COMPARISON OF UNSUPERVISED SEGMENTATION METHODS FOR SURFICIAL MATERIALS MAPPING IN NUNAVUT, CANADA

Fan Li, Alexander Wong, David A. Clausi

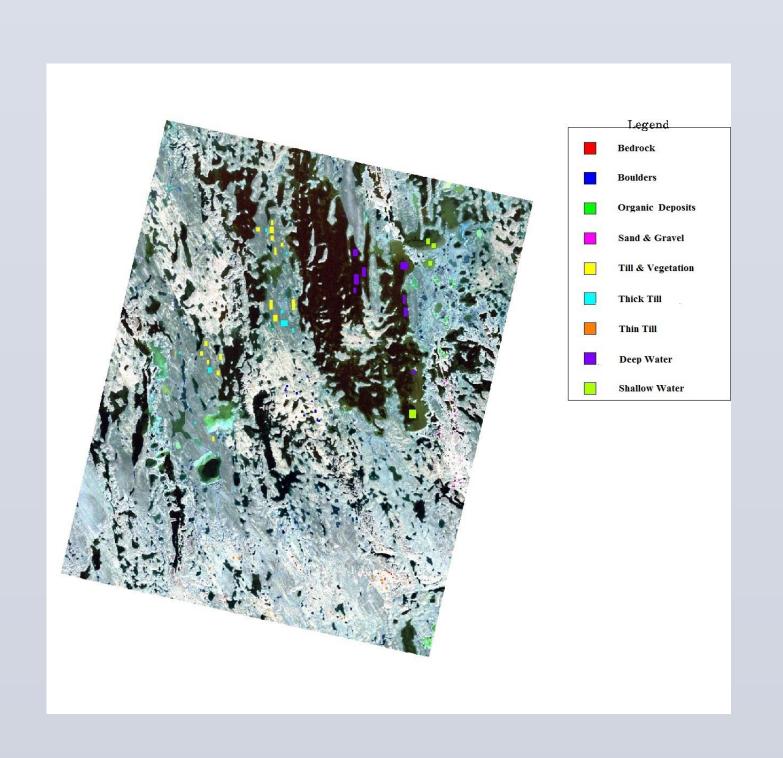
Department of System Design Engineering, University of Waterloo, Canada Email: ff33li, a28wong, dclausig@uwaterloo.ca

Abstract

In this paper, unsupervised segmentation methods are investigated for surficial materials mapping in Nunavut, Canada. Different satellite data sources including RADARSAT-2 polarimetric image, LANDSAT-7 image, and DEM data are combined and three unsupervised segmentation methods are compared. Results show that IRGS has better performance than the other two methods.

Introduction

The Canadian Arctic is important to the Geological Survey of Canada (GSC) because better understanding of the Arctic's land cover is required to support decision making on northern resource development. This study focuses on the performance of unsupervised segmentation methods in the Umiujalik Lake area in Nunavut. Multisource remote sensing data including RADARSAT-2 polarimetric, LANDSAT-7 images, and digital elevation model (DEM) are used.



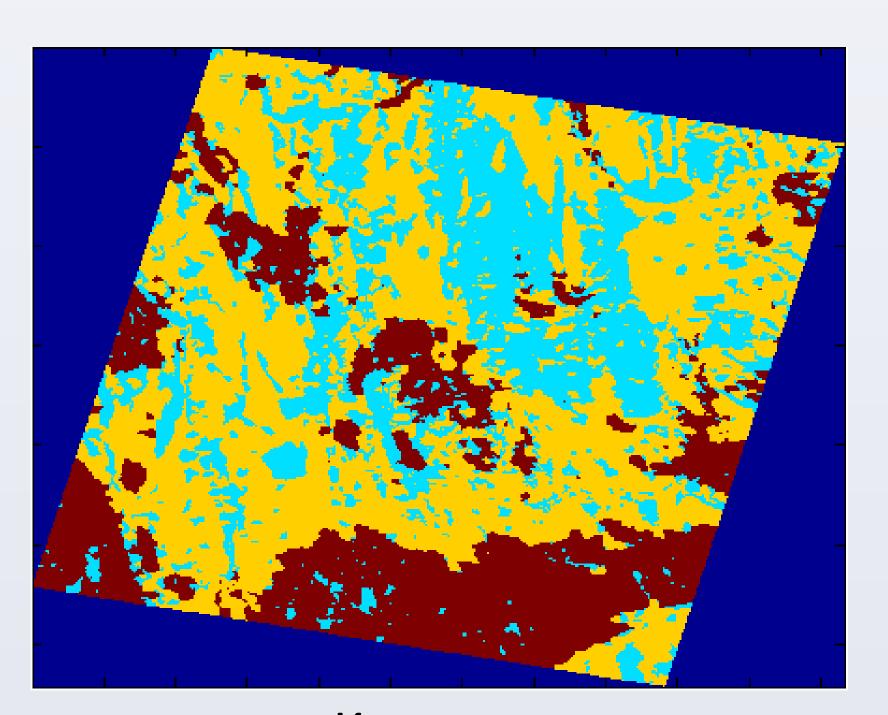
Experimental results

Methods for comparison include k-means, Gaussian mixture model (GMM) [3], and IRGS [4]. K-means and GMM are baseline methods for image segmentation. After each pixel is assigned a clustering label, a confusion matrix is calculated in which each class label corresponds to each cluster label. Only pixels in training areas are considered in the confusion matrices. Table 1 and Table 2 show that "Classes with little vegetation" and "Classes with vegetation" cannot be separated into two clusters by either k-means or GMM. Table 3 shows that they can be approximately separated into two classes by IRGS after spatial context and edge strength are taken into consideration.

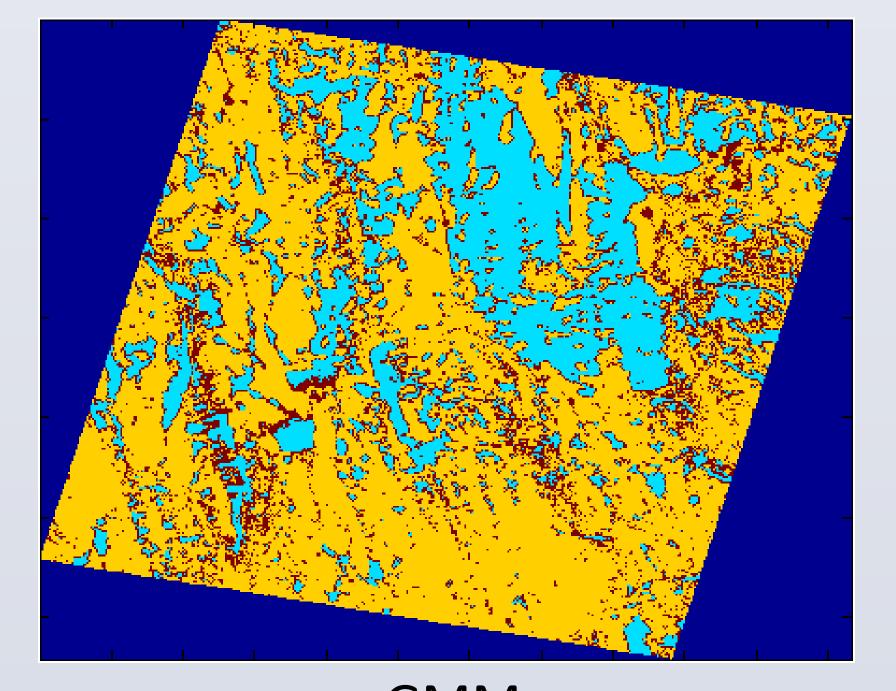
	Cluster label 1	Cluster label 2	Cluster label 3
Classes with little vegetation	683	1192	13
Classes with vegetation	950	3603	9
Water	0	23	3848
Table 2. Confusi	on matrix for GM	M segmentation r	esult. Cluster label 3
India 21 Collian		7. *	
Classes with little vegetation	1798	90	0
Classes with vegetation	4005	557	0
Water	5	478	3388
Table 3. Confusi	on matrix for IRC		
Table 3. Confusi	on matrix for IRC	S segmentation r	esult. Cluster label 3
Table 3. Confusi Classes with little vegetation Classes with vegetation	Cluster label 1	Cluster label 2	Cluster label 3

Finally the best accuracy is calculated considering all the permutations. The result is shown in Table 4. IRGS outperforms both k-means and GMM, and achieves highest overall accuracy.

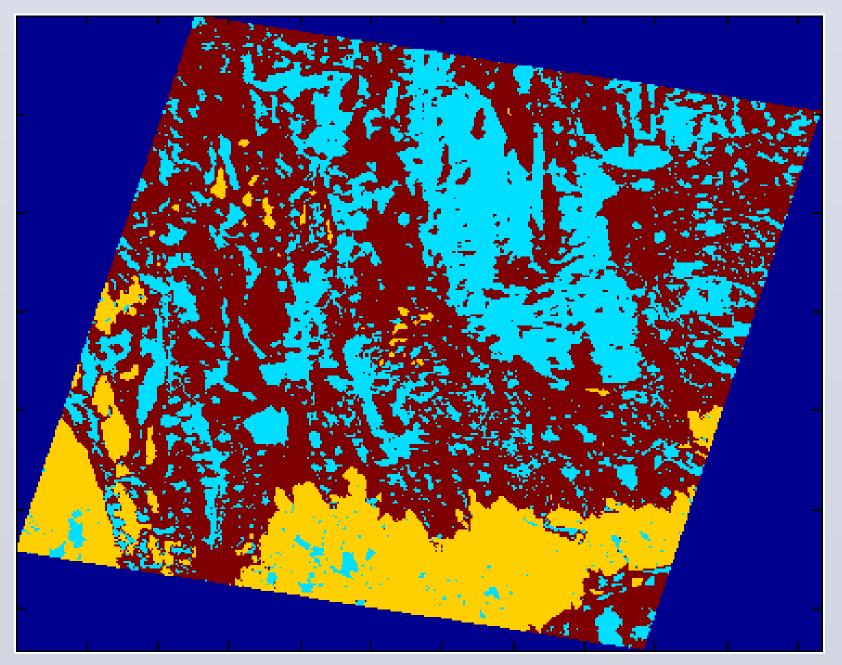
Table 4. Best accuracy for all the permutations.			
Methods	overall accuracy		
k-means	77.2%		
GMM	71.6%		
IRGS	89.3%		



K-means



GMM



IRGS

Conclusions

A comparison of unsupervised segmentation methods is made for surficial materials mapping in Nunavut, Canada. RADARSAT-2 polarimetric magnitude, LANDSAT-7 intensity, and DEM height information are combined into a feature set. K-means, GMM, and IRGS are used for unsupervised segmentation. Experimental results show that IRGS outperforms k-means and GMM. Future direction is to use limited number of labeled samples to guild the unsupervised segmentation.

Reference

[1] Yask Shelat, Brigitte Leblon, Armand Larocque, Jeff Harris, Charlie Jefferson, David Lentz, and Victoria Tschirhart, "Effects of incidence angles and image combinations on mapping accuracy of surficial materials in the Umiujalik lake area, Nunavut, using radarsat-2 polarimetric and landsat-7 images, and DEM data," Canadian Journal of Remote Sensing, vol. 38, no. 03, pp. 383–403, June 2012.

[2] Armand LaRocque, Brigitte Leblon, Jeff Harris, Charlie Jefferson, Victoria Tschirhart, and Yask Shelat, "Surficial materials mapping in Nunavut, Canada with multibeam RADARSAT-2 dual-polarization C-HH and C-HV, LANDSAT-7 ETM+, and DEM data," Canadian Journal of Remote Sensing, vol. 38, no. 03, pp. 281–305, 2012.

[3] Christopher M Bishop and Nasser M Nasrabadi, Pattern Recognition and Machine Learning, vol. 1, springer New York, 2006.

[4] Qiyao Yu and David A Clausi, "IRGS: Image segmentation using edge penalties and region growing," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 12, pp. 2126–2139, 2008.

Aknowledgement

This work is partly funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Space Agency (CSA). This research was undertaken,in part, thanks to funding from the Canada Research Chairs program.