

Extended Local Binary Pattern Fusion For Face Recognition

Li Liu^a, Paul Fieguth^b, Guoying Zhao^c, Matti Pietikainen^c

^a National University Of Defense Technology, China

^b University of Waterloo, Canada

^c University of Oulu, Finland

lilyliu_nudt@163.com

October 28, 2014, Paris, France, ICIP

Content

- □ Introduction
- Background and Motivation
- □ Proposed Method
- □ Results
- □ Conclusions

The Face Recognition Problem

Remains A Challenging Problem

- □ Large and uncertain class number
- ☐ The presence of large *intraclass* variations:
 - Illumination variations
 - Pose variations
 - Expression variations
 - Occlusions
 - Age variations
 - 0
- ☐ The demands of robust and accurate face recognition system

Background and Related Work

- □ Local feature descriptors for face recognition have attracted increasing attention.
- □ LBP has emerged as one of the most prominent face analysis methods:
 - \circ LBP \rightarrow ECCV, 2004
 - \circ LGBPHS \rightarrow ICCV, 2005
 - \circ HGPP \rightarrow TIP, 2007
 - \circ POEM \rightarrow TIP, 2012
 - \circ LQP \rightarrow BMVC, 2012
 - \circ DFD \rightarrow TPAMI, 2014

Motivations

- □ LBP encodes only the pairwise intensity relationships between a pixel and its neighbors.
- ☐ We intend to exploit complementary information contained by pairwise pixel comparisons between neighbors of a pixel.
- ☐ We want to further obtain more powerful feature by combining multiple LBP-like descriptors.
- ☐ We are motivated by our recent work on texture classification, where four powerful LBP-like descriptors werepresented.

Simple Local Features for Deriving LBP-like Descriptors

Proposed Extended Set of LBP

Overview of the Proposed Face Recognition Framework

ELBP includes: LBP_S, LBP_M, ADLBP_S, ADLBP_M, RDLBP_S, RDLBP_M

WPCA: Whitened PCA

Experimental Data: Extended Yale B

- □ Number of subjects: 38
- □ Number of samples per subject: 64
- □ Divided into five subsets:
 - S1→7 Images per subject, Normal lighting, Gallery
 - S2→12 Images per subject, Slight illumination variations, Probe
 - S3→14 Images per subject, Moderate illumination variations, Probe
 - S4→12 Images per subject, Severe illumination variations, Probe
 - S5→19 Images per subject, Severe illumination variations, Probe

Experimental Data: Extended Yale B

S1 (Gallery) S2 (Probe) S3 (Probe)

Experimental Data: Extended Yale B

S4 (Probe) S5 (Probe)

Experimental Data: CAS-PEAL-R1

- □ Number of subjects: 1040
- □ Number of samples in total: 30863

Function	Dataset	#Subjects	#Images
Gallery	Gallery	1040	1040
Probe	Expression	377	1570
Probe	Accessary	438	2285
Probe	Lighting	233	2243

Experimental Data: CAS-PEAL-R1

Cropped face examples from CAS-PEAL-R1

Experimental Results: Extended Yale B

NNC classifier Chi Square distance

Method	S2	S 3	S4	S5	Mean
LBP_S ^{u2}	99.8	99.6	93.2	77.7	92.6
LBP_M ^{u2}	99.8	99.2	95.8	91.7	96.6
ADLBP_S ^{u2}	99.8	89.5	28.5	12.5	57.6
ADLBP_M ^{u2}	99.8	99.6	94.5	88.7	95.7
$RDLBP_S^{u2}$	99.8	99.4	91.9	68.5	89.9
RDLBP_M ^{u2}	99.8	99.6	98.2	91.5	97.3
LBP_S ^{full}	99.8	99.8	99.6	96.2	98.9
LBP_M ^{full}	99.8	99.6	99.6	97.6	99.2
ADLBP_S ^{full}	99.8	99.6	91.4	67.1	89.5
ADLBP_M ^{full}	99.8	99.6	99.4	97.8	99.2
RDLBP_S ^{full}	99.8	99.6	98.7	86.6	96.2
RDLBP ₋ M ^{full}	99.8	99.6	98.9	95.7	98.5
PCA [18]	98.5	80.0	15.8	24.4	54.7
LRC [18]	100	100	83.27	33.61	79.2
LRC_Fused [19]	100	100	88.97	84.73	93.4

Experimental Results: CAS-PEAL-R1

WPCA
NNC classifier
Euclidean distance

Method	Expression	Accessary	Lighting
LBP_S ^{full} +WPCA	97.5	92.4	42.9
LBP_M ^{full} +WPCA	94.1	85.1	36.5
ADLBP_S ^{full} +WPCA	98.1	93.6	47.0
ADLBP_M ^{full} +WPCA	95.1	87.0	42.1
RDLBP_S ^{full} +WPCA	96.1	90.5	33.1
RDLBP_M ^{full} +WPCA	91.3	78.1	34.8
ELBP_Fused	98.5	93.8	66.2
ELBP_Fused (*)	98.5	94.0	72.3
HGPP [4]	96.8	92.5	62.9
DT-LBP [20]	98.0	92.0	41.0
DLBP [21]	99.0	92.0	41.0
DFD+WPCA [7]	99.0	96.9	63.9

Conclusions

□The proposed extended set of LBP-like descriptors capture complementary information;

□The WPCA technique can further improve the recognition performance of the fused proposed features.

□The proposed fused ELBP approach is highly robust to illumination variations.

Thank you!

I will be glad to answer your questions.