region interactions are cumulative local inter-
actions between the pixels. This model still performs a ran-
dom walk; however, the operation is now sped-up since the
label comparisons now happen on a regional, multi-pixel
level rather than the single pixel interactions of model (1)
thus speeding the convergence process considerably.
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Figure 2. Slow random walk of annealing il-
lustration in 2-D between two regions in a ho-
mogenous image (i.e., no energy gradient)
for a two-label assignment (Ising model) at
T = 0. (a) Within the domain of flat energies,
the annealer performs a random walk even-
tually finding one of the optimal endpoints
(in this case a shaded or unshaded region).
Considering that the probability of flipping
each vertex from +1 to -1 is p, = 1/2, vertex
‘o’ has a 50% probability of becoming +1. If it
does then pixels ‘x’ will be in the same situa-
tion otherwise nothing changes. (b) To trans-
form this image into a homogeneous patch,
a random walk of labels needs to take place.
(c) Note, that the random walk can result in
local minimum which can then be circum-
vented at the next level in the hierarchy.

We are able to keep the information from level s to level
5 + 1 equivalent by constructing transition equations be-
tween levels which transfer the interaction information, as
well as by choosing a conservative value for 3. The tran-
sition for the dissimilarity criterion between two regions r
and r’ at level s + 1 is described by a sum of all the individ-

ual distances between the regions in G and GE,‘?):

W= Y Y ®

teG® t’eG(j)

where ¢ and ¢’ are region indicators. The coupling parameter
between two neighboring regions r and 7’ at level s + 1 is
written in an analogous fashion:

B =% > B “

teG e’

Therefore, we now have model (2) which governs how the
labelling is done at each level s together with between level
transition equations (3) and (4). Some more details are
available in [11].

Given an appropriate distance metric ¢ and region cou-
pling parameter /3, the algorithm performs an accurate over-
segmentation of the image at the first level by creating a
multitude of small, compact regions. However, the edge-
based region formation model still fails in scenarios where
region growing algorithms fail, namely, region spilling from

one region into the other through a small gradient connec-
tion in an otherwise high gradient boundary. This will be
illustrated in the results section.

4 Region Mean-Based Model

One way to mitigate the effects of edge-based region
comparison is to compare regions according to their means.
Computing the mean of a region averages all the pixel val-
ues within that region including the edge pixels. This means
that parts of a slowly varying gradient should be merged
into the corresponding adjacent regions or form another
third region. The mean-based model is exactly the same
in appearance as model (2). However, the distance compu-
tation between regions are now carried out between means.
This introduces a subtle shift in the way larger regions form.
At this level of pixel organization edges do not matter as
much as they did when forming small region patches or
blobs. Here we would like to aggregate regions based on
their features such as their color. We think that the region
mean (in this case first principal component or principal di-
rection of all pixels as opposed to vector mean of pixels)
will characterize the regions in a better fashion and facili-
tate the merging of the regions that should be merged.

In order to make sure that the comparisons between the

ﬁfr), and @ST), values are similar to those in the classic
Potts model the new mean-based distance is multiplied by
the number of common edge pixels. In this way, the previ-

ous edge-based interaction is now somewhat smoothed. In
(s)

ot
(they remain identical to the edge-based model for ﬁﬁfr),).
Given that the model no longer cares about individual pix-
els but groups of pixels, the transitions need to account for
changes in the number of pixels in a region, as well as the
change in region mean values.

this model, the transitions take on a different form for ®

(s—1)

(s) _ (s—1)”tS
xr - Z ‘/Et n(S) (5)
teG'® "
o =37 Y (6)
teG®
o), = o), 2l) )

where at any level s, ngs) are the number of pixels in a given

region r and J;&S) represent the region means. Finally, the
results of the finest-scale segmentation are first median fil-
tered to remove one-pixel regions which tend to permeate
through the hierarchies under the mean model.

The image segmentation algorithm is divided into two
parts: a trivial image splitting part in the first step and a

region merging part in subsequent iterations.
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Algorithm:

e Assign labels {/; ;} randomly to pixels {X; ;}
e Make each {X; ;} its own region

e Loop over levels: from finest (pixel) to coarsest:

— Anneal until convergence:
* Apply Gibbs sampling using model (2)

x Update each region’s label based on Gibbs
sampling

— Apply transition equations (4) and (7)

It is difficult to ascertain in theory whether this algorithm
converges to the global minimum just like the Gibbs sam-
pler does [5]. Our current difficulty lies in the evaluation
of the convergence at intermediate levels in the hierarchy.
Each pair of nodes can converge to one of four possible con-
figurations shown in Figure 3. The possibilities Figure 3a-c
are acceptable if we are to reach a good minimum point (if
not a global minimum) after the last level in the hierarchy
converged. However, should Figure 3d occur then a global
minimum will never be reached. Therefore, convergence to

a good local minimum hinges on a delicate balance of <I>§f2,

and ﬁfj}, at each level s. This balance seems to be achieved
in our ’preliminary experiments. Furthermore, we are cur-
rently investigating whether convergence can be proven for-
mally.

Other more creative models can also be used where the
relationships between the regions are more complex combi-

nations of mean-based and edge-based calculations.

5 Results and Discussion

Results are presented on a color image. The pixel dissim-
ilarity criterion ¢ was chosen to be the vector angle measure
following [4] as the image has some intensity differences
(e.g. shading). Furthermore, the region mean is replaced by
its vector angle analogue, namely, the first principal com-
ponent of the covariance matrix of the pixel vectors. This
value represents the most prevalent vector direction in the
region. Results for the original edge-based model from [11]
are shown in Figure 4. Model (2) encodes only distances
between individual pixels and not for example distances be-
tween region prototypes [4, 10]. Therefore, regions con-
nected by a slowly varying gradient will be merged as can
be clearly seen. However, when the mean-based model is
used region spilling does not readily occur.

The results in in Figure 5 show image segmentation us-
ing the mean model. Region spilling is less prevalent than
in the classic Potts model case however there is still some

@ ) © @

Figure 3. There are four possible outcomes
when combining two nodes A and B which
represent pixels or regions: (a) nodes that
are supposed to be merged are merged and
the energy is lowered, (b) nodes that are sup-
posed to be separated are kept separated
and the energy stays the same, (c) nodes
that are supposed to be merged are not
merged and the energy stays the same, and
(d) nodes that are supposed to be separated
are merged and the energy is increased. Out-
comes (a)-(c) are desirable in that (a) and (b)
lead us closer to a global minimum while op-
tion (c) hopefully delays the inevitable and
will lead to nodes merging at a higher level
in the hierarchy. Option (d) should not occur
as the energy formulation does not permit it
unless there are too few labels to distribute
between the node and its neighbors.

occurring. The distance calculation is now based on non-
local values (i.e., means) and, therefore, the random field is
no longer exactly model (2).

We have presented hierarchical regions based on a re-
gion mean model. In contrast to the hierarchical region-
based Potts model [11] the new model exhibits less region
spilling due to the smoothing effects of using means to rep-
resent regions instead of edge pixels. However, some region
merging persists. We are currently investigating whether
the merging effects are caused by the choice of distance
metric, a deficiency in the Potts model (or the hierarchi-
cal Potts model) or both. This modelling flexibility demon-
strates an inherent benefit to the hierarchical method beyond
the computational acceleration, namely, that of being able
to model region interactions through new generalizations at
the higher hierarchies. Finally, we are investigating whether
other models might improve segmentation results and hier-
archical Potts can be shown (or not) to converge to a global
minimum.
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