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Motivation 

• What: Agriculture monitoring 

– Global ecological shits 

• How: Polarimetric SAR 

– Weather insensitive 

– Backscatter 

• Problem: Unintuitive imagery; noise 

– Non-visible polarized EMR? 

– Multiplicative noise 
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Background: State of Research 

• Pixel-based methods insufficient for whole-scene 
analysis [1,2] 

• Recent focus on region-based analysis [3,4] 

– Spatial-spectral analysis 

• Unsupervised classification 

– Learn underlying patterns 

–Unbiased toward human interpretation 

 



Background: Sparse Modeling 

• Occam’s Razor: simplicity 

• Sparse modeling uses a few signals (“atoms”) 

to represent complex real-world data 

– Inherent noise reduction 

[             ] 
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Method Overview 

1. Patch representation 

2. Learn sparse dictionary of patch models 

3. Learn unsupervised classifier 



Step 1: Patch Representation 

• Goal: robust patch description; simplicity 

• Components: 

–Spectral description 

–Spatial sensitivity (for learning only) 

• Feature: (see paper for math formulation) 
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Step 1: Patch Representation 
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Step 2: Sparse Dictionary 

• We now have 𝑁 ×𝑀 patch representations. 

• Goal: learn representative patches 

– i.e., learn a small number of “dictionary elements” 

– Use these elements to describe the data 

• Method: modified 𝑘-means 

– Relative spatial weight: 
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Step 2: Sparse Dictionary 

Original Image (crop) Dictionary Elements 



Step 3: Unsupervised Classification 

• We now have 𝑛𝑑 dictionary elements. 

• Goal: learn classes in the scene 

– i.e., learn specific # of unsupervised class labels 

• Method: 𝑘-means with 𝑛𝑙  clusters 

– 𝑛𝑙 > # ground truth labels 

• Output: pixel class labels 



Step 3: Unsupervised Classification 

Dictionary Elements Final Classes 



Step 3: Unsupervised Classification 

Original Image Final Classes 
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Experimental Setup 

• Flevoland AIRSAR imagery (L-band, 12m pixel) 
– HH, HV, VV 

• Parameters 

– 4-layer neighbourhood 

– 𝛽 = 50 (spatial weight) 

– 𝑛𝑑 = 100 (dictionary elements) 

• Analysis of image in distinct partitions 

• Label mapping: 
– Largest pixel coverage 



Data 

L-band 
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K-means (46.7%) GMM (46.8%) 

Results 

Pixel-based methods – low accuracy, unrealistic 
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Ground Truth Proposed Algorithm (71.8%) 
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Results 

Ground Truth Proposed Algorithm (71.8%) 

Problem with small areas 



Full Scene Proposed Algorithm 

Results 
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Conclusions 

• “Simple” sparse texture dictionary learning for 
unsupervised land cover classification 

• Produced locally cohesive label maps 

– Consistent with crop growth 



Future Work 

• Improve border and small area classification 

– Multi-scale processing? 

– Global regions? 

• Rotation, scale invariance 

• Different dictionary learning methods 

• Comparison with other region-based methods 

• Automatic parameter selection 
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Thank You! 

Comments/Questions/Feedback: 

ramelard@uwaterloo.ca 
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