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ABSTRACT

Conditional random fields (CRFs) are one of the most power-
ful frameworks in image modeling. However practical CRFs
typically have edges only between nearby nodes; using more
interactions and expressive relations among nodes make the-
se methods impractical for large-scale applications, due to the
high computational complexity.

Recent work has shown that fully connected CRFs can be
tractable by defining specific potential functions. In this pa-
per, we present a novel framework to tackle the computational
complexity of a fully connected graph without requiring spe-
cific potential functions. Instead, inspired by random graph
theory and sampling methods, we propose a new clique struc-
ture called stochastic cliques. The stochastically fully connec-
ted CRF (SFCRF) is a marriage between random graphs and
random fields, benefiting from the advantages of fully connec-
ted graphs while maintaining computational tractability.

The effectiveness of SFCRF was examined by binary
image labeling of highly noisy images. The results show that
the proposed framework outperforms an adjacency CRF and
a CRF with a large neighborhood size.

Index Terms— Conditional Random Fields, Random
Graph, Stochastic Clique, Stochastically Fully Connected
Random Fields

1. INTRODUCTION

Structural learning is a well-known approach in computer vi-
sion. Simple methods like naı̈ve Bayes, to complex methods
like Markov random fields (MRFs), have made strong con-
tributions to computer vision challenges such as image de-
noising, segmentation, image labeling and super resolution
[1, 2, 3]. These algorithms can be illustrated from two dif-
ferent points of view:

1. Based on their probabilistic formulations and associa-
ted parameters, and
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Fig. 1. SFCRF binary label classification result. The goal is
to label the observed, noisy image into foreground and back-
ground. Here the given image is distorted with 90% salt &
pepper noise, however the SFCRF still produces an accurate
label map.

2. Based on the representation of their graphical mo-
dels [4].

The graphical models are of interest here; these are divided
into directed and undirected graphs, however it is the undi-
rected graphical models which are more appropriate in image
modeling.

MRFs are the most common undirected graphical model
used in computer vision. The MRFs assert an assumption of
conditional independence of states on measurements. In con-
trast, the conditional random field proposed by Lafferty et al.
[5] relaxes this assumption by explicitly modeling the con-
ditional dependence of the states on the measurements. The
impact of CRFs has been investigated in [6, 7, 8].

Basic CRF models utilize unary and pairwise potentials
on local neighborhoods. These adjacency CRFs lead to smoo-
thed image boundaries because they are not able to capture the
long range relations among nodes, thus a number of methods
have been proposed to capture such non-local relations.

The basic CRF framework was expanded to incorporate
non-local relations through hierarchical connectivity [9]. Si-
milarly, fully connected CRFs frameworks were proposed for
semantic image labeling[10]. However, the complexity of in-
ference in those models limits the usage of them to hundreds
nodes or fewer.

Krähenbühl and Koltun [2] proposed a tractable inference
procedure based on specific potential functions. They mo-
deled the multi-class image segmentation based on a fully
connected CRF, and the edge potentials were obtained using
Gaussian kernels. Based on these new feature functions, they



formulated the inference as a filtering problem.
Following this method, Zhang and Chen [11] relaxed the

Gaussian assumption to any distribution by using a stationa-
ry constraint. They showed that the spatial potentials over
two pixels depend only on their relative positions. Therefo-
re, they could encode more statistics by different distribution.
Champbell et. al. [12] generalized the pairwise potentials to a
non-linear dissimilarity measure. They presented the pairwise
terms as density estimates of the conditional probability, and
the probabilities were expressed by a dissimilarity measure.
Ristovski et al. [13] proposed new continuous CRF on a fully
connected graph. Their framework is similar to [2] but they
targeted the regression problems with continuous outputs.

The aforementioned methods try to reduce the O(N3)
computational complexity of exact inference on a fully
connected graph by approximation algorithms and filter-
based frameworks. They addressed the problem by defining
specific potential functions to manage the inference as a filte-
ring approach. However using specific feature functions limits
the effectiveness of CRF in modeling, as the one strengths of
the CRF is the selection of arbitrary feature functions.

In this work, we propose a novel CRF framework on a
fully connected graph. Inspired by Monte Carlo sampling, we
propose a new stochastic clique structure, which allows the
computational complexity of the fully connected graph to be
reduced without limiting the CRF with specific feature functi-
ons. Because of this flexibility, the new framework preserves
the merits of the standard CRF, as any arbitrary function can
be selected as the potential function. The proposed stocha-
stically fully connected random fields (SFCRF) is a mixture
between random graph theory [14] and random fields theo-
ry, sampling the fully connected random field while allowing
for computational tractability. An illustration of the proposed
SFCRF for binary labeling is shown in Figure 1.

2. METHODOLOGY

Stochastically fully connected conditional random fields
(SFCRFs) are fully connected random fields in which cliques
are defined stochastically. The term fully connected refers to
the fact that each node in the graph is connected to all other
nodes of the graph, however the cliques for each node are
determined based on distribution probabilities, so the number
of pairwise cliques in the graph may not be the same as the
number of neighborhood pairs.

The goal is to model P (Y |X), the conditional probability
of the state set Y given the measurement X . The conditio-
nal random field (CRF) approach to expressing P (Y |X) is to
write it as

P (Y |X) =
1

Z(X)
exp(−ψ(Y |X)) (1)

where Z(X) is the partition function and ψ(.) is some com-

bination of unary and pairwise potential functions:

ψ(Y |X) =

n∑
i=1

ψu(yi, X) +
∑
ϕ∈C

ψp(yϕ, X) (2)

Here yi ∈ Y is a single state in the set Y = {yi}ni=1, yϕ ∈ Y
is the subset of states (clique), and X = {xj}nj=1 is the set of
observations.

Each node i has a set of neighbors

N(i) =
{
j|j = 1 : n, j 6= i

}
(3)

where |N(i)| = n− 1. The specified clique structure C is, in
this paper, taken to be the pairwise clique

C =
{
Cp(i)

}n

i=1
(4)

Cp(i) =
{
(i, j)|j ∈ N(i), 1S{i,j} = 1

}
(5)

although the formulation can be generalized for other clique
structures. Cp(i) for node i is determined based upon a sto-
chastic indicator neighbor function, 1S{i,j} = 1, to distinguish
whether two nodes can construct a clique or not. This func-
tion itself is a combination of probability distributions. For
image modeling, this function must consider the spatial rela-
tion among the nodes and must involve data driven into the
model; therefore, the proposed indicator function is the com-
bination of spatially driven and data driven probabilities:

1S{i,j} =

{
1 P s

i,j ·Qd
i,j ≥ γ

0 otherwise
(6)

1S{i,j} = 1 has two responsibilities:

1. Incorporate the spatial information (P s
i,j)

2. Involve the data relation among the states (Qd
i,j)

The threshold γ determines the sparsity of the graph.
The potential function ψu(.) and ψp(.) from (2) are the

combinations of unary and pairwise feature functions and
their corresponding weights λ, respectively:

ψu(yi, X) =

K∑
j=1

λuj fj(yi, X) (7)

ψp(yϕ, X) =

K′∑
{yi,yj}∈yϕ,k=1

λpkfk(yi, yj , X) (8)

where the λ constants control the importance of each feature
function in the energy formulation calculated in the training
stage. Since the SFCRF is a generalization of the CRF, the
various λ parameters can be tied [15] in some situations.

Graph G(V,E) is the realization of the SFCRF where
V is the set of nodes of the graph representing the states



Fig. 2. A realization of a stochastically fully connected condi-
tional random field graph. A connectivity between two nodes
is determined based on a distribution; each two nodes in the
graph can be connected according to a probability drawn from
this distribution. There is a measurement xi corresponding
to each node yi. The connectivity of each pair of two nodes
yi and yk is distinguished by the edge ei,k. Closer nodes are
connected with a higher probability (black solid edges), whe-
reas two nodes with a greater separation are less probable to
be connected (red dashed edges).

Y = {yi}ni=1, and the E is the set of edges of the graph
with |E| ≤ n(n+1)

2 . Corresponding to each vertex in the graph
G(.) there is an observation xi ∈ X . The edges in G(.) are
randomly sampled, thus G is a realization of a random graph
[14]. Based on the Erdös-Rényi theorem [14] if the probabili-
ty p′ of the random graph Ĝn,p′ is greater than logn

n the graph
is connected with a high probability. As a result, the propo-
sed graph G(.) is connected, has at least n− 1 edges even for
large values of γ, and satisfies a Gibbs distribution [16].

Figure 2 illustrates an example of a SFCRF. As can be
seen, each node in the graph can be connected to all other
nodes, although to improve visualization the connectivities of
the centered node are highlighted. The probability of connec-
ting two nodes as a clique is different for each pair of nodes.
According to P s

i,j , the connectedness probability of two no-
des and the distance between them have inverse relation. Ho-
wever, there is a possibility for two distantly separated nodes
yi and yk to be connected, as illustrated in Figure 2, which
is how the SFCRF takes advantageous of the fully connected
CRF.

By the amalgamation of random graph theory and random
fields theory, the proposed SFCRF provides the merits of ful-
ly connected random fields by sampling the configuration of
a fully connected random fields, leading to a much smaller
computational complexity than that of fully connected ran-
dom fields.

3. RESULTS & DISCUSSION

To demonstrate the power of the SFCRF we performed expe-
riments on binary classification datasets. The first dataset is
EnglishHnd, a set of handwritten characters [17], containing
3410 images grouped into 62 equally sized classes: 10 classes

for digits, 26 classes for upper case letters, and 26 classes for
lower case letters. We corrupted the given images with noi-
se, and the problem goal is to classify the pixels of the noisy
images as foreground and background. Salt & pepper noise at
80% and 90%, and Gaussian noise at 220% and 300%, where
the Gaussian noise percentage is characterised by

% =

(
σ

dynamic range

)
× 100 (9)

The images have a size of 480 × 360; therefore, the total
number of pairwise connections of the fully connected graph
is approximately 2.99×1010. According to the random graph
theory [14] mentioned earlier, the selection probability must
be greater than 3.03 × 10−5 for the graph to be connected.
We conducted the experiments with γ = 0.9993, meaning
that the selection probability is equal to 7 × 10−4, leading to
an expected number of pairwise cliques to be 2.09×107 with
an average of 121 pairwise cliques per node.

To test the effectiveness of the proposed framework,
we compared our proposed SFCRF against two other CRFs
of different neighborhood sizes. Of the two compared ap-
proaches, the first is a regular CRF with adjacent neighbors
(CRF-N3) where each node is connected to its closest eight
neighbours (those within a 3 × 3 block); the second mo-
del, CRF-N11, has a larger neighborhood, where each node
is connected to its closest 120 neighbors (those within an
11 × 11 block). The exact number of pairwise cliques of
CRF-N3 is 1.38 × 106 (8 pairwise cliques per node) and of
CRF-N11 is 2.07× 107(120 pairwise cliques per node).

All experiments were conducted on an Intel Core i7-4770
@ 3.4 GHz. All three methods (CRF-N3, CRF-N11 and
SFCRF) are implemented in Matlab, whereas the potential
calculation was computed in C++ code integrated with Mat-
lab through the Mex interface. The average computational
time for each iteration of the inference step is 0.04s for CRF-
N3 and 3.85s for CRF-N11, a significant difference caused by
the change in degree of connectivity between the two models.
In contrast, the average runtime per iteration for the SFCRF
configuration is 2.7s. Thus the inference time is decreased,
while the flexibility in edge connectivity, in principle allowi-
ng arbitrarily distant connections, is increased based on this
new clique structure.

Table 1 shows the F1-score for the SFCRF and other CRFs
subject to the stated noise. The ground truth labels are obtai-
ned by binarizing the true images manually. The results in the
table show that the proposed SFCRF outperforms the regular
CRFs in all cases.

Figure 3 shows some results based on data from the Eng-
lishHnd dataset. It is shown that SFCRF can classify the
images even when they are distorted by the high level of the
noise (i.e. 300%).

The SFCRFs are also examined with grayscale images
from the Weizmann segmentation dataset [18]. The goal is to
segment the noisy images into foreground and background.
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Fig. 3. Qualitative results of SFCRF; the proposed algorithm is examined based on two noise types with two strengths. The
results clearly show how the SFCRF outperforms both local and non-local CRFs.

Table 1. Quantitative results based on the EnglishHnd dataset
[17]. The proposed framework is examined by two noise types
with two different levels. The SFCRF is compared with the
regular CRF (CRF-N3) and a CRF with a neighborhood size
of 11 (CRF-N11). The per-iteration run time of each method
is reported; all methods were run with an equal number of
iterations.

CRF-N3 CRF-N11 SFCRF
Salt & Pepper (80%) 0.488 0.872 0.931
Salt & Pepper (90%) 0.235 0.313 0.859
Gaussian (220%) 0.566 0.818 0.895
Gaussian (300%) 0.391 0.646 0.842
Time per Iteration (s) 0.04 3.85 2.70

Figure 4 shows the segmentation results of SFCRFs for noisy
images in comparison with CRF-N11. The images are dis-
torted with a high level of noise to the point that the objects
are not obvious in the images. The results demonstrate that
SFCRFs can detect the object in low SNR images.

4. CONCLUSION & FUTURE WORK

In this paper we proposed a new framework of fully connected
conditional random fields with a tractable computational in-
ference stage by incorporating a novel stochastic clique struc-
ture. Through the stochastic clique, the dense graph structure
is converted to a sparse one, significantly reducing the com-
putational complexity while preserving the effectiveness of a
fully connected random field. Results show that the proposed
approach performs well for image labelling.
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Fig. 4. The effectiveness of the SFCRF in the segmentation of
noisy images from the Weizmann dataset. The first row shows
the true images, the second the images after distortion, and the
three last rows the segmentation results of the CRF-N3, CRF-
N11 and the SFCRF respectively. The images are distorted
with salt & pepper noise at 90%. The corresponding F1-score
for each result is shown after the image. The results clearly
illustrate the applicability of the SFCRF to natural images.
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