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ABSTRACT

A sparse texture dictionary learning method for unsupervised
land cover classification is presented. The method takes the
stance that land cover in remote sensing data is best analysed
in texture patches rather than localized pixels. To this end, a
feature vector is designed that describes local texture infor-
mation in a spatially coherent manner. This texture model is
extracted for each pixel in the scene. A sparse dictionary of
global texture models is then learned to characterize the un-
derlying texture distribution of the scene in a simplified man-
ner. An unsupervised classifier is learned using these global
texture models for grouping pixels exhibiting high similar-
ity. Being an unsupervised classifier, the class labels that
are learned are unbiased toward human interpretation of the
scene, and rather are learned according to the texture infor-
mation. The method is validated using polarimetric SAR data
over a Flevoland, Netherlands agriculture scene, but may be
generalized to any remote sensing data. Promising experi-
mental results show how the proposed method retains the spa-
tial coherence of crops, and attains higher accuracy than re-
cent unsupervised and supervised classification methods us-
ing the same data.

Index Terms— image classification, image texture anal-
ysis, land cover classification.

1. INTRODUCTION

Determining the different types of agriculture present in a
scene is an important problem in geoscience and remote
sensing. It can be used, for example, to analyse land cover
change, which is one of the most important factors in deter-
mining global ecological shifts [1]. Polarimetric synthetic
aperture radar (SAR) data are able to provide information
about a scene irrespective of cloud cover, as well as differ-
ent scene information according to its backscatter properties.
However, the image it provides is not intuitive to a human
since it operates in non-visible bands of the electromagnetic
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spectrum, and usually contains much noise. These problems
make it difficult to manually interpret a scene. It is therefore
desirable to employ an automatic algorithm for SAR scene
analysis and classification of the pixels to their respective
land cover classes.

Due to continuing advances in remote sensing granular-
ity and image analysis methods, pixel-based methods are be-
ing shown to be inadequate for whole scene interpretation
[2, 3]. Congruent with these findings, recent classification
methods have focused on performing region-based analysis
[4, 5]. Unsupervised classification involves learning under-
lying patterns inherent in the data irrespective of the ground-
truth classes. Thus, a label map that is generated using un-
supervised classification is unbiased toward any human inter-
pretation as it only operates on the underlying data.

2. METHODOLOGY

The goal of the proposed work was to investigate the effec-
tiveness of employing sparse texture modeling in an unsu-
pervised learning scheme for land cover classification. We
learned a sparse dictionary of global texture models for de-
termining a mapping from multi-dimensional remote sensing
data (e.g., SAR) to agricultural land cover. Sparse dictionary
learning has been successfully used in image processing for
learning representative image textures and denoising [6]. It is
therefore a promising methodology for determining informa-
tion from noisy SAR data. In this paper, we use Pauli decom-
position [9] of polarimetric SAR, but this method can be gen-
eralized to any remote sensing imagery with ground-truth in-
formation, as long as the scene being classified was obtained
using the same bands and polarizations with which the texture
dictionary was learned.

An overview of the proposed approach can be described
as follows. First, a set of multi-dimensional spatially-
sensitive texture representations were extracted for each pixel
in the scene. Then, an N-element sparse dictionary texture
model was learned using these global texture representations.
Using these representative dictionary elements, an unsuper-
vised classifier was learned and used to assign a class label to
each pixel. This approach does not use any manually-defined



labels, as it generates class labels based on image texture
characteristics.

3. MULTI-DIMENSIONAL TEXTURE
REPRESENTATION

A dictionary of textures is a set of feature representations de-
scribing the pixels in a scene. In order to build such a texture
dictionary, a feature vector must be designed such that it de-
scribes the texture about a pixel in the polarimetric SAR im-
age. We defined a spatially-sensitive multi-dimensional tex-
ture representation such that two patches are deemed “simi-
lar” if they are both similar in raw texture and spatial position.
The spatial constraint is an important and valid constraint in
this framework, as crops tend to grow in discrete areas due to
soil characteristics and growing techniques. This representa-
tion allows us to describe the multi-channel, noisy SAR data
in terms of simpler representative texture elements.

Specifically, let f denote an M x N SAR image with
n. polarization channels with which we wish to perform
classification. Then, let f(x;,c) represent the SAR data at
pixel location x; and channel ¢ in image f, where c is one of
the n. polarization channels. Given an r-layer pixel neigh-
borhood centered at pixel location x;, its spatially-sensitive
multi-dimensional texture representation g(x; ) can be defined
as:
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where f (x{’k7 c) denotes the pixel value at the ;" position of
the k" radial layer around pixel x; in channel ¢ (see Fig. 1).
The neighborhood can be traversed in any manner as long as
the traversal method is consistent across each patch. Note that
there are 8k pixels at radial layer k. Global spatial context
was encoded into this feature vector by appending the pixel’s
spatial location x;. That way, patches are deemed “similar”
based on both their neighborhood pixel values as well as their
relative proximity. This constraint is only held for the sparse
coding step, and is not directly embedded into the classifica-
tion phase. As such, given the SAR image f, atotal of M x N
texture representations are extracted, one for each pixel loca-
tion.

4. DICTIONARY-BASED GLOBAL TEXTURE
MODEL

Upon computing the set of spatially-sensitive texture repre-
sentations G = {g(x1), 9(x2),...,g(xpn)} for each pixel
in f, we wish to learn a sparse dictionary of global texture
models for characterizing the underlying texture distribution
of f in a concise and simplified manner. To accomplish
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Fig. 1: An example of constructing a texture representation
from a pixel neighborhood with one radial layer and two
channels (blue and red). The pixels are extracted layer-by-
layer to form a feature vector of pixel values. The numbered
bubbles represent pixels with numeric labels for visualization
purposes. Note that this representation does not include spa-
tial constraints.

this goal, we introduce a dictionary-based strategy for learn-
ing such a dictionary, where a polarimetric SAR image f
is summarized by a set of ny texture dictionary elements
D = {d,ds,...,d,,}, where ng < M x N. To learn
the set of dictionary elements (i.e., D), we introduce a two-
component texture-spatial cost criterion:

D= argsminz Z [C (gt(xi),dz-)—i—ﬁc (gS(Xi)adj)}
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where S; is the set of spatially-sensitive textural represen-
tations being summarized by dictionary element d;; ¢* and
g° are the texture and spatial components of the spatially-
sensitive texture representation g, respectively; d* and d® de-
note the texture and spatial components of the dictionary ele-
ment d, respectively; C'(+,-) is some cost function describing
the discrepancy between two vectors; and /3 controls the influ-
ence of the spatial components relative to the texture compo-
nent on the learned model. The formulation presented in (2)
can be satisfied using the k-means clustering with the Man-
hattan (i.e., L) distance cost function and n4 clusters. The fi-
nal dictionary D is therefore a set of cluster centroids that are
representative of their respective clusters of spatially-sensitive
texture representations.

5. CLASSIFIER LEARNING BASED ON GLOBAL
TEXTURE MODEL

Given the global texture dictionary D describing image f, we
wish to learn an unsupervised classifier that generates the set
of n; < ng land cover labels L = {1, 2, ..., n; } for each pixel
based on the pixel’s texture description. During this phase, we
omitted the spatial components of the dictionary elements in
D and therefore used only the texture components D?. Note
that the classifier is never given land cover classes (e.g., stem-
beans), but rather is given the desired number of classes. The
resulting label map consists of pixels that are grouped accord-
ing to similar texture descriptions. To generate n; labels, we
used k-means with n; clusters, which minimizes the within-



class variance of the clusters. Each pixel in f was then as-
signed a label | € L based on its representative cluster. These
labels are not specific agricultural classes, but rather are ar-
bitrary labels intended to group similar pixels based on their
local texture characteristics.

6. EXPERIMENTAL RESULTS

The proposed method was implemented in MATLAB and
validated using the real-valued Pauli decomposition of the
polarimetric L-band Flevoland, Netherlands dataset provided
by NASA/JPL AIRSAR [8]. The Pauli decomposition was
computed in the same way as [4]. The image is 862 x 625 pix-
els with 15 manually-defined ground-truth land cover classes
obtained from [4] denoting the various crops. The Pauli RGB
composite of this data and ground-truth classification are
shown in Fig. 2.

For robustness and speed, we divided the entire image
into distinct partitions, with each of which we employed the
dictionary learning stage. The elements learned across all par-
titions were merged together for the final classification stage.
We used 206 x 206 pixel partitions, 4-layer neighborhoods,
B = 50, and ngy = 100 global dictionary elements (which
were determined empirically) to generate 18 class labels.
We generated more labels than the number of ground-truth
classes because there are more visually distinct classes than
those identified in the scene [4]. Upon obtaining these labels,
we mapped each unsupervised label to the ground-truth class
with which it shared the largest amount of pixel coverage so
that accuracy metrics can be compared.

The final classification result using the proposed algo-
rithm was first compared against classification using k-means
and maximum a posteriori (MAP) with Gaussian Mixture
Models (GMM), which are shown in Fig. 3. The proposed
method generated a label map that labeled pixels very co-
hesively compared to the benchmark algorithms, which is
consistent with agricultural growth patterns. It attained
much higher accuracy (71.8%) than the k-means (46.7%)
and MAP (46.6%) methods. We also compared our results
to a recent unsupervised classification method (PolarIRGS)
[4] and a supervised method [9] that use the same dataset.
The proposed method attains slightly higher accuracy than
PolarIRGS which uses fully polarimetric data (71.8% vs.
69.8%). Lee et al. attain higher accuracy (81.63% vs. 71.8%)
using fully complex polarimetric L-band data, however their
classifier is supervised. Also, Lee et al. attain a maximum of
60.12% using magnitude data only, the same type of data used
by the proposed method to achieve a higher rate of 71.8%.

7. CONCLUSIONS

This paper has proposed a sparse texture dictionary learning
scheme for unsupervised land-cover classification on polari-
metric SAR imagery. As this approach uses unsupervised

learning (i.e., the ground-truth labels were not incorporated
into the training phase), the learned pixel-to-label classi-
fier is unbiased toward human interpretation. The resulting
label map was shown to be much better suited to the spa-
tial growth patterns of crops than traditional pixel-based
methods. Attained accuracy metrics using three-channel po-
larimetric SAR data were higher than recent unsupervised
and supervised methods using the same data [4, 9]. Future
work involves automatic parameter determination, compar-
isons with different dictionary learning methods, and analysis
using other data sets.
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(a) Flevoland Pauli composite SAR image (L-band) (b) Ground-truth

Fig. 2: Flevoland, Netherlands polarimetric SAR data with manually-labeled ground-truth land cover.
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Fig. 3: Comparing the land cover classification results generated by the proposed algorithm and two benchmark algorithms.
Notice how the proposed algorithm groups texture patches into natural coherent units, whereas k-means and MAP generate
very localized pixel-by-pixel labels.



