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ABSTRACT

A texture sparsifying transform for use in unsupervised clas-
sification of sea-ice in polarimetric synthetic aperture radar
(SAR) imagery is presented. The goal of the sparsifying
transform is to compactly represent the underlying informa-
tion of the SAR imagery to eliminate sources of unwanted
noise and complexities (e.g., banding effect on RADARSAT-
2) commonly found in SAR imagery. The proposed algorithm
is designed to be simple to implement and discriminative in
sea-ice scenes. Performing unsupervised classification on
the sparsifying transform space using scenes captured with
C-band HV polarization yields experimental results that are
much more accurate than common pixel-based methods, and
performs comparably to a recent more complex method.

Index Terms— sea-ice classification, sparsifying trans-
form, texture model, synthetic aperture radar.

1. INTRODUCTION

The accurate classification of sea-ice in polar regions is an
important task for navigational planning purposes such as
ship routing in ice-infested waters. One of the most important
tools for monitoring sea-ice conditions in polar regions for
navigation planning is spaceborne synthetic aperture radar
(SAR) via satellites such as RADARSAT-1 and RADARSAT-
2. Operating passively within the microwave spectral range,
SAR facilitates the continuous monitoring of sea-ice con-
ditions even under high cloud and snow cover. The clas-
sification of sea-ice and water using SAR data has largely
been performed manually by trained experts, which is very
time-consuming given the large amounts of SAR data be-
ing captured daily, as well as subject to human bias. This
motivates the development of computer-aided strategies for
improving the performance and accuracy of sea-ice and water
classification from large volumes of SAR data.

Strategies for sea-ice classification can be grouped into
either supervised approaches [1, 2, 3] or unsupervised ap-
proaches [4, 5]. Supervised approaches require manually
identified training information for learning the underlying
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classification models. Such approaches require a significant
amount of training data and are subject to labeling bias. They
also exhibit limited robustness to natural variability in sea-ice
and water characteristics being captured in the SAR data, as
well as speckle noise. Unsupervised approaches aim to learn
the sea-ice and water classes inherent in the raw data irrespec-
tive of manual labels. Such approaches hold great promise
for operational sea-ice classification as it is more flexible and
adaptive to the natural variability in sea-ice and water char-
acteristics, along with variability in the environment and the
data acquisition conditions. In this study, we investigated the
potential for an adaptive sparsifying transform strategy for
unsupervised classification of sea-ice and water using SAR
imagery

2. METHODOLOGY

A novel strategy for unsupervised classification of sea-ice
types and/or water using SAR data is proposed based on the
concept of an adaptive texture sparsifying transform. First, an
adaptive texture sparsifying transform was learned based on
a set of texture and spatial representations extracted from the
SAR imagery. This transform projects such texture represen-
tations into a feature space in which the texture characteristics
of the SAR image can be sparsely and compactly represented.
Given the learned sparsifying transform, a classifier was then
learned (in an unsupervised manner) in this projected sparse
feature space to classify between sea-ice types and/or water
within the scene. This can be used to predict ice-water cover-
age in other parts of the scene. The algorithm is presented in
pseudocode format in Fig. 3.

3. TEXTURE REPRESENTATIONS

In this work, the local texture characteristics of an M x N
SAR image (denoted as f(x) where x is the pixel location)
is characterized using a set of M x N neighborhood-based
texture representation vectors ¥ = {7(x;)},, for each pixel.
Given an r-layer neighborhood centered at pixel x;, the tex-
ture representation vector 7(x;) is given by:
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Fig. 1: An example of extracting a texture representation vec-
tor from a 2-layer neighborhood using 1, excluding spatial
information. The bubbles represent individual pixels in the
image, and the numbers represent pixel identiers for illustra-
tive purposes.
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where f(x;7"%) is the pixel intensity at the j** position of the
kM layer in the neighborhood centered around pixel location
x; (see Fig. 1 for an illustrative example). It can be shown
that the k%" layer in a radial neighborhood has 8k pixels in
the layer. The last term x; in 7(x;) provides spatial infor-
mation to incorporate spatial context into the adaptive texture
sparsifying transform learning process. Note that this spatial
constraint is only maintained during the sparsifying transform
procedure, and is not directly included in the classification
stage.

4. ADAPTIVE TEXTURE SPARSIFYING
TRANSFORM

We wish to project the set of local texture representation Y
into a feature space in which the texture characteristics of the
SAR image f(x) can be sparsely and compactly represented.
The sea-ice and water classes may not be well-separated in
the original fully-populated feature space, particularly in the
presence of natural and imaging variability in sea-ice and wa-
ter. However, when projected into a feature space where the
texture characteristics can be sparsely and compactly repre-
sented, the underlying separability between the sea-ice and
water classes should improve due to the systematic simplified
representation of the data.

Let the feature space in which texture characteristics can
be sparsely and compactly represented be defined by a set of
vectors forming a basis for this space, which we will denote
as B = {by,bz,...,by, }. To learn the set of bases B, we
employed a learning strategy based on the minimization of a
two-component cost function:
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where S; C S denotes the set of textural representation vec-
tors being mapped to basis vector bj, 7 and 7* correspond to

the texture and spatial components of the representation vec-
tor 7, respectively, b} and bf corresponds to the texture and
spatial components of basis vector bj, respectively, and o and
B control the balance of influence between texture and spatial
components.

Given such a feature space, let the texture sparsifying
transform Tp(7) for SAR image f(x) be defined as a func-
tion that maps a texture representation vector 7(x;) to one of
the basis vectors in B based on a minimum L, error norm
criterion:

TB(T) = by, s.t.
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Thus, the adaptive texture sparsifying transform Tz (7) can
be completely defined by (3) and the learned basis B. The
effective result of this sparsifying transform is a pixel map
with n; pixel values such that patches that are spatially and
texturally similar are represented by the same pixel value.

5. UNSUPERVISED CLASSIFIER LEARNING

Given the learned adaptive texture sparsifying transform
Ts(7), the goal is now to learn a classifier in an unsupervised
manner within the sparse feature space. At this point, it is
wise to only consider the texture components, as classifica-
tion using the spatial components would misidentify patches
that are the same class yet distant from one another. To ac-
complish this, a minimum L4 error criterion was used to learn
a ne-class classifier L (corresponding to a set of classifier
labels £ = {l1,ls,...,l,.} where £ in this case defines
ice/water or different types of ice) from Tz (7) as follows:
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where C'; C C'is the set of basis vectors in B represented
by label [;, T%(7) represents only the texture portion of the
basis vector, and ®; is the prototype for class /; in the feature
space. This can be satisfied using k-means clustering.

6. RESULTS

We used C-band HV polarization SAR imagery acquired
by RADARSAT-2 over Chukchi and Beaufort Seas between
April and June 2010. These images were chosen since they
contain large amounts of noise due to banding effects and the
inherent low signal-to-noise ratio of HV imagery, and they
incorporate different types of information (Fig. 2a contains
two types of ice, and Fig. 2b contains water and ice). For
comparison, we generated results using the proposed algo-
rithm, Iterative Region Growing using Semantics (IRGS)
[6, 7], k-means, and maximum a posteriori (MAP) using



Gaussian mixture models (GMM) using the same data. The
original SAR images were cropped to 600 x 600 pixels for
performance purposes, and we classified into two classes
(first-year vs. multi-year ice for Fig. 2a, and ice vs. water
for Fig. 2b). For testing purposes we used 2-layer neighbor-
hoods (i.e., 5 x 5 pixel neighborhoods), & = 1, § = 10, and
np = 1000 bases. For computational reasons, the adaptive
texture sparsifying transform was performed on the scene in
distinct partitions. That is, we analysed the scene in 30 x 30
pixel partitions prior to the classification stage.

Visual results are presented in Fig. 2. Fig. 2a comprises
two types of ice: first-year (dark) and multi-year (light) ice.
The proposed method properly grouped the types of ice into
cohesive structures, as opposed to pixel-based methods which
produced very localized classifications of the types of ice.
This is especially observed in the bottom part of the image,
where small pixel clusters were erroneously determined to be
multi-year ice. The proposed method generated very similar
classification maps to IRGS (Fig. 2c-2d).

Fig. 2b comprises ice and water in the scene. The pro-
posed method again generated pixel labels that are coherent,
as opposed to the k-means and MAP methods that produced
scattered pixel labels both in the water and on the ice. The
banding effects, which are especially viewable in the bottom-
right of the image, were properly interpreted by the proposed
method, whereas the pixel-based methods identified the peaks
of the bands as ice. This hints at the discriminative power of
analysing patches rather than per-pixel analysis.

In both of these scenes, the proposed method has shown
improvements over pixel-based methods, and is comparable
to the recent IRGS method. However, the implementation
of the proposed method is simpler than that of IRGS. IRGS
requires initializing and updating a region adjacency graph
across the entire scene, and uses simulated annealing as the
iterative optimization technique. The proposed method relies
only on a sliding window approach and k-means clustering,
both of which are common image processing techniques.

7. CONCLUSIONS

In this paper we have proposed an adaptive texture sparsi-
fying transform for performing unsupervised classification to
differentiate sea-ice/water and ice types using a single HV po-
larization SAR image. This transform projects the SAR pixel
data into a sparse feature space where the underlying classes
are much more separable and well-defined. Classification us-
ing this sparse feature space is more likely to converge to a de-
sirable solution as the data is systematically simplified using
commonly observed textural representations. The experimen-
tal results indicate that the proposed method performs better
than benchmark pixel-based methods, and performs compa-
rably to a recent more complex method on the same data.

I —Image

r — Patch Size

«, B — Spatial/Texture Weights

ng/np/np — Number of Classes/Texture Bases/Partitions

function SEAICECLASSIFICATION(I, 7, «, 3, nc, np,
np)
M+ 0
for each partition do
T < {7(xi)} V pixels x;
Learn By, /np
for each pixel x; do
M(x3) < Tp(7(x1))
end for
end for
Learn L using M
end function

Fig. 3: Proposed Algorithm
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Fig. 2: Sample sea-ice classification results using RADARSAT-2 C-band HV SAR imagery. The proposed method is not privy
to banding effects or small localized misclassifications like k-means and MAP, and it also performs comparably to the more

complex IGRS method.
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(a) Apr 18 2010, 21-28° incidence angle.
(b) Jun 29 2010, 22-29° incidence angle.



