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ABSTRACT

This paper introduces a novel approach to the problem of ac-
tive contour-based segmentation through the use of complex-
valued wavelets. In traditional active contour-based segmen-
tation techniques based on level set methods, the energy func-
tionals are defined based on intensity gradients. This makes
them highly sensitive to situations where the underlying im-
age content is characterized by image non-homogeneities
due to illumination and contrast conditions. In the proposed
approach, the energy functionals used to evolve a level set
function are based on the moments of phase coherence of
complex-valued wavelet components. This formulation is
highly invariant to non-homogeneities caused by illumination
and contrast variations. Experimental results demonstrate
that the proposed approach can be used to improve existing
active contour-based segmentation methods under situations
characterized by image non-homogeneities.

Index Terms— active contour, segmentation, complex-
valued wavelets

An increasingly popular area of research in the field of
image processing is image segmentation, where the underly-
ing goal is to partition image content into multiple regions
in a meaningful manner. Some recent work in image seg-
mentation have focused on active contours based on level set
methods [1, 2, 3], where active contours are represented as
the zero level set of a level set function, which is then evolved
based on a partial differential equation towards the minimum
cost potential. In existing image segmentation methods based
on level set active contours, the energy functionals that act as
a basis of cost minimization for evolving the active contours
are based on the intensity gradients of the underlying image
content. The main drawback to using intensity gradients as
the basis for the energy functional is that it makes evolution
process highly sensitive to image non-homogeneities caused
by illumination and contrast conditions. As such, minimiz-
ing the cost potential based on intensity gradients will often
result in poor image segmentation in situations where the im-
age is acquired under non-uniform illumination conditions.
As such, an approach for constructing energy functionals that

are highly robust by illumination and contrast conditions is
desired.

The main contribution of this paper is a novel approach to
the problem of level set active contour-based image segmen-
tation through the use of energy functionals defined based on
the phase coherence of complex-valued wavelets. The pro-
posed approach can be integrated into existing level set active
contour-based image segmentation techniques to provide im-
proved segmentation performance in situations characterized
by illumination non-homogeneities. The proposed approach
extends upon the variational formulation for level set active
contours proposed in [3] in such a way that the resulting im-
age segmentation process is largely invariant to illumination
conditions. This paper is organized as follows. The proposed
approach is described in 1. Experimental results are presented
and discussed in Section 2. Finally, conclusions are drawn in
Section 3.

1. PROPOSED APPROACH

The proposed approach to illumination invariant active contour-
based image segmentation utilizes the moments of phase
coherence of complex-valued wavelet components to define
energy functionals. Therefore, the first step in the proposed
approach is to compute the moments of phase coherence from
a given image. Suppose we are given an image I that we wish
to segment. The amplitudeA and phase φ at a given point can
be obtained using complex wavelets such as Gabor wavelets
and dual-tree complex wavelets [4]. For example, using log-
arithmic Gabor wavelets, the local amplitude and phase for a
given pixel at x and wavelet scale n can be computed using
the following equations:
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where F e
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n are the even-symmetric and odd-symmetric
wavelets at scale n respectively. Based on this local frequency
information, the phase coherence of the complex-valued



wavelet components can be determined. The phase coherence
of frequency and wavelet components contains information
that signifies the structural variations within an image and
has been used in different applications where these variations
are important in the image analysis process [5, 6, 7]. Un-
like intensity gradients, which relies heavily on amplitudinal
information of an image, the phase coherence relies mainly
on the phase information of an image and is therefore highly
invariant to image non-homogeneities. Using the formulation
described in [6], the phase coherence of a pixel at x and
orientation θ can be estimated as follows:
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where W represents the frequency spread weighting fac-
tor (coherence over wider frequency spreads outweighs co-
herence over narrow frequency spreads), φ̄ represents the
weighted mean phase, T represents the noise threshold and
ε is a small constant used to avoid division by zero. ∆Φ
goes to zero when the complex-valued wavelet components
are minimally in phase, and goes to approximately one when
they are maximally in phase. Most of the parameters used
to compute phase coherence are the same as that used in [6],
except n = 3.

Once the phase coherence of the wavelet components
have been determined, the maximum moments of phase co-
herence $ can be computed as follows:
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where P (x, θ) is the phase coherence at x and orientation θ.
High values of $ corresponds with high structural variations
while low values of $ corresponds with low structural varia-
tions. In this context, the maximum moments of phase coher-
ence can be conceptually viewed as a form of image gradient
and can therefore be integrated into the energy functional used
to minimize cost potential for the level set function. Using
the level-set active contour-based image segmentation method
proposed by Li et al. [3] as the basis of the proposed approach,
the external energy functional E can be defined as follows:
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∫
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where λ and ν are constants (λ = 5 and ν = 3
2 during test-

ing), δ is the univariate Dirac function, and H is the Heavi-
side function. This can then be used to define the total energy
functional as proposed in [3]:

C(φ) = µ

∫
1
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where µ is a constant (µ = 1
25 ).

2. EXPERIMENTAL RESULTS

A group of test images were used to test the effectiveness
of the proposed method. As stated earlier, the proposed
approach can be used to improve existing level set active
contour-based techniques. For testing purposes, the proposed
approach was integrated into the level-set active contour-
based image segmentation method proposed by Li et al. [3].
To evaluate the performance of the proposed approach, both
the original approach used in Li’s method for energy func-
tionals and that proposed in this paper are compared over
300 iterations. Example segmented images are shown in Fig-
ure 1, Figure 2 and Figure 3. It can be seen that the proposed
method provides improved segmentation in both cases, par-
ticularly in areas with high image non-homogeneities. These
results show that the proposed approach can be used to im-
prove existing level set active contour-based techniques in
situations characterized by image non-homogeneities.

Fig. 1. TEST1: Top: Original image, Bottom-right: Segmen-
tation using Li’s method, Bottom-right: Segmentation using
proposed approach

3. CONCLUSIONS

This paper introduced a novel approach to illumination in-
variant level set active contour-based image segmentation us-
ing complex-valued wavelets. By utilizing moments of phase
coherence of complex-valued wavelet components in the en-
ergy functionals, it was demonstrated that improved segmen-
tation quality can be achieved over the approach used in cur-
rent level set active contour-based segmentation techniques.



Fig. 2. TEST2: Top: Original image, Bottom-right: Segmen-
tation using Li’s method, Bottom-right: Segmentation using
proposed approach

Fig. 3. TEST3: Top: Original image, Bottom-right: Segmen-
tation using Li’s method, Bottom-right: Segmentation using
proposed approach

Finally, the proposed approach can be integrated into exist-
ing segmentation techniques to improve segmentation qual-
ity. Future work includes investigating methods for improv-
ing segmentation performance of the proposed approach un-
der very high levels of noise, where the moments of phase
coherence becomes highly degraded.
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