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Introduction
• Practical CRFs typically have edges only between nearby nodes.
•Using more interactions and expressive relations among nodes make these methods im-

practical for large-scale applications (Computational Complexity)
• Fully connected CRFs can be tractable by defining specific potential functions [1]
• Inspired by random graph theory and sampling methods a new clique structure called

stochastic cliques is proposed.
•The stochastically fully connected CRF (SFCRF) is a marriage between random graphs

and random fields.

Methodology
Stochastically fully connected conditional random fields (SFCRFs) are fully connected ran-
dom fields in which cliques are defined stochastically:

P(Y |X) =
1

Z(X)
exp(−ψ(Y |X)) (1)

where Z(X) is the partition function and ψ(.) is some combination of unary and pairwise
potential functions:

ψ(Y |X) =
n

∑
i=1

ψu(yi,X)+ ∑
ϕ∈C

ψp(yϕ,X) (2)

Here yi ∈Y is a single state in the set Y = {yi}n
i=1, yϕ ∈ Y is the subset of states (clique), and

X = {x j}n
j=1 is the set of observations.

Each node i has a set of neighbors

N(i) =
{

j| j = 1 : n, j 6= i
}

(3)

where |N(i)|= n−1.
The specified clique structure C is, in this paper, taken to be the pairwise clique

C =
{

Cp(i)
}n

i=1
(4)

Cp(i) =
{
(i, j)| j ∈ N(i),1S

{i, j} = 1
}

(5)

1S
{i, j} =

{
1 Ps

i, j ·Qd
i, j ≥ γ

0 otherwise
(6)

1S
{i, j} = 1 has two responsibilities:

1. Incorporate the spatial information (Ps
i, j)

The connectedness probability of two nodes and the distance between them are inversely
related.

2. Utilize the data relation information among the states (Qd
i, j)

The connectedness probability of two nodes is directly related to the color similarity be-
tween them.

The threshold γ determines the sparsity of the graph.

Figure 1: A realization of a stochastically fully connected conditional random field graph.
A connectivity between two nodes is determined based on a distribution; each two nodes
in the graph can be connected according to a probability drawn from this distribution.
There is a measurement xi corresponding to each node yi. The connectivity of each pair
of two nodes yi and yk is distinguished by the edge ei,k. Closer nodes are connected with
a higher probability (black solid edges), whereas two nodes with a greater separation are
less probable to be connected (red dashed edges).

•The edges in G(.) are randomly sampled, thus G is a realization of a random graph [2].
• If the probability p′ of the random graph Ĝn,p′ is greater than logn

n the graph is connected
with a high probability.
• In the experiments γ = 0.9993, meaning that the selection probability is equal to 7×10−4.
•The underlying graph is connected since the selection probability is greater than logn

n ,
where n = 480×360.
•An expected number of pairwise cliques is 2.09×107 which is much smaller than n2 that

is 2.99×1010 pairwise cliques in a fully connected graph.
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Figure 2: Qualitative results of SFCRF; the proposed algorithm is examined based on two
noise types with two strengths. The results clearly show how the SFCRF outperforms both
local and non-local CRFs.

Table 1: Quantitative results (F1-score) based on the EnglishHnd dataset. The proposed
framework is examined by two noise types with two different levels. The SFCRF is com-
pared with the regular CRF (CRF-N3) and a CRF with a neighborhood size of 11 (CRF-
N11). The per-iteration run time of each method is reported; all methods were run with
an equal number of iterations.

CRF-N3 CRF-N11 SFCRF
Salt & Pepper (80%) 0.488 0.872 0.931
Salt & Pepper (90%) 0.235 0.313 0.859
Gaussian (220%) 0.566 0.818 0.895
Gaussian (300%) 0.391 0.646 0.842
Time per Iteration (s) 0.04 3.85 2.70
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Figure 3: The effectiveness of the SFCRF in the segmentation of noisy images from the
Weizmann dataset. The first row shows the true images, the second the images after
distortion, and the three last rows the segmentation results of the CRF-N3, CRF-N11
and the SFCRF respectively. The images are distorted with salt & pepper noise at 90%.
The corresponding F1-score for each result is shown after the image. The results clearly
illustrate the applicability of the SFCRF to natural images.
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