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Abstract. Color constancy in color image segmentation is an impor-

tant research issue. In this paper we develop a framework, based on

the Dichromatic Re
ection Model for asserting the color highlight and

shading invariance, and based on a Markov Random Field approach for

segmentation. A given RGB image is transformed into a R'G'B' space to

remove any highlight components, and only the vector-angle component,

representing color hue but not intensity, is preserved to remove shading

e�ects. Due to the arbitrariness of vector angles for low R'G'B' values, we

perform a Monte-Carlo sensitivity analysis to determine pixel-dependent

weights for the MRF segmentation. Results are presented and analyzed.

1 Introduction

In recent years the problem of color constancy | the perception of objects in the

real world without illumination e�ects | has been a major research subject in

the image science and technology communities. In spite of shading and highlight

e�ects, humans are quite able to perceive object surfaces in a scene, a diÆcult

task for computer systems. An algorithm for color image segmentation, which

is invariant to shading and highlight e�ects, has recently been introduced [23],

developed in the context of the Dichromatic Re
ection Model of Shafer [12].

In [23] the authors describe a principal component analysis and vector angle

clustering-based approach for color image segmentation. In this method, the pro-

totype vector is described as the principal vector (as opposed to principal curve)

of the RGB color cluster and the calculation of the distance from this "cluster

center" to a pixel in the image is done using the vector angle. The number of

clusters is selected and the algorithm chooses the most optimal (in the Mean

Squared Error-sense) multi-vector �t to the data [3]. The illumination invari-

ances are well captured by this method, however there are several drawbacks:

1. For small (black) RGB values the algorithm breaks down and produces ex-

tremely noisy angles.

2. All colors must �t into a predetermined number of clusters.

3. Border areas composed of composite colors are classi�ed arbitrarily.
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Certainly a wide variety of color-segmentation approaches have been proposed.

In particular, methods based on color clustering have seen considerable interest,

including k-means [15, 21], fuzzy k-means [7], and morphology-based clustering

[9]. The most notable drawback of such clustering methods is that they normally

do not take any spatial relationships into account, and determine the segmen-

tation strictly on a pixel-by-pixel basis, normally using the Euclidean distance.

We will demonstrate for the problems of our interest, speci�cally the segmenta-

tion of images involving illumination e�ects, some degree of spatial dependence

is crucial in formulating an adequate approach. The ability for Markov/Gibbs

methods to model spatial dependencies will make them a very natural �t to our

context.

Ad-hoc local methods have also been proposed for color image segmentation

such as [5, 18, 20]. In [5], the authors present a method based on the calcula-

tion of principal components of local non-overlapping regions to estimate the

region color. The method is also said to be highlight and shading invariant. [18]

describes a method based on a region growing technique using the Euclidean

distance as a similarity measure which is tested on images of homogenous color.

[20] presents another region growing technique in which each region is de�ned

by two values: the color gradient (calculated using the Euclidean distance) be-

tween two adjacent pixels and the maximum distance between two colors within

this region. The �rst algorithm su�ers from having to quantize the region seg-

mentation information while the last two use the Euclidean distance. All three

methods are based on various heuristics.

The focus of the present paper is to formulate a color image processing and

segmentation technique in the context of the Dichromatic Re
ection Model [12,

19], which is introduced in Section 2. The crucial question is how to measure the

similarity of two colors. Most previous methods assess the relationship between

two multispectral (including color) pixels based on the Euclidean distance [7, 9,

21, 22]. The Euclidean distance is often chosen for its simplicity, mathematical

tractability, and is well-suited to feature spaces having an isotropic distribution

(for color, a good example is the CIE Luv space [11]). However in the case of

color images, where each pixel is represented as a RGB vector, the Euclidean

distance is a particularly poor measure of color similarity because the RGB space

is an-isotropic, especially when lighting e�ects such as specular re
ection and

shading are present in the image.

In this paper, we propose to use the Dichromatic Re
ection Model to trans-

form the RGB image into a di�erent space in which shading and specular re
ec-

tion are normalized. In this context, highlight and shading invariant color image

segmentation means the �nding of regions, homogenous in color, irrespective of

illumination e�ects.

Therefore, given the Dichromatic Re
ection Model, why can the transformed

pixels not be clustered e�ectively using k-means [10] or other related techniques?

The problem is that suÆciently dark shades of any color all look alike (i.e., black),

and similarly specular re
ections or highlights converge to the same color (the

color of the illuminating light, normally white). For example, Figure 1 clearly
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Fig. 1. Original RGB color scene image, showing highlights and shading, captured

using white light.

illustrates highlights (glossy white image patches) and shading (intensity varia-

tions on the surface of each fruit, taken under white light illumination. Conse-

quently, some sort of spatial model is essential in order to perform segmentation,

to assign a highlight pixel to a colored group based on its surrounding context.

We propose to de�ne the spatial context using a Gibbs/Markov approach, as

outlined in Section 3. Certainly others have used Markov random �elds for image

segmentation [1, 6, 24]; however, normally these methods involve Gauss-Markov

random �elds, where the GMRF de�nes a spatial texture for the R, G, B com-

ponents, from which segmentation can proceed as a separate hypothesis-testing

procedure applied to the GMRF likelihood [8]. Our approach is quite di�erent:

we wish to �nd the segmented image directly as the result of energy minimiza-

tion of some appropriately-de�ned Gibbs random �eld. Furthermore the regions

are not distinguished on the basis of texture, rather on shading and highlight

invariant color. That said, textured surfaces where the pixel variations are due

to local shading e�ects (such as the surface of an orange) will be segmented cor-

rectly, since the normalized color is similar for all such pixels; whereas textures

with intrinsically di�erent colors (such as marble or paisley) are not the focus of

our approach.

The formulation of our Gibbs model will be similar to others used for seg-

mentation [4, 6] except for a number of variations due to the peculiarities of our

transformed space. We demonstrate the advantages of constructing an energy

function for Markov Random Field-driven image segmentation using a measure

related to the inner vector product.

This paper �rst describes the Dichromatic Re
ection model and a develop-

ment of an optimization criterion for segmentation. Next, results on an arti�cial

image and a real scene image are presented and analyzed. Finally, conclusions

and directions for future work are given.
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2 Color Theory

The Dichromatic Re
ection Model [12, 19] will be used in this paper to show

highlight and shading invariance properties of the new algorithm. First, the

DRM will be introduced. Next, the highlight invariance property will be brie
y

explained. Finally, how shading invariance is achieved will be described.

2.1 Preliminaries

The Dichromatic Re
ection Model purports to separate light re
ected from ob-

jects into two di�erent types:

1. specular re
ection or highlight characterized visually by a glossy appearance

and describing light that is re
ected in a mirror-like fashion from a surface;

2. di�use or body re
ection which is the light re
ected from a surface in all

directions, giving a surface its usual colored appearance.

This model has been described for a variety of materials [16]; the focus here

will be on inhomogeneous dielectric materials such as plastics. The presentation

of the DRM follows closely that given in [23]. First, light re
ected from an

object surface o (called the color signal) is described as a function Co(�; x) of

wavelength � and pixel location x:

Co(�; x) = Body Re
ection + Interface Re
ection (1)

= �(x)So(�)E(�) + �(x)E(�) (2)

where E(�) is the spectral power distribution of a light source, So(�) is the

spectral-surface re
ectance of an object o, �(x) is the shading factor and �(x) is

a scalar factor for the specular re
ection term. The following set of equations can

then represent the sensor responses for a camera using R, G, and B coordinates:

2
4RG
B

3
5 =

Z
Co(�; x)

2
4RR(�)

RG(�)

RB(�)

3
5 d� (3)

where Ri(�); (i = R;G;B) are the spectral sensitivity functions of the camera

in the visible spectrum. Substituting (2) into (3), we have

2
4RG
B

3
5 = �(x)

Z
So(�; x)E(�)

2
4RR(�)

RG(�)

RB(�)

3
5 d�+ �(�)

Z
E(�)

2
4RR(�)

RG(�)

RB(�)

3
5 d� (4)

= �(x)cb + �(x)ci (5)

where cb is the body color vector and ci is the illumination color vector. These

color vectors are normalized into a unit vector length.
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For the sensor outputs R, G, and B to be white balanced, it is necessary to

satisfy the following condition:Z
E(�)RR(�)d� =

Z
E(�)RG(�)d� (6)

=

Z
E(�)RB(�)d� (7)

As long as the illuminant E(�) is a constant white over the visible wavelengths,

and the spectral sensitivity functions Ri(�); (i = R;G;B) have the same area,

then the above condition obviously holds. However, if the illuminant is not white,

a color balancing step [23] is needed where the three sensor outputs are adjusted

to be equal to each other. In this paper it will be assumed that the illumination

light is white or the image has been white balanced.

2.2 Highlight Invariance

To remove the e�ects of highlights it is necessary to transform the pixel coordi-

nates according to the following transformation [14, 23]:2
4R

0

G0

B0

3
5 =

2
4RG
B

3
5�AV G (8)

where AV G represents the average value of R, G and B. In this transformation,

the re
ectance variation caused by interface re
ection is removed by projecting

the observed re
ectance in an n-dimensional vector space along the illumination

vector onto an (n-1)-dimensional subspace that is perpendicular to the illumina-

tion vector [14]. From a practical point of view, a histogram of the RGB pixels

making up a homogeneously-colored region containing a highlight patch would

show two connected clusters (one for the homogenous color and one for the

highlight).

For example, Figure 2 shows such a distribution in the RGB space of pixels

from Figure 1. The four clusters appear highly spread-out and are non-linear (do

not lie along a straight line in RGB space), because each cluster is composed of

both body and specular re
ections.

The transformation (8) transforms each set of nonlinear clusters into a single

linear cluster representing the body re
ection. This is well illustrated in Figure 3,

where the original nonlinear clusters now appear as linear groupings. Given that

the RGB components are assumed to be white balanced, the application of (5){

(8) eliminates the interface re
ection term and reduces to2
4R

0

G0

B0

3
5 = �(x)

Z
So(�; x)E(�)

1

3

2
4 2RR(�) �RG(�)�RB(�)

�RR(�) + 2RG(�)�RB(�)

�RR(�)�RG(�) + 2RB(�)

3
5 d� (9)

= �(x)

Z
So(�; x)E(�)

2
4R

0

R
(�)

R0

G
(�)

R0

B
(�)

3
5 d� (10)



6

Fig. 2. Distribution of pixels in the RGB space from Figure 1. The straight lines are

the principal vectors obtained with the best MSE �t from [23]. Both the red and

orange fruits have been clumped into one larger cluster. Whereas three of the four

clusters depicted in the image correspond to fruit colors, the fourth represents all of

the highlight areas.

This formulation is dependent on the shading factor (illumination) and the

body re
ection (material color), which makes this color representation highlight

invariant. Individual elements of the pixel vector in the new representation will

be shifted according to the average of the body re
ection term. This results in

the new space having negative coordinates. Equivalently the spectral sensitivity

functions, R0

R
(�), R0

G
(�), and R0

B
(�), in the new system also have negative

values. Three properties were derived from this representation. The �rst property

says that all RGB colors fall into one of six quadrants. The second one says that

all gray values (including saturated highlight areas) naturally collapse to the

(0,0,0) point. Finally, the third property demonstrates that the same color can

only exist in quadrants that have at least one adjacent edge.

2.3 Shading Invariance

Insuring a shading invariance property of the algorithm means that the shading

factor shown �rst in (2) needs to be eliminated from the representation obtained

using (10). The simplest way to do this is to normalize the new color vectors to
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Fig. 3. Distribution of pixels in the R'G'B' space from Figure 1; compare with the

RGB distribution in Figure 2. The straight lines are the principal vectors obtained

with the best MSE �t from [23]. The alignment of the four cluster prototypes with the

four color clusters is clearly seen; each of the four cluster prototypes corresponds to a

colored fruit.

unit length [14]. First, reformulate (10) as

c
0 =

2
4R

0

G0

B0

3
5 = �(x)

Z
So(�; x)E(�)

2
4R

0

R
(�)

R0

G
(�)

R0

B
(�)

3
5 d� = �(x)

2
4 c

o

R

co
G

co
B

3
5 (11)

where co
R
; co

G
; co

B
represent the non-factorable terms of (8). Now normalizing the

color vector, c0, we obtain:

c
0

jc
0
j

=

�(x)

2
4 c

o

R

co
G

co
B

3
5

(�2(x)[(co
R
)2 + (co

G
)2 + (co

B
)2])1=2

(12)

=

2
4 c

o

R

co
G

co
B

3
5

((co
R
)2 + (co

G
)2 + (co

B
)2)1=2

(13)
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The shading factor has been eliminated and hence this representation is inten-

sity invariant. This operation puts all vectors on the unit hypersphere, except for

the null vector (0,0,0) for which this operation is unde�ned. Since the Euclidean

distance between two normalized transformed color vectors does not re
ect ac-

curately the perceptual di�erence between the two vectors, we propose to factor

the invariance operation directly into the similarity measure calculation by using

one minus the cosine of the vector angle �c0;d0 between two transformed color

vectors c0;d0; the similarity measure then becomes


(�c0;d0) = 1�
< c

0;d0 >

jc
0
jjd

0
j

(14)

= 1�
�c(x)�d(x)(c

o

R
do
R
+ co

G
do
G
+ co

B
do
B
)

(�2c(x)(c
o

R
co
R
+ co

G
co
G
+ co

B
co
B
))1=2(�2

d
(x)(do

R
+ do

G
+ do

B
))1=2

(15)

= 1�
(co

R
do
R
+ co

G
do
G
+ co

B
do
B
)

(co
R
co
R
+ co

G
co
G
+ co

B
co
B
)1=2(do

R
+ do

G
+ do

B
)1=2

(16)

So if c0 and d
0 are similar in orientation then (16) will be close to zero. Both

vectors will be deemed close irrespective of the shading factors �c(x) and �d(x)

associated with them. Therefore, this method is also shading invariant. In prac-

tice, the color vectors R0; G0; B0 are normalized as in (13), which reduces (16) to

a simple dot product calculation for each pixel comparison.

2.4 Angle Accuracy

The principal problem with the vector angle formulation derives from the con-

sequences of using (8), which collapses all graylevel values to the origin in the

transformed domain, and (13), which performs a vector normalization. Stated

more plainly, a collection of noisy, nearly black pixels will be normalized to vastly

di�erent transformed locations. This is strictly a re
ection of the large degree of

sensitivity in the de�nition of a \hue" for nearly black pixels.

Standard clustering approaches either require such pixels to be rejected

(needing an arbitrary rejection threshold) or incorporate them, leading to mis-

leading conclusions. The elegance of the MRF approach to a segmentation al-

gorithm, set up in the next section, is that the penalty term associated with a

vector angle can be continuous, rather than discrete admit/reject.

The noise sensitivity of the similarity measure (16) is easily computed, as

a preprocessing step, using Monte-Carlo means. In particular, if we model two

pixels as noisy

c = cexact + noise (17)

d = dexact + noise (18)

then the variance var(
(�c0;d0)) can be eÆciently computed; clearly if this vari-

ance in angle di�erence is small then the accuracy of the angle calculation will

be deemed high and will be weighted more heavily in the Gibbs energy.
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3 Markov Random Fields

The modeling problems in this paper are addressed from the computational

viewpoint. There are two primary concerns: how to de�ne an objective function

for the optimal solution of the image segmentation problem, and how to �nd its

optimal solution. Given the various uncertainties in the imaging process, it is

reasonable to de�ne the desired solution in an optimization sense, such that the

\perfect" or \exact" solution to our segmentation problem is interpreted as the

optimum solution to the optimization objective.

Some forms of contextual constraints are eventually necessary when trying

to interpret visual information. The spatial and visual contexts of the objects

in an image scene are necessary for the understanding of the scene; the context

of object features at a lower level of representation allow the recognition of

the objects; the context of primitives at an even lower level lets the object

features be identi�ed; and �nally the context of image pixels at the lowest level of

abstraction allows for the extraction of those primitives. To create a reliable and

e�ective image analysis system the use of contextual constraints is unavoidable

and therefore indispensable.

Gibbs Random Fields (GRFs) [4, 24] provide a natural way of modeling con-

text dependencies between, for example, image pixels of correlated local features

[6]. The practical use of GRF models is largely possible due the improved insights

and understanding provided by the Hammersley Cli�ord theorem [6], which al-

lows Markov random �eld (MRF) modeling to be reinterpreted as an energy

function minimization. The second motivating development is the improved in-

sight and available methods for Gibbs sampling and Simulated Annealing.

The MRF-based segmentation model is de�ned by the contextual relation-

ships within the local neighborhood structure. Since our goal is the assertion

of local constraints, rather than an accurate modeling of spatial textures, as in

other GMRF color-segmentation research [8], we shall only be concerned with

�rst order random �elds, both simplifying the model and limiting the computa-

tional complexity.

Suppose we are given a color image on a pixel lattice L = fi; jg. As just

discussed in Section 2, each pixel fRGBgi;j is transformed to its normalized

representation c
0

i;j
.

If we precompute the adjacent-pixel vector-angle criteria

 i;j = 
(�
c
0

i;j
;c

0

i+1;j
) �i;j = 
(�

c
0

i;j
;c

0

i;j+1
) (19)

then a Gibbs energy E for segmentation can be formulated as follows:

E[fl(i; j)g] =
X
i;j

�
�
 2
i;j
Æl(i;j);l(i+1;j) + �2

i;j
Æl(i;j);l(i;j+1)

�
+

�
�
(1� Æl(i;j);l(i;j+1)) + (1� Æl(i;j);l(i;j+1))

�
(20)

where each pixel (i; j) is assigned an integer label 0 � l(i; j) < N , and where

�; � control the relative constraints on the homogeneity of a single region and

the degree of region fragmentation, respectively.
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Fig. 4. Boundary length problem: both regions have the same boundary length, al-

though very di�erent volumes.

The model (20) is intuitive and easily implemented. As mentioned before,

it deviates from previous models used for image segmentation in that the inner

vector product 
 is used to calculate the minimum energy instead of the Eu-

clidean distance in R;G;B. However it misses one essential point: not all of the

vector angles are computed with the same accuracy. Even a small amount of

pixel noise on a dark or highlight region results in nearly totally random vector

angles, which (20) would choose to separate into single-pixel regions. Given the

covariance of the vector angle di�erence, computed by analytic or Monte-Carlo

means as discussed in Section 2.4, we introduce weights

wi;j =
1

var(
(�c0
i;j ;c

0
i+1;j

))
vi;j =

1

var(
(�c0
i;j ;c

0
i;j+1

))
(21)

to assert the degree of con�dence of the terms in the energy:

E[fl(i; j)g] =
X
i;j

�
�
wi;j 

2
i;jÆl(i;j);l(i+1;j) + vi;j�

2
i;jÆl(i;j);l(i;j+1)

�
+

�
�
(1� Æl(i;j);l(i;j+1)) + (1� Æl(i;j);l(i;j+1))

�
(22)

Model (22) is a very credible segmentation criterion, representing a considerable

advance beyond standard vector-angle methods, and yet (22) is little more com-

plicated than a standard Ising/Potts model [24] and so is well-understood and

easily implemented.

The primary drawback with (22) is that it is strictly a local, pixel-neighbor

model and su�ers from the same problems as other region-growing approaches:

two vastly di�erently colored pixels may be grouped into a single region if they

are linked by noisy or intermediately-colored pixels. A second undesired e�ect is

that N constrains only the number of region labels, not the number of regions;

that is, in regions of noise or color-gradients, (22) can generate a proliferation

of small regions. Finally, the label criterion, controlled by �, measures boundary

length, rather than region volume (see Figure 4). Therefore, in regions where

the vector-angle criterion is vague (that is, in saturated or dark regions), a large

number of pixels may have to be 
ipped to see any change in the energy, implying

that only the slowest of annealing schedules will successfully converge.

A global model can overcome these drawbacks. If we associate with label l a

global transformed color a0l then each region is forced to be well de�ned:

E[fl(i; j);a0g] =
X
i;j


(�a0

l(i;j);c
0
i;j
)2 +

�
�
(1� Æl(i;j);l(i;j+1)) + (1� Æl(i;j);l(i;j+1))

�
(23)
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For the purposes of this paper, we propose to �x the region colors falg; that is,

the sampling and annealing takes place only over the label indices fl(i; j)g them-

selves. The falg would be found by a preceding step, such as vector quantization

[21].

A �nal modi�cation mirrors that of (22): the degree to which the region color

is to be asserted at each pixel should be spatially-varying, now for two reasons:

1. The color-dependent e�ect of noise, particularly for dark and highlight pixels.

2. We are normally not interested in pixels in regions of high color gradient; at

the very least, these pixels should not unduly in
uence the Gibbs energy by

being inconsistent with the region color a.

If we let

ui;j = min

�
1

var(
(�c0
i;j ;c

0
i+1;j

))
;

1

varN (
(�c0
i;j ;c

0
i+1;j

))

�
; (24)

that is, the variances are the pointwise one, based on a noise model, and a

spatial one, computed over a local neighborhoodN , then our segmentation model

becomes

E[fl(i; j);alg] =
X
i;j

ui;j
(�a0

l(i;j);c
0
i;j
)2 +

�
�
(1� Æl(i;j);l(i;j+1)) + (1� Æl(i;j);l(i;j+1))

�
(25)

This gives us a concise and coherent representation of the color image segmen-

tation problem by incorporating both local and global constraints. The global

constraints are de�ned by global color region labels obtained through some vec-

tor quantization process such as the one presented in [23]. Local constraints are

included by virtue of using pixel level constraints in the MRF model.

Model (25) is a tradeo� between a completely local region growing approach,

where many spurious regions can be created, and a global color clustering ap-

proach where regions of di�ering color can be inadvertently merged. Further-

more, the use of vector angle accuracy weights (21) allows the less reliable cal-

culation of vector angle for small R'G'B' values to be appropriately modulated.

4 Results

The Gibbs Sampler [4] will be used to optimize both (22) and (25). To make

comparison as straightforward as possible, all MRF results were initialized from

a random start, although in practice initializing from an MPC or other segmen-

tation could accelerate convergence. For the global model (25) the label colors

a are determined using the algorithm presented in [23].

Results were prepared an arti�cial image of colored bands, shown in Figure 5.

The arti�cial image varies in intensity horizontally (i.e., from left to right and

a saturated highlight is present near the right border). Some additive uniform

uniformly distributed noise was added to this image.
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(a) (b)

Fig. 5. Color band image: (a) Original, (b) MPC segmentation.

(a) Model (20) (b) Model (22) (c) Model (23) (d) Model (25)

Fig. 6. Color Band image: Results of four proposed MRF models.

The MPC result on the arti�cial image is shown in Figure 5(b). The high-

light part is clearly a mixture of the three other segmentation classes due to

having a nearly null vector representation in the R0; G0; B0 space, and the ab-

sence of spatial constraints prevents the ambiguity from being corrected. For

the MRF models, the results in Figure 6(a) and Figure 6(b) clearly illustrate

the problems of boundary length discussed in Section 3, because of the lack of

region-de�ning constraints such as characteristic region vector, boundary length

or area size constraints. It is interesting to note that under careful examination,

regions generated on both sides of the border between each color band pair are

seldom part of the same class. Figure 6(c) demonstrates the type of result that is

obtained using Model (23). As desired, very few highlight parts remain as other

highlight areas have been subsumed into their adjacent regions. The remaining

few misclassi�ed pixels are due most probably to a too-rapid annealing schedule.

The free parameter � clearly controls the signi�cance of the color-angle dot

product in relation to the spatial label contribution in the energy term; clearly

in the limit of a small value of �, the MRF result converges to that of MPC.

Finally, Figure 6(d) shows the results for the same color bands, but now where

the vector angle calculation is weighted in terms of the accuracy to which to the

angle can be determined (which is a�ected by darkness or degree of highlight),

as in (25).

5 Conclusions

We have presented a Markov Random Field-based model for shading and high-

light invariant color image segmentation. The model's invariance properties have

been veri�ed using the Dichromatic Re
ection Model. Furthermore, the model

is based on a vector angle di�erence measure between color vectors and includes
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weights to take into account the reliability of calculating angles between various

vector pairs.

The MRF model used is a compromise between local-only or global-only color

image segmentation methods. It combines the best of both worlds: the ability

of the global methods to create well segmented regions and the ability of local

methods to adapt to the local variations in pixel values.

There are three immediate considerations for future work. It is not obvious

that it is desirable to �x the region colors in models (23), (25). The obvious

advantage of doing so is the computational consideration, however the disad-

vantage is that any error in the vector-quantization step is locked in place and

cannot be removed. Instead, the region colors falg can be variable, determined

as part of the annealing process. Although this requires the Gibbs sampling of

continuous values, the e�ort can remain reasonable if the variables are accurately

initialized: falg from vector quantization or k-means [10], and the pixel labels

fl(i; j)g from (22).

Furthermore, the limitation, as illustrated in Figure 4, of using the boundary

length as an energy metric for each segmented region, should be revisited. The

most obvious choice would be to prefer larger regions, where region size is mea-

sured by the number of pixels in the region. Although much more robust than

boundary length, the number of pixels is a non-local criterion, and is therefore

computationally much less convenient.

Finally, parameter estimation to obtain proper convergence of the MRF mod-

els is essential. In this paper, parameter estimation was ad-hoc. A formalized

parameter estimation technique needs to be applied to fully evaluate the ad-

vantages of the MRF models over vector quantization and region growing-based

methods when applied to real scene images.
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