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Abstract. We combine the techniques of the complex wavelet trans-
form and Markov random fields (MRF) model to restore natural images
in white Gaussian noise. The complex wavelet transform outperforms the
standard real wavelet transform in the sense of shift-invariance, direction-
ality and complexity. The prior MRF model is used to exploit the clus-
tering property of the wavelet transform, which can effectively remove
annoying pointlike artifacts associated with standard wavelet denoising
methods. Our experimental results significantly outperform those using
standard wavelet transforms and are comparable to those from overcom-
plete wavelet transforms and MRFs, but with much less complexity.
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1 Introduction

Images and image sequences are frequently corrupted by noise in the acquisi-
tion and transmission phases. The goal of denoising is to remove the noise, both
for aesthetic and compression reasons, while retaining as much as possible the
important signal features. Traditionally, this is achieved by approaches such as
Wiener filtering, which is the optimal estimator in the sense of mean squared er-
ror (MSE) for Gaussian processes. However, the Wiener filter requires stationar-
ity and an accurate statistical model of the underlying process, these performing
poorly for natural images failing these assumptions. In practice, adaptive meth-
ods [TI2] were mostly used. These methods are good in that they are fast and
can effectively suppress noise for most natural images. More importantly their
adaptivity allows them to work for non-stationary processes (it is well-known
the natural images are non-stationary). The main problem with such methods
is their assumption that the natural images are independent random processes,
which usually is not true. For example, image textures are correlated and are
successfully modelled as Gaussian MRF (GMRF).

The last decade has seen a good deal of effort in exploiting the wavelet
transform to suppress noise in natural images [3/4U57], because of its effectiveness
and simplicity. It is now well-known that wavelet transforms with some regularity
have strong decorrelation ability, thus well-representing many natural images
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with relatively few large coefficients. So it is thus far more reasonable to assume
that the wavelet coefficients are independent, than the original spatial domain
pixels. This explains why good denoising results have been achieved by simply
thresholding or shrinking each wavelet coefficient independently [34]. Indeed, this
kind of approach has much better results than traditional methods [12], both
subjectively and objectively. However, for natural images the wavelet transform
is not quite equivalent to the ideal eigen value/Karhunen-Loeve decomposition,
so some correlation (dependence) still exists among the wavelet coefficients. For
example, large (in magnitude) wavelet coefficients tend to be clustered within a
scale and across scales. If these characteristics could be exploited in some way
for denoising, better performance might be expected. Indeed, MRF models have
been used for this very reason [Bl7] and significantly better results obtained, both
subjectively and objectively. Specifically, pointlike artifacts associated with the
independence model have been effectively suppressed.

Considering the shift-variability of standard wavelets, or the complexity of
shift-invariant (undecimated) transforms, in this paper we propose to use com-
plex wavelet transform together with a MRF model for image denoising. A dif-
ferent formulation of the problem is also proposed. Sec. 2l describes the problem
formulation. Sec3] introduces the basic ideas of the complex wavelets and its
useful properties. SecHl is about the probability models we use in the paper. In
Secll we show some experimental results with discussions.

2 The Denoising Method

Standard wavelet-based denoising methods consist of three steps:

1. The wavelet decomposition of the image is computed:
Given noise-free image x, and wavelet transform H, then

x=Hz,
y==Hy =H(z,+w,) (1)

where y are the noisy observations.
2. The obtained wavelet coefficients are modified:

&= f(y) 2)

where f() denotes our proposed estimator.
3. The cleaned image is obtained from the modified wavelet coefficients by
inverse wavelet transform:

B, =H 'iy) 3)

For the first step we need to choose the ”"best” wavelet transform for an applica-
tion. Commonly used wavelets include Daubechies orthogonal wavelets with the
lengths from 2 to 10, bi-orthogonal wavelets with symmetry and several regular
(smooth) overcomplete wavelets implemented by the a trous algorithm . Gener-
ally speaking, overcomplete wavelets outperform the fully decimated wavelets for
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signal and image denoising because they are shift-invariant. For images, wavelets
with good orientation-selectivity (e.g. curvelet, ridgelet) are preferred. In this pa-
per we use the dual-tree complex wavelet proposed by Kingsbury [§] because of
its shift-invariance and orientation-selectivity properties. These properties will
be shown in Section [3

For Step two we propose to use a Bayesian decision and estimation method
to modify the wavelet coefficients [5I7]. We classify the wavelet coefficients into
two groups: Hyp and H, representing noise and signal, respectively. Then the ith
coefficient is changed to minimize the mean square error:

& = E(zily)
= E(x4|y, Ly = Ho)P(L; = Holy)
+E(x;|y, Ly = Hy)P(L; = Hily) (4)

where E() denotes expectation. L; € {Hy, H1} is the label of the ith coefficient.
In practice, we can assume FE(z;|y, Hy) = 0. There are several methods to
evaluate FE(x;|y, Hy). In this paper we simply set E(x;|y, H1) = y;. Thus we have

@i = P(L; = Hily) - ys ()

So to find %; the only unknown quantity is P(L; = Hily). To get P(L; = Hqly)
one method is to find P(L|y) first [Bf7], using the Bayesian rule
P(ILIP(L) "

P(y)
where L is the label field. Then based on models P(y|L) and P(L) we can use
stochastic sampling to find the joint probability P(L|y) and then the marginal
probability P(L; = H.|y). However, it is usually difficult to model P(y|L); in
[BU7], y was heuristically assumed to be an independent process given L.

In this paper we find Z; in a different way, separating detection and esti-

mation. First we find the label field L by maximizing a posteriori probability
(MAP)

P(Lly) =

max P(Lim) x m]_jaXP(m|L) - P(L) (7)

where m is the feature vector for the classification. In Sec. ] we also empirically
model P(m|L) as an independent process. However, it should be noted this model
is just used for detecting labels, not directly for estimating x;. This means we
only require the model of P(m|L) be good enough to classify labels correctly.
With L known we can then estimate z; by

T; = E(xilyi, L_y)
~ P(Li = Hilyi, L_y)) - vi (8)
. P(y;|Li = HlaL(—i)) “P(L; = Hl\L(—i))
+ Sheo PilLi = Hi, L)) P(Li = Hy|L(_)
where L_; is the whole label field L excluding L;.

The required probability models (P(m|L), P(y:|L; = Hi,L_;) and
P(L; = Hi|L(_;)) are discussed in Sec. @

i
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3 The Complex Wavelet Transform

The present standard wavelet transforms are almost all real-value transforms,
such as Daubechies and biorthogonal wavelets [6]. They have some interesting
properties and are successfully used in many image processing applications (e.g.,
compression, denoising, feature extraction). However, under the constraint of
being real-valued they suffer from a few disadvantages [g]:

1. The real-valued orthogonal wavelet can not be symmetric, which is expected
for some applications;

2. Lack of shift invariance, which means small shifts in the input signal can
cause major variations in the distribution of energy between coefficients at
different scales;

3. Poor directional selectivity for diagonal features, when the wavelet filters are
real and separable.

A well-known way of providing shift-invariance is to use the undecimated form
of the dyadic filter tree, which is implemented most efficiently by the algo-
rithm @ trous. However, this suffers from substantially increased computation
requirements compared to the fully decimated DWT. In addition, separable 2D
overcomplete wavelet transforms still have poor directional selectivity. Designing
non-separable direction-selective 2D wavelet bases is usually a complicated task.

If the wavelet filters are allowed to be complex-valued (this results in single-
tree complex wavelet (ST-CWT)) all the above three problems can be overcome
[8]. However, though (ST-CWT) can solve these problems it suffers from poor fre-
quency selectivity. Thus, Kingsbury [8] proposed the dual-tree complex wavelet
transform (DT-CWT) (Fig.[d). DT-CWT uses two real DWT trees to implement
its real part and imaginary part, separately. In addition to the other attractive
properties of the ST-CWT, DT-CWT has good frequency selectivity and easy
to achieve perfect reconstruction. Indeed, Selesnick [9] found that the real and
imaginary parts of the DT-CWT can be linked by the Hilbert transform. This
observation further explains why DT-CW'T has those useful characteristics.

The 2D DT-CWT can be easily implemented by the tensor products of 1D
DT-CWT. Because the 1D filters are complex the 2D DT-CWT consists of six
wavelets (Fig. 2)). Note the good directionality of the wavelet bases.

4 The a Prior Models

1. P(m|L)
As mentioned in Secl2] P(m|L) is modelled as an independent process, i.e.

P(mlL) =[] Pmi|L) Q

where m is the feature vector and L is the label field. We use the magnitude of
complex wavelet coefficient as the feature:

mu,v) = /120, 0) + (0, 0), 4,0 =1,2,.0, N (10)
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Fig. 1. two-level dual-tree complex wavelet transform
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Fig. 2. 2D dual-tree complex wavelet bases (only three orientations are shown)

where u,v = 1,2, ..., N are coordinates of the image field. r.(u,v) and i, (u,v)
are the real and imaginary parts, respectively

y(u,v) = re(u,v) + vV—1 - ip(u,v) (11)

In this paper we assume 7.(u,v) and i,,(u,v) are Gaussian, as did in several
other papers (e.g. [3]). Thus, a good approximate model for m(u,v) is Rayleigh
distribution. Fig. [3 shows the histogram (from a group of natural images) of
m(u,v) and estimated Rayleigh function.

2. P(yz|Lz = Hk;L(fi)% k = O, 1
We assume a conditional independence

P(yi|Li = Hy, L_;)) = P(yi|Li = Hi) (12)
and then model P(y;|L; = Hj) as complex Gaussian.

3. P(L; = H1|L(_;)

The label process L is modelled as a MRF. Specifically we use the auto-logistic
model [5]. This kind of models have also been successfully applied for texture
segmentation. It is described as

P(L)=1/Z -exp(—V (L)) (13)
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Fig. 4. Labels without (a) and with (b) a priori model for one wavelet orientation
(15%)

where the energy function V(L) = >, V(L) and the clique potentials are
defined as

Vni(L) = Z Vij(Li, Lj) with
JENI

it L, = L;
VislLinLy) = { it L, +1L, (14)

where 7 is a positive scalar. NN; is the first-order neighborhood system.

This a priori model for the label field tries to exploit the clustering property
of the wavelet coefficients. It has been shown to be useful for suppressing separate
noise artifact [5]. In Fig. @ the influence of the a priori model is illustrated. We
used iterated conditional mode (ICM) in the maximization process.

5 Experimental Results and Discussions

We applied the proposed technique to several natural images with artificial ad-
ditive Gaussian noise. One result is shown in Fig. Bl For comparison we also
show the denoising result from [3]. This method is widely used in references for
comparison. It did not employ any a priori label model. Visually, Fig.[Bl(d) looks
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Fig. 5. (a) original (b) noisy (c) denoised image by adaptive thresholding [3] (d) pro-
posed method

much cleaner and thus more pleasing than Fig. El(c), though the latter looks a
little bit sharper. Objectively the proposed approach is also about 1dB better
in the sense of SNR.

We also compared with the methods in [5/7] because they also used MRF a
priori model. We found the results looks similar and the differences in SNR are
less than 0.5dB. However, in [5l[7] undecimated overcomplete wavelets were used.
Thus their complexity is much higher than the decimated complex wavelet (For
example for 2D decomposition the complex wavelet transform has a redundancy
of 4, independent of number of levels. But for the overcomplete wavelet transform
the redundancy is 4+3(NL—1), where N L denotes the number of levels). This is
especially true in the MRF iteration process. Furthermore, 2D complex wavelets
have better direction-selectivity which means potential for better denoising per-
formance. It should also be noted our problem formulation is different. We first
find edge masks according to MAP and then combine this knowledge with the
measurement to evaluate the conditional probability P(L; = Hi|y;, L(_i)).
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