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Abstract

Statistical models for the joint statistics of image pixels are of central importance in many

image processing applications. However the high dimensionality stemming from large prob-

lem size and the long-range spatial interactions make statistical image modeling particu-

larly challenging. Commonly this modeling is simplified by a change of basis, mostly using

a wavelet transform. Indeed, the wavelet transform has widely been used as an approx-

imate whitener of statistical time series. It has, however, long been recognized that the

wavelet coefficients are neither Gaussian, in terms of the marginal statistics, nor white, in

terms of the joint statistics.

The question of wavelet joint models is complicated and admits for possibilities, with

statistical structures within subbands, across orientations, and scales. Although a variety

of joint models have been proposed and tested, few models appear to be directly based on

empirical studies of wavelet coefficient cross-statistics. Rather, they are based on intuitive

or heuristic notions of wavelet neighborhood structures. Without an examination of the

underlying statistics, such heuristic approaches necessarily leave unanswered questions of

neighborhood sufficiency and necessity.

This thesis presents an empirical study of joint wavelet statistics for textures and other

imagery including dependencies across scale, space, and orientation. There is a growing

realization that modeling wavelet coefficients as independent, or at best correlated only

across scales, may be a poor assumption. While recent developments in wavelet-domain

Hidden Markov Models (notably HMT-3S) account for within-scale dependencies, we find

that wavelet spatial statistics are strongly orientation dependent, structures which are

surprisingly not considered by state-of-the-art wavelet modeling techniques.

To demonstrate the effectiveness of the studied wavelet correlation models a novel non-

linear correlated empirical Bayesian shrinkage algorithm based on the wavelet joint statis-

tics is proposed. In comparison with popular nonlinear shrinkage algorithms, it improves

the denoising results.

iii



Acknowledgements

As a humble being, I praise Almighty God, the Source of my spirituality, inspiration, and

guidance that has enabled me to complete my work. This thesis is the result of several

years of study, during which many people have walked by my side. At last, I have the

pleasant task of expressing my gratitude to all of them.

My Ph.D. studies were supervised by “two great minds” at the University of Waterloo,

Professor Ed Jernigan and Professor Paul Fieguth. Not only have they been enthusiastic

and innovative teachers, but also inspiring and dedicated mentors. From one day to the

next, they have supported my ambitious plans and ideas, had confidence in me when I

doubted myself, and were generous when my life outside school reshaped my life in school.

Although I have been anticipating the opportunity to thank them, I fear that I do not

have the words nor the skills to sincerely express my gratitude. The intellectual influence

of both Dr. Jernigan and Dr. Fieguth has had a profound and powerful influence not just

on my research, but also on all aspects of my life.

I wish to thank Professor Jernigan for inviting me to work with his vision and image

processing research group, for providing me with exciting opportunities and passionate en-

couragement throughout my Ph.D. program, and for introducing me to Professor Fieguth.

His lectures were one of the two activities at the University of Waterloo that I attended

eagerly and enjoyed immensely.

I am also grateful to Professor Fieguth, my thesis supervisor. I have been deeply im-

pressed with his dedication to high-quality research and no less. He has been an active

listener who also takes the time to give advice. He has taught me how to think philo-

sophically, to ask meaningful questions, to understand difficult concepts, to approach and

identify a research problem, and to precisely carry out a research plan to accomplish any

goal. Our weekly meetings was the other activity that I was keen to attend. Without his

enthusiasm, guidance, and compassion, I could not have completed my dissertation.

My appreciation is also extended to the following people at the university for the stim-

iv



ulating discussions we had: Professor Ed Vrscay, Dr Simon Alexander, Professor Fakhry

Khellah, and Dr Fu Jin. What I have learned in the last five years will benefit me for the

next fifty years.

I am very grateful to my husband Professor Reza Karimi, for encouraging and mentoring

me. One of the best experiences of our partnership throughout this period was the birth

of our son Ali, who with his brother, Amir, adds a joyful dimension to our mission in life.

I feel a deep gratitude to my parents who have nurtured my self-confidence, rendered the

good things that really matter in my life, and taught me the value of a positive perspective.

Their love and loyalty has been unconditional and borderless, as my interests have led me

to a language and geography that are very different from what they know. They still

provide a persistent voice of inspiration for my journey in this life, and continue to impart

that each of their seven children is special.

At last but not the least, there are those who reminded me that a student should

have a life outside school. Thank you, Zohreh Abdekhodaie, Mahdieh-Sadat Emrani,

Mahtab Kamali, Maryam Malekzadeh, Atefeh Mashatan, Homeyra Pourmohammadali,

Betty Pries, Bita Roushanaei, Bing Yue, and all active members of our religious gathering

on Friday evenings.

v



Contents

1 Introduction 1

1.1 Statistical Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Multiresolution Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Motivation and Principal Focus of this Research . . . . . . . . . . . . . . . 5

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Models of Stochastic Processes 11

2.1 Linear Least Square Estimation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Gaussian Markov Random Fields & Inference . . . . . . . . . . . . 18

2.3 Multiscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 The Multiscale Algorithm . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Multiscale Model Inference . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Wavelets 25

3.1 Wavelet Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



3.2 Wavelets and Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Wavelet Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Wavelets and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Wavelet Marginal Models . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Wavelet Joint Models . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Wavelet HMM Joint Models . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Wavelet Correlation Structures 63

4.1 Empirical Correlations: a Monte-Carlo Study . . . . . . . . . . . . . . . . 64

4.2 Empirical Correlations: A Statistical Approach . . . . . . . . . . . . . . . 72

4.2.1 Examining one-dimensional signals . . . . . . . . . . . . . . . . . . 72

4.2.2 Examining two-dimensional signals . . . . . . . . . . . . . . . . . . 76

4.3 Wavelet Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Numerical Experiments with the Wavelet Correlations . . . . . . . 84

4.3.2 Bayesian Estimate: A Quantitative Evaluation . . . . . . . . . . . . 87

4.4 Wavelet Domain Joint Histograms . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Simulation of Wavelet Joint Statistics . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 2-D Wavelet Diagram of Wavelet Correlations . . . . . . . . . . . . 101

4.5.2 Significance of Wavelet Correlations . . . . . . . . . . . . . . . . . . 106

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Models of Wavelet Statistics 109

5.1 Multiscale Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 MS Modeling of a Binary Tree . . . . . . . . . . . . . . . . . . . . . 113

5.1.2 MS Modeling of a Quad Tree . . . . . . . . . . . . . . . . . . . . . 127

vii



5.2 Markov Random Fields Modeling . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 Local Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.2 MRF-Based Estimation . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Quantitative Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Correlated Wavelet Shrinkage 149

6.1 Independent Wavelet Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Empirical Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 Marginal Bayesian Estimate . . . . . . . . . . . . . . . . . . . . . . 151

6.2.2 Joint Bayesian Estimate . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Correlated Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4.1 CBS and Gauss Markov Random Fields . . . . . . . . . . . . . . . 156

6.4.2 CBS and Real Images . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7 Conclusions and Future Perspectives 177

7.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

viii



List of Tables

1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 A list of wavelet correlation models. . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Various structures containing a fraction of the wavelet covariance entities. . 85

5.1 Computational complexity of the MS modeling of a wavelet binary tree. . . 119

5.2 A list of the model-based wavelet estimators’ complexities. . . . . . . . . . 146

ix



List of Figures

1.1 Focus of this research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Order coding of neighborhood structure. . . . . . . . . . . . . . . . . . . . 16

2.2 Cliques for first- and second-order neighborhoods. . . . . . . . . . . . . . . 17

2.3 A binary tree of random processes at multiple resolutions. . . . . . . . . . 22

3.1 Examples of some common wavelet basis functions. . . . . . . . . . . . . . 28

3.2 Filter bank implementation of the Mallat algorithm. . . . . . . . . . . . . . 33

3.3 Wavelets and energy compaction demonstration. . . . . . . . . . . . . . . . 35

3.4 Implementation of the DWT algorithm for 2-D signals. . . . . . . . . . . . 37

3.5 Illustration of 2-D WT energy compaction. . . . . . . . . . . . . . . . . . . 38

3.6 Orthogonal three-level discrete WT of of an artificial binary image. . . . . 40

3.7 Block diagram for standard wavelet thresholding. . . . . . . . . . . . . . . 42

3.8 Hard and soft thresholding transfer functions. λ = 25% of max |w|. . . . . 43

3.9 Histogram of the horizontal wavelet coefficients. . . . . . . . . . . . . . . . 46

3.10 Wavelet shrinkage applied on a real image. . . . . . . . . . . . . . . . . . . 47

3.11 Gaussian mixture model for the wavelet coefficients. . . . . . . . . . . . . . 51

3.12 The 1-D wavelet hidden Markov model. . . . . . . . . . . . . . . . . . . . . 56

3.13 Illustration of wavelet hidden Markov models. . . . . . . . . . . . . . . . . 59

x



4.1 Gauss-Markov random fields generated based on the FFT algorithm. . . . 67

4.2 Lexicographical stacking a 2-D matrix into a 1-D vector. . . . . . . . . . . 68

4.3 The covariance matrices of two Gauss-Markov random fields. . . . . . . . . 69

4.4 The residual wavelet correlation length within all three subbands. . . . . . 71

4.5 Correlation structures for exponentially correlated signals. . . . . . . . . . 75

4.6 The extent of correlation for the 1-D wavelet transform. . . . . . . . . . . . 76

4.7 The extent of correlation for the 2-D wavelet transform. . . . . . . . . . . . 78

4.8 Correlation structure for a 2-D wavelet coefficient. . . . . . . . . . . . . . . 79

4.9 Schematic plot of the wavelet covariance matrix Pw. . . . . . . . . . . . . . 80

4.10 Six GMRF textures used to generate wavelet statistics. . . . . . . . . . . . 82

4.11 Spatial and wavelet domain covariance structures. . . . . . . . . . . . . . . 83

4.12 The correlation structures achieved from the wavelet covariance Pw. . . . . 86

4.13 RMSE plot as a function of covariance density. . . . . . . . . . . . . . . . . 88

4.14 Samples of real images used in the study of wavelet histograms. . . . . . . 91

4.15 Empirical joint histograms of a horizontal coefficient with some coefficients. 93

4.16 Empirical joint histograms of a vertical coefficient with some coefficients. . 94

4.17 Conditional histogram of a horizontal coefficient for real images. . . . . . . 95

4.18 Conditional histogram of a vertical coefficient for real images. . . . . . . . 96

4.19 Conditional histogram of a horizontal coefficient for GMRFs. . . . . . . . . 97

4.20 Conditional histogram of a vertical coefficient for GMRFs. . . . . . . . . . 98

4.21 Illustration of the wavelet spatial neighborhood. . . . . . . . . . . . . . . . 100

4.22 The correlation structure of a wavelet coefficient with all other coefficients. 101

4.23 The wavelet correlation structure averaged over the GMRF textures. . . . 103

4.24 Wavelet (db2) correlation structures for real images. . . . . . . . . . . . . . 104

4.25 Wavelet (db4) correlation structures for real images. . . . . . . . . . . . . . 105

xi



4.26 Plot of the db2 wavelet correlation significances. . . . . . . . . . . . . . . . 107

5.1 A quad tree with three decomposition levels. . . . . . . . . . . . . . . . . . 112

5.2 A binary tree with seven decomposition levels. . . . . . . . . . . . . . . . . 114

5.3 A 1-D wavelet covariance and its MS-based approximate. . . . . . . . . . . 115

5.4 Illustration of first-order MS modeling of a binary tree. . . . . . . . . . . . 117

5.5 Illustration of second-order MS modeling of a binary tree. . . . . . . . . . 118

5.6 Wavelet binary tree first-order MS modeling; node size d=1. . . . . . . . . 120

5.7 Wavelet binary tree first-order MS modeling; node size d=2. . . . . . . . . 121

5.8 Wavelet binary tree first-order MS modeling; node size d=4. . . . . . . . . 122

5.9 Wavelet binary tree first-order MS modeling; node size d=8. . . . . . . . . 123

5.10 Wavelet binary tree first-order MS modeling; node size d=16. . . . . . . . . 124

5.11 Wavelet binary tree first-order MS modeling; node size d=32. . . . . . . . . 125

5.12 Wavelet binary tree first-order MS modeling; node size d=64. . . . . . . . . 126

5.13 A 2-D wavelet covariance and its MS-based approximate. . . . . . . . . . . 128

5.14 RMSE performance as a function of covariance density. . . . . . . . . . . . 129

5.15 Wavelet (db2) correlation structures of real images. . . . . . . . . . . . . . 131

5.16 Structures of two proposed MRF neighborhood systems. . . . . . . . . . . 133

5.17 RMSE noise reduction as a function of local neighborhood systems. . . . . 135

5.18 Graphical display of the wavelet MRF model parameters. . . . . . . . . . . 138

5.19 Wavelet domain MRF model parameters. . . . . . . . . . . . . . . . . . . . 139

5.20 RMSE noise reduction as a function of MRF-based models. . . . . . . . . . 142

5.21 The performance of the PCG-MRF solver for a fixed wavelet basis. . . . . 144

5.22 The performance of the PCG-MRF solver for a fixed correlation length. . . 145

6.1 Independent empirical Bayesian applied on a real image. . . . . . . . . . . 153

xii



6.2 GMRFs and independent empirical Bayes, window size fixed. . . . . . . . . 158

6.3 GMRFs and independent empirical Bayes, noise level fixed. . . . . . . . . . 159

6.4 Two real images were tested with the CBS algorithm. . . . . . . . . . . . . 160

6.5 Sample local covariances, db1, Goldhill image. . . . . . . . . . . . . . . . . 162

6.6 Sample local covariances, db2, Goldhill image. . . . . . . . . . . . . . . . . 163

6.7 Sample local covariances, db4, Goldhill image. . . . . . . . . . . . . . . . . 164

6.8 Sample local covariances, db1, Lena image. . . . . . . . . . . . . . . . . . . 165

6.9 Sample local covariances, db2, Lena image. . . . . . . . . . . . . . . . . . . 166

6.10 Sample local covariances, db4, Lena image. . . . . . . . . . . . . . . . . . . 167

6.11 RMSE measurement of db2 wavelet shrinkage of Goldhill image. . . . . . . 168

6.12 RMSE measurement of db2 wavelet shrinkage of Lena image. . . . . . . . . 169

6.13 RMSE of db2 CBS of Goldhill with different wavelet decomposition levels. 171

6.14 RMSE of db2 CBS of Lena with different wavelet decomposition levels. . . 172

6.15 CBS applied on the Goldhill image, db1. . . . . . . . . . . . . . . . . . . . 173

6.16 CBS applied on the Goldhill image, db2-db4. . . . . . . . . . . . . . . . . . 174

6.17 CBS applied on the Lena image, db1. . . . . . . . . . . . . . . . . . . . . . 175

6.18 CBS applied on the Lena image, db2-db4. . . . . . . . . . . . . . . . . . . 176

xiii



Chapter 1

Introduction

“As long as a branch of knowledge offers an abundance of problems, it is full of

vitality” -David Hilbert [48]

The visual representation of a physical object or scene produced by an optical instru-

ment is called an image, which is considered to be the most informative and comprehensive

among all kinds of data representations perceived by our senses. A sequence of analysis,

manipulation, storage, and display of digitized images by computer from sources such as

photographs, drawings, and video is called digital image processing.

In the era of multimedia, powerful computers, and modern digital technology in general,

digital image processing is at the forefront of information technology. It stands as the

basis for a growing variety of applications including medical diagnosis, remote sensing,

geophysical prospecting, space exploration, molecular biology, microscopy and machine

vision. Classic areas of interest in these fields include the enhancement of such signals,

their compression, analysis and synthesis, and many, many more applications.

There are two main streams in the research area of image processing; one attempts to

fundamentally analyze and theoretically model different classes of images, another includes

1



2 Image Models for Wavelet Domain Statistics

the broad spectrum of applications, which greatly benefits from the achievements of the

first category. This thesis mainly focuses on the first area, i.e., image modeling.

As digital images become more widely used, digital image analysis must find more

tools to work on them. It is very crucial to develop mathematical tools, such as the

wavelet transform, which help in improving the efficiency of the multiscale-based image

processing algorithms. In this work, we are particularly interested in statistical image

modeling conducted in the wavelet domain, i.e., a study of wavelet joint statistics.

1.1 Statistical Image Processing

Statistical models, in particular, prior probability models for the underlying spatial pixels,

are of central importance in many image processing applications. Since the 1950s [54],

when television engineers studied the auto-covariance functions of images, a great deal of

attention has been devoted to modeling image statistics.

The probabilistic models attempt to characterize the key properties of an image, based

on which imaging problem can be described, formulated and resolved. For example, the goal

of image restoration is to enhance and to improve the appearance of an image by estimating

the original pixel values from the distorted observation. A prior model describing statistics

of both the noise and the uncorrupted image plays an essential role in this application.

Due to high-dimensionality (long-range) in spatial interactions, however, modeling the

statistics of images is a challenging task. The first step in reducing dimensionality is to

make some simplifying assumptions regarding the pixel interrelationships:

• locality: given the statistics of its predefined neighbors, the probability density func-

tion (pdf) of a pixel is conditionally independent of the pixels beyond that neighbor-

hood;
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• homogeneity: statistics describing a neighborhood are invariant to changes in spatial

positions, i.e., are the same for all such neighborhoods, regardless of their spatial

location;

• Gaussianity: marginal or joint distributions are assumed Gaussian.

The first assumption leads to a Markov model. Markov Random Field (MRF) models [41,

58, 81] can be simplified by adding the next two assumptions, though in many cases the

local statistics are highly non-Gaussian.

The second step in reducing dimensionality, while still improving the capability of sta-

tistical image models, is to decompose the spatial-domain pixels into a set of multiscale-

multichannel frequency subbands, such as the wavelet domain [28, 90]. This linear trans-

formation is not only very effective in reducing long-range dependencies, but also it has

a multiresolution structure which allows one to zoom in to the local signal to analyze

its details, or zoom out to get a global view of the signal. Studies of the human visual

system [21, 76] support this multiscale image analysis approach, since it has been discov-

ered that the human visual cortex can be modeled as a set of independent channels, each

with a particular orientation and spatial frequency tuning. That is why wavelet trans-

forms are found useful and significantly effective to the field of multidimensional signal

processing [64].

1.2 Multiresolution Image Analysis

The past decade has seen increasing research in the development of new mathematical tools

for multiscale image representation, analysis and modeling. Multiscale image representa-

tions provide us with a natural framework to describe mathematical phenomena and signals
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at different levels of resolution. The resolution of a signal is a qualitative description asso-

ciated with its frequency content, e.g., a low-frequency signal has coarser resolution. The

signal is studied at a coarse resolution to get an overall picture, and at higher and higher

resolutions to see increasingly fine details. Images are presented at multiple resolutions

due to three primary considerations:

1. Such representations support highly efficient algorithms based on the divide and

conquer principle.

2. The hierarchy of resolutions provides a smooth transition between local features and

global features, an illustration of seeing the forest from the trees.

3. The multiresolution framework provides a model for certain types of early processing

in natural human vision.

Motivated by such facts, a number of multiresolution algorithms have been proposed

and used for a variety of applications [56, 63, 100].

Methods of multiscale stochastic modeling [29, 55, 100] have led to a variety of efficient

signal and image processing algorithms. Furthermore, the powerful theory of wavelets [64]

has also brought much attention to applications of multiscale analysis, because wavelet

basis functions are well suited to analyze a nested sequence of resolutions. This remarkable

marriage of multiscale framework and wavelet theory, the great accomplishment of pioneer

works done by Meyer [68], Mallat [63] and Daubechies [28], plays a particularly effective

role in many disciplines such as interpolation [99], estimation [26], compression [95], and

denoising [78], which are simplified in the wavelet domain because of the energy compaction

and localization properties of the wavelet transform.

The significance of the wavelet transform is that it compresses the energy of the sig-

nal in a relatively small number of big coefficients [90], which represent the signal’s high
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frequency components, such as edges. This acts as the motivating property behind the

wavelet shrinkage methods [2, 33, 40]. Wavelet shrinkage is a widely-used and effective

non-parametric coefficient thresholding approach to solve many inverse problems, such as

regression or denoising, where the wavelet coefficients are subject to non-linear or Bayesian

rules [2, 15, 96]. The primary idea is to exploit the localization property of the wavelet

transform to develop efficient adaptive algorithms in order to minimize loss of important

image features while eliminating noise. To propose an optimally efficient shrinkage esti-

mator, detailed attention needs to be paid to the statistics of wavelet coefficients.

1.3 Motivation and Principal Focus of this Research

The primary interest of this research was to obtain a clear understanding of the image pixel

characteristics when projected into the wavelet domain. It was the desire to know how

much efficiency could be achieved in principle, when images are processed in the wavelet

domain. Some important questions originally motivated this project:

• How efficient are the wavelet-domain algorithms?

• How do the image features and pixels connectivity change in the wavelet domain?

• Have the statistics of image data projected into the wavelet domain been fully char-

acterized, so far?

• How efficient are the current wavelet models in describing the wavelet joint statistics?

Discussions on fundamental issues regarding wavelet image modeling are the focal point of

this study.
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The principle motivation for this study is to construct statistical models that are rich

enough to capture wavelet domain correlation structure. We emphasize that image pro-

cessing is not the immediate objective, rather image modeling. It is not the intent of this

work to model different phenomena at multiple resolutions. Indeed, the fusion of multires-

olution analysis (MRA) and random fields ideas and the resulting drawbacks have been

investigated in the past [44, 56, 60]. Lakshmanan and Derin [56] presented an illustration

and treatment of Gaussian Markov random fields (GMRFs) at multiple scales. They devel-

oped a multiresolution framework for MRFs and provided consistent model descriptions for

GMRFs at multiple resolutions. Our objective is, rather, to fit wavelet domain statistics

into the MRA and random fields concepts, particularly the class of MRFs as a prior belief

regarding the connectivity of wavelet coefficients across scales and frequency channels.

The main theme of this thesis is, then, to test several hypotheses for wavelet statistical

models, assessing model variations from wavelet complete independence to full dependency.

The presence of across-scale correlations motivated the development of a wavelet-based

multiscale model. Furthermore, the presence of significant within-scale relationships led

us to propose a hierarchy of MRFs, capable of capturing coefficient statistics within and

across subbands and scales in a sparse structure.

We have seen that the study of independent models has been thorough, whereas the

complementary study, the development of Gaussian joint models, is much less thorough,

and forms the focus of this thesis (shown in Figure 1.1). The goal, of course, is the

merging of these two fields: that is, the development of non-Gaussian joint models with

non-trivial neighborhood1. However for the purpose of starting the work, we limit ourselves

1The recent works such as Gaussian Scale Mixtures (GSM) and steerable pyramids [79] and Multivariate

generalized Gaussian distributions [17] are indeed heuristic Gaussian joint models which do not carry out

an empirical study of wavelet statistics.
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Figure 1.1: Focus of this research: The development of joint Gaussian models with inter-

coefficient dependencies.

to simplifying marginal assumptions (Gaussianity) which we know to be incorrect (as

we shall discuss later in this thesis), but which allow us to undertake a correspondingly

more sophisticated study of joint models. The main novelty is the systematic approach

we have taken to define a wavelet-based neighborhood system consisting of 1) inter-scale

dependency, 2) within-scale clustering, and 3) across-orientation (geometrical constraints)

activities. This probabilistic modeling is directly applied to the coefficient values.

To study the wavelet dependencies, perhaps, the most direct approach is to examine

the joint histograms (joint histograms between only two coefficients are tested, due to the

visualization limitations), conditional distributions, covariance, and correlation functions.

1.4 Thesis Outline

This dissertation includes four main categories which are shown in Table 1.1.
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Background Review:

– Stochastic Models (Chapter 2)

– Wavelets (Chapter 3)

?

Statistical Observations: Chapter 4

– Problem Definition

– Hypothesis Setting

?

Statistical Modeling: Chapter 5

– Multiscale

– MRFs

?

Application: Chapter 6

– Correlated Shrinkage

Table 1.1: Thesis Organization
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A detail description of each individual chapter:

Chapter 2: Introduces the statistical modeling frameworks including multiscale and

Markov random fields. It emphasizes models structured on a hierarchy which will be used

to describe the statistics of image elements in the wavelet domain.

Chapter 3: The fundamental aspects of wavelet theory and principles of 2-D wavelet

transforms and statistics are reviewed in this chapter. The state-of-the-art models of the

wavelet-domain statistics which provide us with insights into the subject are presented.

The issues and limitations of the current models that inspired this study to propose more

powerful models are presented and discussed.

Chapter 4: This chapter presents an empirical study of joint wavelet statistics for a

large range of natural images and random fields. In this chapter we describe possible

choices of wavelet statistical interactions by examining the wavelet domain covariance,

joint-histograms, conditional distributions, correlation coefficients, and the significance of

coefficient relationships. An efficient and fast strategy to demonstrate the wavelet cor-

relation maps and the significance of those inter-relationships will be introduced. This

simulation will help us to propose a hypothesis of wavelet joint statistics.

Chapter 5: In this chapter our hypothesis of wavelet domain dependencies is tested

using multiscale and Markov random fields models. A detailed description of these two

probabilistic approaches in approximating the interrelationships among wavelet coefficients

is given. The essential goal is to obtain a well-structured and sparse model absorbing the

most striking local correlations including wavelet spatial and interscale dependencies.
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Chapter 6: The primary goal of this chapter is to demonstrate effectiveness of the

wavelet correlation models in the applied world. A novel non-linear correlated empirical

Bayesian shrinkage algorithm based on wavelet joint statistics is proposed and compared

with the popular nonlinear shrinkage algorithms.

Chapter 7: Finally, conclusions with perspectives on this contribution are presented and

future directions and improvements of this research are discussed.



Chapter 2

Models of Stochastic Processes

“It has long been recognized in the field of image processing that the design

of processing operations should be based on a model for the ensemble of im-

ages to be processed. Unfortunately, it is difficult to formulate realistic models

for real-world classes of images; but progress is being made on a number of

fronts, including models based on Markov processes, random fields, multireso-

lution methods, among others.” – Azriel Rosenfeld [83]

This chapter focuses primarily on stochastic models acting as the baseline of an in-

creasing number of signal and image processing algorithms. The multiscale and Markov

random fields frameworks that are reviewed in this chapter were principally developed to

devise efficient linear estimation techniques. To motivate these methodologies and to pro-

vide additional insight into the notion of model-based signal processing, an overview of

linear least squares estimation is given. Then more structured models that lead to compu-

tationally efficient estimators are discussed. These probabilistic models will be employed

in later chapters to characterize the statistics of the wavelet coefficients.

11
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2.1 Linear Least Square Estimation

This section considers a finite-dimensional linear least square estimation problem. A more

detailed discussion on this topic can be found in [38].

A linear estimation problem is that of predicting a vector x̂ (mostly assumed zero-mean)

of unknowns x with a linear function of an observed vector y:

x̂ = PxyP
−1
y y (2.1)

P̃ = E[(x− x̂)(x− x̂)T ] (2.2)

= Px − PxyP
−1
y P T

xy (2.3)

where E[.] is the expectation operator, Px the prior covariance of the random vector x, Py

covariance of the random vector y, Px,y = E[xyT ]−E[x]E[y]T the cross-covariance matrix

for x and y, and P̃ the estimation error covariance.

The linear estimator that minimizes the mean square estimation error is called the

Linear Least Square (LLS) estimator. Clearly, the above LLS estimator and the error co-

variance P̃ depend on the second-order joint statistics of the measurement and the original

data.

It is of significance to notice that this estimation counts on a predefined prior on x.

Given the prior

x ∼ (µx, Px)

and the measurement

y = Hx+ ν ν ∼ (0, R) (2.4)

where ν is assumed additive noise uncorrelated with x, then the LLS estimator and error
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covariance have the form

x̂ = µx + PxH
T

(
HPxH

T +R
)−1

(y −Hµx)

P̃LLS = Px|y = Px − PxH
T (HPxH

T +R)−1HPx (2.5)

The computational complexity of this estimator is a cubic function of the data vector

y: O(|y|3), which grows dramatically and becomes prohibitively burdensome as the data

size increases.

This computational complexity can be significantly improved if some additional struc-

tures present in the prior model or measurement model matrices are taken into consider-

ation. For example, consider the case in which the measurement matrix H is assumed an

identity matrix and the unknown data x is toroidally (boundaries are circular) stationary.

The Fast Fourier Transform (FFT) algorithm can diagonalize these matrices resulting in

computationally more efficient estimation algorithms [38].

Another alternative which leads to computational savings occurs when the underlying

phenomenon obeys principles of Markov random fields (MRF) or multiscale (MS) struc-

tures. There exist various iterative procedures that can solve the MRF- or MS-based

problems with sparse systems of equations [58, 100].

2.2 Random Fields

Herein, a statistical approach of modeling dependency phenomena amongst image pixels is

introduced. This section deals with a description of fundamentals of Markov Random Fields

from a theoretical and practical point of view. Bayesian estimation theory is presented

and some standard notations such as random fields are defined. The discussions here play

an important role in the establishment of wavelet hierarchical Markov and non-Markov

random fields presented in Ch. 5.
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2.2.1 Markov Random Fields

One of the main tasks in statistical image processing is to construct stochastic models

for observed images, especially for textures. The pixel values {xi, i = 0, 1, · · · , n− 1} are

represented as realizations of random variables and the probability measure representing

the joint distribution of all pixel values in an image grid is called a random field. An

image is often modeled as a sample of a random field process for which the correlation

between pixels is proportional to their geometric separations. In real scenes, neighboring

pixels usually have similar intensities. In a probabilistic framework, such regularities are

well expressed mathematically by Markov random fields. The Markov process, here a

two dimensional random process, is basically motivated by the idea that the probability

density of a pixel within an image, when conditioned on a set of pixels in a small spatial

neighborhood, is independent of the pixels beyond that neighborhood. This notion of

decoupling and sparse representation highlights the Markovianity as a focal point in many

probabilistic frameworks [56].

In the 1920’s, mostly inspired by the Ising model [52], MRFs as a new type of stochastic

process appeared in the theory of probability and rapidly became a broadly used tool

in a variety of problems not only in statistical mechanics. Its use in image processing

became popular with the famous paper of Geman and Geman [42] but its first use in

this domain dates back in the early 1970’s, when Hassner and Sklansky [46] introduced

MRFs to image analysis. Since then MRFs have been used extensively as representations

of visual phenomena. For more thorough expositions on MRFs principles and applications

the reader is referred to [41, 58, 81].

The most natural way to define MRFs related to image models is to define them on

a lattice. However, here MRFs are defined more generally on graphs. It will be useful

in Ch. 5 where the wavelet hierarchical MRF models are studied. Let G = (V; E) be a
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undirected graph where V = {v1, v2, · · · , vn} is a set of vertices (or sites) and E is the set

of edges.

Definition 2.2.1 (Neighbors): Two sites t and r are neighbors if there is an

edge e ∈ E connecting them. The set of points which are neighbors of a site t,

i.e., the neighborhood of t, is denoted by Nt.

Definition 2.2.2 (Neighborhood system): N = {Nt, t ∈ V} is a collection

of subsets of V for which

1. t /∈ Nt

2. r ∈ Nt ⇔ t ∈ Nr.

Each site of the graph, is assigned a label from an infinite set of labels Λ. Such an

assignment is called a configuration ω having some probability P (ω). The set of all possible

configurations on V is called Ω.

Definition 2.2.3 (Markov Random Field): X is a Markov Random Field

(MRF) with respect to the neighborhood system N iff

1. P (X = ω) > 0 for all ω ∈ Ω,

2. P (Xt = ωt | Xr = ωr, r 6= t) = P (Xt = ωt | Xr = ωr, r ∈ Nt) for all t ∈ V
and ω ∈ Ω.

The notion of cliques will be very useful in a discussion about probability measures on

Ω:

Definition 2.2.4 (Clique): A clique C is a subset of V for which every pair

of sites are neighbors. Single pixels are also considered cliques. The set of all

cliques on a grid is called C.
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Figure 2.1: Order coding of neighborhood structure. The n-order neighborhood of the

center pixel (shaded) contains the pixels with numbers less than or equal to n.

The structure of the neighborhood system determines the order of the MRF. For a

first-order MRF the neighborhood of a pixel consists of its four nearest neighbors. The

order coding of the neighborhood up to order five is shown in Figure 2.1. In a second-order

MRF the neighborhood consists of the eight nearest neighbors. The clique structures are

illustrated in Figure 2.2 for a first-order MRF and a second-order MRF.

It is seen that the above discussion is based on joint probability density P (X) which

is a computationally hard problem, e.g., if the grid size is n with each pixel representing

eight-bit gray values, then there are 256n different configurations to estimate! To overcome

this practical issue the following two alternatives are commonly considered:

1. Gauss-Markov Random Fields (GMRFs): In this case the random fieldX is Gaussian,

a simplifying assumption which characterizes the field in term of expectation instead

of the probability function [38, 58]. Since GMRFs are of interest in this work, the

following section describes detail characteristics of these random fields and their use

in model inference and Bayesian estimation.

2. Gibbs Random Fields (GRFs): Originally used in statistical physics to study the
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(a) first-order (b) second-order

Figure 2.2: Cliques for first- and second-order neighborhood structures.

characteristics of particles interaction, GRFs were introduced to the image processing

by Besag [11] and became popular in Bayesian image modeling and inference. A

Gibbs distribution is a probability measure π on Ω with the following representation:

π(ω) =
1

Z
exp(−U(ω)) (2.6)

where Z is the normalizing constant or partition function

Z =
∑

ω

exp(−U(ω))

and U(ω) is the energy function

U(ω) =
∑

c∈C
V ({ωi; i ∈ c}), (2.7)

with c denoting a clique, C the set of all possible cliques, and V the clique potential.

The next famous theorem establishes the equivalence between Gibbs measures and

MRFs [11]:

Theorem 2.2.1 (Hammersley-Clifford): X is an MRF with respect to

the neighborhood system N if and only if X is a Gibbs distribution with

respect to C, where C is the set of cliques based on the neighbourhood

system N .
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The main benefit of this equivalence is that it provides a simple way to specify

MRFs, namely specifying potentials instead of local parameters, which is usually

very difficult. Details about GRFs can be found in [58].

2.2.2 Gaussian Markov Random Fields & Inference

The GMRF model is frequently used to describe continuous phenomena. The conditional

density is given by the expression

P (xt|xr, r ∈ Nt) =
1√

2πσ2
exp




− 1

2σ2

[
xt −

∑

r∈Nt

gt,rxr

]2



 (2.8)

where σ is variance of the zero-mean process xt and {gt,r} are the model parameters that

will be defined shortly.

This model is also known as the conditional autoregressive (AR) model. More detail

can be found in [58]. The very significant advantage of GMRF is the equivalence be-

tween decorrelatedness and independence in the case of Gaussian: decorrelation implies

independence. Thus, given the GMRF X with the neighborhood system N , the Bayesian

estimate

E[xs | xr, r 6= s] = E[xs | xr, r ∈ Ns] (2.9)

becomes a linear expectation.

In the case of Gaussianity the random field X can be an AR process with respect to

the neighborhood N

xs =
∑

r∈Ns

gs,rxr + ξs E[xrξs] = 0 ∀s 6= r (2.10)

where {gs,r} are model parameters and ξs is estimation error with zero mean and variance

σ2
s for site s.
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In this particular case of Gaussianity, (2.9) and (2.10) are identical, implying an equiv-

alence between the decoupling property of (2.9) and the linear estimate in (2.10).

As stated above, {gs,r} are the model parameters, which are easily calculated by the

LLSE of (2.9). Herein, the impact of {gs,r} on the statistical structure of the random field

X and driven noise ξ is given. Eq. (2.10) implies that

∑

r∈Ns

ḡs,rxr = ξs ḡs,r =






−gs,r r ∈ Ns

1 r = s

0 otherwise

(2.11)

On the other side, for every two sites s 6= r

E[ξsξr] = E[ξs
∑

t∈Nr

ḡr,txt]

= ḡr,sE[xsξs]

= ḡr,sE[ξsξs]

= ḡr,sσ
2
s

≡ ḡs,rσ
2
r (2.12)

It is observed that the noise ξ is not white, with the correlation structure given by ḡ.

To explore the locality and parsimony of the correlation structure of the GMRF X, (2.11)

and (2.12) are re-written in vector form

cov(ξ) = ḠΣ

Ḡx = ξ

x = Ḡ−1ξ

Px = cov(x) = Ḡ−1ḠΣḠ−1 = ΣḠ−1 (2.13)

where the matrix Ḡ contains all the model parameters estimated for the field and Σ is the

diagonal matrix of the noise variance σ2
s .
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Since the sparsity of matrix Ḡ is of interest here, the inverse covariance of the ran-

dom field, i.e., cov−1(x) = Σ−1Ḡ is considered. While the covariance itself represents the

correlation between the random field elements, the covariance inverse shows the estimated

model parameters. This is a significant observation which characterizes the MRF prior

P−1 = Σ−1Ḡ used in the Bayesian estimation process, described below.

Assuming the measurement

y = Hx+ ν ν ∼ N (0, R), (2.14)

and the zero-mean prior model

x ∼ N (0, Px = ΣḠ−1) (2.15)

then the linear estimate for the MRF x is

x̂ = (HTR−1H + P−1
x )−1HTR−1y

= (HTR−1H + Σ−1Ḡ)−1HTR−1y (2.16)

which is another form of the expression derived in (2.5) but with a new prior describing

statistics of x.1 For further information on various GMRFs the reader is referred to [58]

and citations therein.

2.3 Multiscale

In the study of the wavelet joint statistics, there are several reasons to adopt a multiscale

(MS) modeling framework [100]:

1The zero-mean assumption is made for simplicity and is easily relaxed by adding a deterministic term

to (2.16).
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• Many signals, especially images, have a sparse multiscale representation and conse-

quently useful Bayesian priors are easily specified in the multiscale analysis domain.

• The multiresolution property of the wavelet transform implies coarse-to-fine depen-

dencies among the coefficients, which is a significant characteristic of the MS frame-

work.

• The associated coarse-scale estimators are capable of providing information to im-

prove fine-scale estimators.

This section defines the general class of MS models organized on branches of a tree. The

multiscale (MS) algorithm is introduced followed by a brief discussion on the MS-based

estimator.

2.3.1 The Multiscale Algorithm

The class of multiscale (MS) random processes introduced in [20] is indexed by the nodes

that make different tree layers as different scales. The coarsest scale is called the root

node, while the finest scale is indexed by the set of leaf nodes. For example, the multiscale

process defined on the binary tree shown by Figure 2.3 consists of a set of random processes

z(w) for each node on the tree. The scale of node w shows the distance between node w

and the leaf nodes (finest resolution) of the tree, e.g., the root node’s scale is denoted by

J showing the tree’s maximum depth. Denote the parent of any node w to be pw and the

children of w to be {c1w, c2w} as illustrated in Figure 2.3. The class of multiscale processes

generally satisfies the following autoregression (AR) across scales

z(w) = Awz(pw) +Bwνw νw ∼ N (0, I) (2.17)
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Figure 2.3: A binary tree of random processes at multiple resolutions. For each node w,

pw shows its parent at the coarser scale and {ciw; i = 1, 2} denote its children at the finer

scale.

where z(w) is the process value at node w and z(pw) is the process value at node pw.

Eq. (2.17) defines a stochastic dynamic from coarse to fine scale, with νw as its white

process noise. This AR process is initialized at the root node wJ by

z(wJ) ∼ N (0, PJ). (2.18)

The whiteness of the process noise implies that the multiscale model can be completely

characterized by PJ (the root node covariance) and the AR parameters Aw and Bw. The

white assumption for the process noise adds Markovian properties to the AR process driven

by white noise [100]. Let qw denote the number of children of node w, meaning that the

node w partitions the tree into qw + 1 subtrees. According to the Markov property of

multiscale tree processes, the qw+1 subsets of states partitioned by node w are conditionally

independent, given the state z(w), i.e.,

p (z(c1w), z(c2w)|z(w)) = p (z(c1w)|z(w)) p (z(c2w)|z(w)) (2.19)
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for all nodes c1w 6= c2w belonging to the distinct descendent subtrees of the node w. More

formal derivations are given in Ch. 5, where this modeling framework is used to describe

the statistical characteristics of wavelet coefficients.

2.3.2 Multiscale Model Inference

The Markovian property of the MS-based processes leads to algorithms that can efficiently

estimate the original data at every node w on the tree based upon measurement, which is

a noise-corrupted observation at every individual node of the tree, i.e.,

y(w) = Hwz(w) + v(w), v(w) ∼ N (0, R) (2.20)

where v is a white noise uncorrelated with all the node processes. Measurements at coarse-

scale nodes are assumed equivalent to measurements of coarse-resolution or nonlocal func-

tions of the finest-scale process [27]. The multiscale estimation algorithm provided in [20]

includes two steps. The first sweep of the estimator is a recursion from fine to coarse scale,

followed by a recursion from coarse to fine scale. The result is that the linear least-squared

error (LLSE) estimate (2.5) of the state ẑ(w) at every node in the tree is computed in

O(d3n) computations for a tree which has n nodes of maximum state dimension d. Thus

the efficiency of the estimator depends primarily upon whether a tree model can be realized

with manageable state dimension.

2.4 Chapter Summary

This chapter started with an emphasis on the need for describing any meaningful collection

of information within the framework of stochastic calculus, among which two efficient

stochastic models – MRFs and MS – were introduced and their advantages were discussed.



24 Image Models for Wavelet Domain Statistics

These two are the most effective and frequently used probabilistic models which cover a

broad range of multidimensional signal analysis and estimation.

Before leaving this chapter, recall that the ultimate goal of this thesis is to use the

probabilistic models to describe the existence and the structures of the joint statistics for

image elements when projected into another domain called wavelet domain. Before making

any use of these probabilistic models, the theory of wavelets and the principles of wavelet

transforms are reviewed. The material covered by this chapter will be revisited in Ch. 5

where wavelet joint correlations will be investigated.



Chapter 3

Wavelets

“If you painted a picture with a sky, clouds, trees, and flowers, you would use

different size brush depending on the size of the features. Wavelets are like

those brushes.” – Ingrid Daubechies [28]

This scientific journey starts with learning the basics of wavelet theory. Wavelets are

introduced from a historical perspective, as a theoretical concept and within the context

of image processing.

This chapter begins by exploring what is known about wavelet transforms and the

characteristics of wavelet coefficients. The primary purpose of the discussion here is to

introduce notation and to provide a suitable background on the wavelet transform as

a mathematical and microscopic tool for image representation and analysis. The wavelet

domain’s most effective estimation technique known as wavelet shrinkage is introduced and

in particular some of the well-known shrinkage algorithms are reviewed. Then, some of

the most effective probabilistic models describing the wavelet statistics and the associated

issues will be addressed.

At the end, I define the motivating points and sketch the plan for this presented research

25
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work which essentially is to study the wavelet coefficients relationship and their efficacy

in a statistical modeling framework in order to capture the key dependencies amongst the

wavelet coefficients.

3.1 Wavelet Transforms

From a historical point of view, wavelet analysis is a new method, though its mathematical

concepts date back to the work of Joseph Fourier in the nineteenth century. Fourier laid

the foundations with his theory of frequency analysis, which proved to be enormously

powerful and important [91]. However, the attention of researchers has gradually turned

from frequency-based analysis to scale-based analysis since it started to become clear that

an approach measuring average fluctuations at different scales might prove less sensitive

to noise. The first recorded citation of what we now call a “wavelet” seems to be in

1909, in a thesis by Alfred Haar [45]. In the late nineteen-eighties, when Daubechies [28],

Mallat [63] and Meyer [67] first explored and applied the ideas of wavelet transforms,

there was a great amount of literature addressing the wavelet related signal processing

techniques such as shrinkage and compression. Most of the early contributions utilized

the wavelet transform as a black box without doing an in-depth study of the wavelet

coefficients characteristics. Fortunately, there is an increasing interest in describing the

wavelet statistics, which has had an influential impact on the application of model-based

wavelet methods, such as Bayesian estimation. Having said that, the rest of this chapter,

after introducing the mathematics of the wavelet transform and the principles of wavelet

shrinkage, is devoted to summarize the literature achievements on the probabilistic models

of the wavelet coefficients statistics, in particular addressing their associated problems

which has motivated this research.
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A Wavelet Transform (WT) of a function is a decomposition of that function into a

weighted sum of a particular family of functions generating from a mother wavelet and

forming a basis for L2(R). Wavelets are functions that satisfy certain mathematical de-

mands in multiresolution analysis. The name wavelet comes from the requirement that

1) the funtion magnitude should integrate to zero [72] and 2) the function has to be well

localized [72]. Figure 3.1 shows some of the commonly used orthogonal wavelet functions

and their corresponding scaling function φ(x).

It is important to notice the significant differences between Fourier analysis and wavelet

analysis [91]. Fourier basis functions are localized in frequency but not in time. Small fre-

quency changes in the Fourier domain will produce changes everywhere in the time domain.

Wavelets are, however, local in both frequency (scale) and time. This localization is a ma-

jor advantage of the WT. Another important feature is that a large class of functions can

be represented by wavelets in a compact mode. For example, functions with discontinu-

ities or with sharp transitions usually take substantially fewer wavelet basis functions than

sine-cosine basis functions to obtain a comparable approximation. Furthermore, large data

sets can be easily and quickly transformed by the WT. Indeed, the word “fast” for the fast

Fourier transform (FFT) can be replaced by “faster” for wavelets. It is well known that

the computational complexity of the FFT is O(n log2 n), while that of the fast WT reduces

to O(n) [91].

The Continuous WT (CWT) is simply the correlation of an input function

f(x) ∈ L2(R) with a family (in particular, an orthogonal family) of wavelet functions

ψa,b(x) = 2−a/2ψ(2−ax− b), a, b ∈ R and a 6= 0 generated by scaling (dilating or compress-

ing) and shifting a single mother wavelet ψ(x) ∈ L2(R)

(Wf)(a, b) = 〈f, ψa,b〉 =

∫
f(x)|a|− 1

2ψ(
x− b

a
)dx (3.1)

The result of these correlations are referred to as wavelet coefficients. When two signals
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Figure 3.1: Examples of some common wavelet basis functions.

are correlated with each other, a measure of similarity is obtained between the two signals.

Thus, when the WT is computed at a scale such that the wavelet is compressed, a measure

of similarity between the signal and the high-frequency wavelet is obtained. Likewise,

when the wavelet function is dilated, a measure of how similar the input signal is to

the low-frequency wavelet is obtained. In other words, the WT can be interpreted as

frequency decomposition with corresponding coefficients which provide information about

the frequency contributions of the original signal, as well as their spatial position [49]. This

kind of analysis is also referred to as multiresolution analysis. For a comprehensive review

of the WT theory and applications, see [28, 64, 72, 95].
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As a matter of fact, it is possible to compute the transform Wf(a, b) where only discrete

values for a and b are used. A common choice is to use the dyadic numbers, i.e., to let

a = 2−j and b/a = k with j , k ∈ Z. The transform which uses only the dyadic values of a

and b is called the Discrete Wavelet Transform (DWT). This term is also used to denote

the transform from the sequence of scaling function coefficients to its wavelet coefficients.

After this general introduction to the wavelet transform, here, I explain how this ab-

stract theory of WT can be practically implemented. To bridge the gap between theory and

practice, first, I start by defining the multiresolution analysis as a microscope that allows

looking at a function at different scales. Then it will be seen how the scaling and wavelet

functions are dedicated to the multiresolution analysis of functions and the construction

of orthogonal wavelets.

Definition 3.1 A multiresolution analysis of L2(R) is defined as a sequence of closed

subspaces Vj ⊂ L2(R), j ∈ Z, with the following properties [63]:

1. Vj+1 ⊂ Vj ∀j ∈ Z,

2. f ∈ V0 ⇔ f(2−1·) ∈ V1,

3. f ∈ V0 ⇒ f(· − k) ∈ V0, ∀k ∈ Z,

4. limj→−∞ Vj = closure(
⋃∞

j=−∞ Vj) = L2(R) is dense in L2(R). That is, as the res-

olution increases, the approximated signal converges to the original function in the

L2(R),

5. limj→+∞ Vj =
⋂∞

j=−∞ Vj = {0}. This implies that at the limit where the resolution

approaches zero, the approximation function contains less and less information until

it converges to zero. These two properties can be written as:

{0} · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L2(R)
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6. A unique scaling function φ(x) ∈ L2(R), with a non-vanishing inte-

gral
∫ ∞
−∞ φ(x)dx = 1 exists such that for each j ∈ Z the set of functions

{φj,k (x) = 2−j/2φ(2−jx− k) | k ∈ Z} forms an orthogonal basis of Vj. For a sequence

of coefficients {hk} the scaling function satisfies

φ(x) =
∑

k

hk

√
2φ(2x− k) (3.2)

where the sequence {hk} constitutes the low-pass filter bank coefficients used in the

transformation.

The spaces Vj are defined as the approximate spaces for a general function. This is

done by defining appropriate projections of the function onto these spaces. Since the union

of all the Vj is dense in L2(R), any given function belonging to L2 can be approximated

by such projections.

Having defined the approximate subspaces, Wj is defined to denote a subspace comple-

menting Vj in Vj−1, i.e., a space that satisfies

Vj−1 = Vj

⊕
Wj

where
⊕

is defined as a direct sum of the two vector spaces [63]. The subspace Wj

contains the detail information needed to go from one approximation at resolution j to an

approximation at resolution j−1, i.e.,
⊕

j Wj = L2(R). A function ψ is a wavelet function

if the collection of functions {ψj,k (x) = 2−j/2ψ(2−jx − k) | k ∈ Z} forms an orthogonal

basis of Wj. The wavelet function ψ provides a way of characterizing the information

that is lost when a function is approximated at lower resolutions. Similar to the scaling

function, a sequence of coefficients {gk} exists so that the wavelet function satisfies

ψ(x) =
∑

k

gk

√
2φ(2x− k) (3.3)
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where the sequence {gk} constitutes the high-pass filter bank coefficients used in the trans-

formation.

For the particular case of orthogonal multiresolution analysis, the wavelet spaces Wj

are defined as the orthogonal complement of Vj in Vj−1, i.e., Wj ⊥ Vj . This is a class of

orthogonal wavelets, which is a powerful representation in signal processing [63]. These

lower resolution approximations can be interpreted as a removal of detail information

between consecutive levels Vj and Vj−1. Detail information present in Vj−1 that is missing

from Vj is captured in Wj.

Since the coarsest approximation level is {0}, as the space of functions with no detail,

any function f ∈ Vj can be built up to any level j = J simply by adding detail back into

the approximation:

VJ =

+∞⊕

j=J+1

Wj

Therefore, any f (x ) ∈ L2(R) has its discrete wavelet representation and ∀J ∈ Z, as

f(x) =
∞∑

k=−∞
aJ,kφJ,k(x) +

+∞∑

j=J

∞∑

k=−∞
wj,kψj,k(x) (3.4)

where the scaling coefficients aJ,k and the wavelet coefficients wj,k are computed by inner

products aJ,k = 〈f, φJ,k〉 and wj,k = 〈f, ψj,k〉, respectively.

The above framework leads to wavelet designs which are particularly useful in approx-

imating the class of signals with only a few non-zero coefficients. Two important design

criteria that have the greatest effect on the number of significant wavelet coefficients are:

1. The number of vanishing moments of the wavelet function ψ:

The wavelet function ψ is said to have p vanishing moments if

∫ ∞

−∞
xnψ(x)dx = 0 for 0 ≤ n < p
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It has been shown in [49] that the order of vanishing moments limits the order of

smoothness of the signal f that can be characterized by the wavelet.

2. The compact support of ψ:

For both the scaling and wavelet functions it is very important to have compact sup-

port. This is equivalent to the fact that the filter coefficients of {hk} and {gk} in the

equations (3.2) and (3.3) are finite. The size of the support of ψ affects the ampli-

tude of wavelet coefficients around discontinuities. If f has a discontinuity, such as an

edge, at x0, and x0 is in the support of ψj,k(x), then |wj,k| will be large. Minimizing

the support of ψ will ensure that few wavelets ψj,k contain the discontinuity, hence

minimizing the number of high amplitude wavelet coefficients. This is an important

consideration in image analysis, since much of the energy of an image is concentrated

in its edges.

The oldest and the simplest known orthonormal wavelet is Haar wavelet [45], derived

from the constant scaling function φHaar(x) (Figure 3.1(a))

φHaar(x) =





1 if x ∈ [0, 1]

0 otherwise
(3.5)

with an associated mother wavelet

ψHaar(x) =






1 if x ∈ [0, 1
2
)

−1 if x ∈ [1
2
, 1]

0 otherwise

(3.6)

This is one of the few wavelets that can be written in closed form, and it has the shortest

support among all orthogonal wavelets. However, the main drawback of the Haar wavelet

is that it is not well adapted to approximating functions with discontinuities because of its

single vanishing moment [63].
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a j // h̄ ↓ 2 // a j+1 // h̄ ↓ 2 // a j+2

// ḡ ↓ 2 // d j+1
// ḡ ↓ 2 // d j+2

(a) Analysis

a j+2 // ↑ 2 h //
⊕

// a j+1 // ↑ 2 h //
⊕

// ã j

d j+2
// ↑ 2 g

OO

d j+1
// ↑ 2 g

OO

(b) Synthesis

Figure 3.2: Filter bank implementation of the Mallat algorithm [63] for 1-D signals.

Probably the most frequently used orthogonal wavelets are the Daubechies wavelets [49]

(Figure 3.1(b-c)). They are a family of orthogonal wavelets indexed by N ∈ N, where N

is the number of vanishing moments. They are supported on an interval of length 2N − 1,

i.e., the Daubechies wavelets are compactly supported wavelets with a maximum number

of vanishing moments for a fixed support width:

∫ ∞

−∞
xnψ(x)dx = 0 0 ≤ n < N (3.7)

An important issue after selecting a compactly supported wavelet is the implemen-

tation of the orthogonal WT of discrete signals. In practice, signal f has only a finite

number of samples, which are filtered with a cascade of discrete low pass and high pass

filters, as illustrated in Figure 3.2 [63]. In the multiresolution analysis the set of coef-

ficients {hk} and {gk} denote the low pass and high pass filters, respectively. They are

related as g(n) = (−1)nh(1 − n) to form a quadrature mirror pair [63]. This derivation
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of quadrature mirror filters from the scaling and wavelet functions implies that one can

compute the approximate coefficients {aJ} by convolving the discrete signal f with the

filter {hk} and retaining every other sample of the output. Consequently, the detail coeffi-

cients {wj}, 1 ≤ j < J are obtained by convolving f with the filter {gk} followed by down

sampling. This pyramidal approach, known as the Mallat algorithm is shown in Figure 3.2,

and continues recursively from the approximate coefficients into lower resolutions.

As is depicted in Figure 3.3, one of the primary and key characteristics of the WT is

its sparse representation of a signal’s energy content. In other words, only a handful of

wavelet coefficients carry a significant energy content of many complicated signals (also

referred as the energy compaction property). In the following sections, it is explained how

this parsinomous representation of the WT plays a crucial role in many signal processing

applications, such as wavelet shrinkage and compression.

Other significant characteristics of the WT are its simultaneous localization in both

time and frequency domains (wavelets are localized in frequency as well as in space, i.e.,

their rate of variation is restricted), and its multiresolution representation, i.e., analysis

of a nested sequence of fine to coarse resolution, is a primary tool of the WT, which

allows efficient analysis of the small details and the big picture: “Seeing the forest and the

trees! [61]”

3.2 Wavelets and Images

The previous section focused on the fundamentals of the DWT of functions of one variable,

i.e., the 1-D WT. There are also wavelets in higher dimensions such as in 2-D. In this

section, a method to extend 1-D DWT to the two dimensional case is introduced and

applications of wavelet methods to images will be discussed.
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Figure 3.3: Approximations to sin(x2) on [0, 2π] resulting from keeping only the largest (in

absolute value) 25% of the wavelet coefficients.

As defined in Definition 3.1, suppose Vj is a multiresolution subspace of L2(R) and

consider the tensor product space

Vj = Vj ⊗ Vj

which forms a multiresolution in L2(R2) [64]. Following the discussion given in § 3.1, the

orthogonal component of Vj is assumed to be Wj :

Vj−1 = Vj

⊕
Wj

where

Wj = (Vj ⊗Wj) ⊕ (Wj ⊗ Vj) ⊕ (Wj ⊗Wj) = Wh
j ⊕ Wv

j ⊕ Wd
j

where h, v, and d stand for horizontal, vertical, and diagonal components respectively.

Thus, the complete decomposition is obtained by

Vj = VJ ⊕
J−j−1⊕

k=0

WJ−k, j < J

= VJ ⊕
J−j−1⊕

k=0

(Wh
J−k ⊕ Wv

J−k ⊕Wd
J−k) (3.8)
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Accordingly, the two dimensional DWT of a fine scale image I0 at finest scale j = 0 is a

process in which low and high frequency components of I0 are represented by separate sets

of coefficients, namely the approximation aJ and the detail wj, 1 ≤ j ≤ J , with J denoting

the coarsest resolution. Following the above discussion, define the linear operators Hj and

Gj (in matrix form, with different sizes at different resolutions) as high- and low-pass filters

respectively, then the scaling and wavelet coefficients are recursively computed as

a1 = H0H0I0

aj+1 = HjHja
j

wj+1
h = GjHja

j

wj+1
v = HjGja

j

wj+1
d = GjGja

j (3.9)

with wj
h, w

j
v, and wj

d denoting, respectively, the horizontal, vertical, and diagonal subbands

at scale j. Each resulting frequency channel is decimated by suppression of three samples

out of four. The three high frequency subbands are left and the process recursively contin-

ues with decomposition of the low frequency channel. The maximum decomposition level

for a discrete image with size n = N×N , would be J = log2N , with n/4j detail coefficients

in every subband at scale j [64].

To simplify the notation, all the scaled versions of the linear operators H and G are

grouped into one linear wavelet kernel W reforming 2-D wavelet decomposition (3.9) into

WI0 = {w1, w2, · · · , wJ , aJ} (3.10)

where wj contains the three orientation subbands wj
h, w

j
v, and wj

d at scale j, and aJ repre-

sents the scaling coefficients at the coarsest scale J .

Figure 3.4 illustrates the simple recursive algorithm of the 2-D DWT. In practice, the

rows are first passed through the high-pass and low-pass filters, followed by down sampling,
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Figure 3.4: Implementation of the DWT algorithm for 2-D signals.

with the process then applied to the columns. The total number of the coefficients in this

representation is identical to the number of pixels in the original image. This is due to the

orthogonality of the WT representation.1

All of the primary properties of the 1-D WT discussed in § 3.1 are still applicable to the

1For simplicity, this statistical study is based on the class of orthogonal DWT. There exist some practical

weaknesses associated with the 2-D DWT when used in image processing, such as shift invariance, aliasing

artifacts when approximating coefficients, ambiguous edge directions in three subbands, etc. The past

few years have seen many alternatives and extensions to the basic DWT which address some of these

issues, such as shift-invariant WT [22, 23], biorthogonal WT [64], overcomplete steerable pyramids [87],

complex WT [53], ridgelets [12] and curvelets [89] transforms, which combine ideas of multiscale analysis

that results in improved edge orientations. Although it is important to be aware of the above limitations,

the primary interest of this research is to study statistical properties of the wavelet coefficients. Those

newly proposed transformations can also be modeled through extensions of the modeling framework in

conjunction with some explicit geometrical constraints.
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Figure 3.5: Illustration of the WT energy compaction. Top panels: the Lena image and

its 2-D WT. Bottom panel: cumulative plot sketching the amount of the original energy

preserved as a function of the number of the contributing pixels or coefficients. Only a

very small fraction of the wavelet coefficients is needed to represent the signal energy.

two dimensional case. For instance, the bottom plot in Figure 3.5 illustrates the energy

compaction of the 2-D WT. It is interesting that how a small number of wavelet coefficients

present a large amount of information about the original image. 2

In addition to the primary properties of the WT, one can examine the characteristics

2As an aside note: it is observed that the wavelet coefficients have a heavy-tailed distribution. Detail

discussion is given in § 3.4.
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of wavelet coefficients, which basically represent the coefficients interrelationships and are

known as the secondary properties [26]:

• clustering: if the magnitude of a particular wavelet coefficient is small/large, then

its adjacent coefficients magnitudes are very likely to also be small/large [75].

• persistence: Small/large magnitude of wavelet coefficients tend to propagate across

scales [66, 65].

See [26] and [82] for a detailed discussion on these properties.

These secondary properties, displayed by Figure 3.6, more or less depend on the char-

acteristics of the original image and on the choice of wavelet. Romberg et al. [82] called

these properties persistency and exponential decay across scales. In addition to the dis-

cussion in [82], the connectivity of wavelet coefficients is simultaneously spatial and scale

dependent. Spatial dependency states that a large (small) valued coefficient has very likely

large (small) valued siblings within the subband that it belongs to and siblings across other

two subband counterparts. To define persistency across scales, one, however, needs to be

cautious! If a coefficient value is large – meaning that an edge was included inside support

of the basis function – it is highly possible that this large magnitude propagates through

its children. However, small magnitude of a coefficient does not necessarily represent a

smooth region of the original image. It may be a cancellation result of two or more edges

covered by the support of the basis function. The second property, i.e., the rapid decay of

coefficients variance toward finer scales, is mostly a consequence result of the self-similar

characteristic of real images [34, 39]. The decaying property of the wavelet coefficients has

also been studied for both stationary and non-stationary stochastic processes. Tewfik and

Kim [93] proved that the correlation between coefficients of the class of fractional Brownian

motion, as a particular case of non-stationary signals, decreases exponentially fast across
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(a) original image (b) wavelet transformed image

Figure 3.6: Orthogonal three-level discrete WT of of an artificial binary image.

scales and hyperbolically fast through time.

In summary, the DWT is very attractive because it tends to represent signals and im-

ages sparsely, with a few large scaling and detail coefficients. Indeed, the WT is intended

to compress real-world signals, which is due to the vanishing moments of the wavelet func-

tions. As mentioned earlier, this parsimonious property, along with the localized support

of wavelets, implies that most signals or images would have a very sparse representation

in the wavelet domain. The non-zero coefficients are, however, crucial in reconstructing

important details such as edges.

In the section that follows the classical method of wavelet thresholding will be addressed.

It will be seen that the key to effective wavelet domain filtering is to determine which

wavelet coefficients do not have significant signal energy and can be discarded without

critical signal loss.
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3.3 Wavelet Shrinkage

The WT enables the representation of signals with a large degree of sparsity (Figure 3.5).

This is a key property: for most signals a large fraction of signal energy is captured by

very few wavelet coefficients. Motivated by and capitalizing on this property, wavelet

shrinkage [32, 33] is a widely-used and effective non-parametric coefficient thresholding

approach to solve many inverse problems, such as regression or denoising. In this technique,

the wavelet coefficients are subject to non-linear or Bayesian rules [2, 15, 40, 96] that

suppress the small coefficients, dominated by noise, and that retain high-magnitude ones.

The main idea is to exploit the localization property of the WT to develop efficient adaptive

algorithms in order to minimize the loss of important image features while eliminating

noise. Since the parsimony of wavelet coefficients ensures that the signal of interest can be

well described by a relatively small number of large coefficients, wavelet shrinkage tends

to keep these large valued coefficients while discarding the negligible ones.

Many data operations can now be done by processing the corresponding wavelet co-

efficients. In fact, when details are small, they might be omitted without significantly

affecting the original image. Thus, the intuition of shrinking the wavelet coefficients is

a way of cleaning out unimportant detail coefficients considered to be noise. Wavelet

shrinkage denoising should not be confused with smoothing. Whereas smoothing removes

high frequencies and retains low frequency ones, denoising attempts to remove whatever

noise is present and retain whatever signal is present regardless of the signal’s frequency

content. Wavelet shrinkage denoising does involve denoising in the wavelet domain and

consists of three steps: a linear forward WT, a non-linear shrinkage denoising by compar-

ing the wavelet coefficients with a predefined threshold value, and a linear inverse WT as

is displayed by Figure 3.7. The non-linear shrinkage of the coefficients in the transform

domain distinguishes this procedure from entirely linear denoising methods. Furthermore,
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Figure 3.7: Block diagram for standard wavelet thresholding. The signal f plus additive

white Gaussian noise ν is wavelet transformed, passed through nonlinear shrinkage, and

inverse transformed to get the denoised signal f̂ .

the procedure exploits the fact that the WT maps white noise in the signal domain to white

noise in the transform domain. Thus, although signal energy becomes more concentrated

into fewer coefficients in the wavelet domain, noise energy does not. It is this important

principle that enables the separation of signal from noise.

For a precise explanation of wavelet shrinkage, assume that the observed data is trans-

formed into the wavelet domain and

y = w + ν (3.11)

where w is the original wavelet coefficients corrupted with the Gaussian additive white

noise νi ∼ N (0, σ2
ν).

The process of thresholding wavelet coefficients is divided into two major steps. The

first step is the choice of the threshold function T . Two standard choices are hard and soft

thresholding [33]:

T hard (w, λ) =





w if |w| > λ

0 otherwise
(3.12)

T soft(w, λ) =





(w − sgn(w)λ) if |w| > λ

0 otherwise
(3.13)
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(a) Hard Thresholding (b) Soft Thresholding

Figure 3.8: Hard and soft thresholding transfer functions. λ = 25% of max |w|.

where w is the wavelet coefficient of interest and λ is the threshold level to be determined.

Hard thresholding is a “keep or kill” procedure which is intuitively appealing. Its

transfer function is shown in Figure 3.8(a). The alternative, soft thresholding, whose

transfer function is shown in Figure 3.8(b), shrinks coefficients above the threshold in

absolute value. While at the first sight hard thresholding may seem to be natural, the

continuity of soft thresholding has some advantages. It makes algorithms mathematically

more tractable [30]. Sometimes, pure noise coefficients may pass the hard threshold and

appear as annoying artifacts in the output. Soft thresholding shrinks these false structures.

Soft thresholding has also been shown to achieve near minimax rate over a large number

of Besov spaces [30].

Threshold determination, the choice of λ, is a very important question and a crucial

step in wavelet shrinkage. A small threshold may preserve too much noise, whereas a large

threshold leads to a loss of signal, causing artifacts and blurred edges.

For the rest of this section, several thresholding techniques such as VisuShrink [32],

SUREShrink [104] and BayesShrink [2, 13, 96, 97] are explored. Further, Gaussian-based
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shrinkage techniques for natural images are discussed and their performances are com-

pared.3

The idea of an MMSE estimate was first applied to the wavelet representation of signals

and images by Donoho and Johnstone [32, 33]. They proposed a universal threshold λ as

λuniversal =
√

2 logn σ̂ν

based on treating the wavelet coefficients as i.i.d. random variables, with n being the

signal length and σ̂ν being an estimate for the additive white noise standard deviation. It

is the optimal threshold in the asymptotic sense and in minimizing the cost function of

the difference between the original wavelet coefficients and the soft thresholded version in

the L2 norm sense, i.e., it minimizes E[(ŵ − w)2]. VISUShrink is the thresholding which

applies the universal threshold. Although, this method ensures, with high probability, that

no noise (of size σ̂ν) appears in the image after thresholding, its global adaptation to the

signal to noise ratio (SNR) creates unpleasant visual artifacts especially in the vicinity of

edges. VISUShrink is found to yield an overly smoothed estimate, because the universal

threshold is derived under the constraint that with high probability the estimate should be

at least as smooth as the signal. The threshold value, therefore, tends to be high for large

values of n, killing many signal coefficients along with the noise. Thus, the threshold does

not adapt well to discontinuities in the signal. A qualitative comparison of VISUShrink

with two other wavelet shrinkage algorithms for the a corrupted image (512 × 512 pixels)

is illustrated by Figure 3.10.

To overcome the problems of universal thresholding, adaptive denoising based on

minimizing Stein’s Unbiased Risk Estimator (SUREShrink) was proposed [40, 104].

SUREShrink is a scale dependent thresholding scheme which combines the universal thresh-

old method with a scale-dependent adaptive selecting scheme and provides better visually

3In Ch. 6, we will revisit this section when formulating our model-based shrinkage rule.
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appearing estimated results. This method estimates the loss E[(ŵ − w)2] in an unbiased

fashion:

SURE(λ; y) = y − 2 · |{i : |yi| < λ}| +
d∑

i=1

min(|yi|, λ)2 (3.14)

where |.| shows the number of elements is a set.

For an observed vector y (the set of noisy wavelet coefficients in a subband), find

the threshold λSURE that minimizes SURE(λ; y), i.e., λSURE = argminλ SURE(λ; y). The

above optimization problem is computationally straightforward. This technique performs

different global operations across scales. However, no spatial adaptation is assumed within

each scale or each orientation, as seen in Figure 3.10, which shows SUREShrink denoising

results for the “Lena” image. Clearly, the results are much better than VISUShrink. The

sharp features of the image are retained. This is because SUREShrink is subband adaptive,

i.e., a separate threshold is computed for each detail subband.

An even more precise approach is spatially adaptive wavelet shrinkage [13, 70], called

BayesShrink. In this method the coefficients in each subband are modeled as realizations

of the class of Generalized Gaussian Distributed (GGD) [13] and independent random vari-

ables with different unknown parameters estimated on a pixel level using context modeling.

Indeed it has been shown [13, 47]that for a large class of images, the coefficients of each

detail subband form a symmetric distribution that is sharply peaked at zero, which is well

described by the zero-mean GGD as is shown in Figure 3.9. The GGD is given by [13]

GGDσw,β(w) = C(σw, β)e−[α(σw ,β)|w|]β −∞ < w < +∞, β > 0, σw > 0 (3.15)

where

α(σw, β) = σ−1
w

[
Γ(3/β)

Γ(1/β)

]1/2



46 Image Models for Wavelet Domain Statistics

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

1000

2000

3000

4000

5000

6000

7000

Figure 3.9: Histogram of the horizontal-band wavelet coefficients for a typical image.

and

C(σw, β) =
β.α(σw, β)

2Γ(1/β)

and Γ(t) =
∫ ∞
0
e−uut−1du.

The parameter σw is the coefficient standard deviation and β is the shape parameter.

It has been observed [13] that a shape parameter β ranging from 1 to 2 (Laplacian to

Gaussian distribution), can describe the the distribution of coefficients in a subband for

a large set of natural images. Assuming such a distribution for the wavelet coefficients,

estimate β and σw for each subband and try to find threshold λBayes which minimizes the

Bayesian Risk, i.e., the expected value of the mean square error

E[(ŵ − w)2] = EWEY |W [(ŵ − w)2] (3.16)

where w ∼ GGDσw,β

Since there is no closed form solution for λBayes, a numerical calculation is used to find

its value. It was observed by Chang et al. [14] that the threshold value set by λBayes = σ2
ν

σw

is very close to the optimum threshold values. The estimated threshold value is not only

nearly optimal but also has an intuitive appeal. The normalized threshold, λBayes/σν is



Wavelets 47

(a) noisy image (b) VISUShrink

(c) SUREShrink (d) BayesShrink

Figure 3.10: Wavelet shrinkage using VISUShrink, SUREShrink and BayesShrink tech-

niques, σν = 0.2. The db4 wavelet was used with four levels of decompositions.
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inversely proportional to σw, the standard deviation of w, and proportional to σν , the

noise standard deviation. When σν/σw ≪ 1, the signal is much stronger than the noise,

λBayes/σν is chosen to be small in order to preserve most of the signal and remove some of

the noise; when σν/σw ≫ 1, the noise dominates and the normalized threshold is chosen

to be large to remove the noise which has overwhelmed the signal. Thus, this threshold

choice adapts to both the signal and the noise characteristics as reflected in the parameters

σν and σw.

In summary, BayesShrink performs soft thresholding, with the data-driven, subband

dependent threshold. The results obtained by BayesShrink for the image “Lena”, shown in

Figure 3.10, looks more appealing than those obtained using VISUShrink and SUREShrink.

At this stage it is unclear how much efficiency could be achieved in principle and how

well the wavelet-domain shrinkage will operate, since the statistics of the wavelet coeffi-

cients have not been well characterized. Most of the existing thresholding procedures are

essentially universal, i.e., they uniformly treat the coefficients either at the same scale or

across scales. They do not take into account the secondary properties of the wavelet coef-

ficients. A natural way of using the prior information about the unknown image I is via a

Bayesian framework, within which a prior distribution on the wavelet coefficients is spec-

ified. Wavelet thresholding via a Bayesian approach has been thoroughly studied during

the last few years [2, 15, 97]. The following section summarizes the research achievements

on the wavelet-domain statistics used as a priori in the Bayesian framework.

3.4 Wavelets and Statistics

This section reviews a series of most cited proposed models of the wavelet statistics. Each

model’s pros and cons are discussed and the open research questions and motivations for
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this present work will be highlighted.

Among numerous developed shrinkage methods, there is a common assumption that

the wavelet coefficients are marginally Gaussian, and that the WT is a perfect whitener,

such that all of the wavelet coefficients are independent. There is, however, a growing

recognition [26] that the wavelet coefficients are neither Gaussian (Laplacian [86]), in terms

of marginal statistics, nor white in terms of the joint statistics. There have been several

recent efforts [26, 47, 77] to study wavelet statistics; most of these focus on the individual

(marginal) statistics, only recent literature has addressed providing models representing

the interrelationship (joint) statistics. Table 3.1 summarizes a comprehensive list of the

probabilistic models proposed to address the wavelet domain statistics.

3.4.1 Wavelet Marginal Models

1. Double-exponential distribution [47]

w ∼ 1

2
√

2σ
e−2

√
2σ|w|

2. Generalized Laplacian (stretched exponential) [86]

w ∼ e−|w/s|p

2 s
p
Γ(1/p)

where p ∈ [0.5, 0.8] and s varies with the scales variances.

3. Mixture of Gaussians [15, 26, 47] (Figure 3.11).

4. Mixture of a Gaussian and a point mass function [2, 71]

w ∼ α

[
1√

2πσw

e−(w−µ)2/(2σ2
w)

]
+ (1 − α)δ(0), 0 ≤ α ≤ 1

where δ(0) is a point mass function at zero. For all coefficients at a given scale the

same prior parameters α and σ2
w are assumed.
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Wavelet Statistics Marginal Joint

Chipman et al. [15, 16] two Gaussian dist. —

Leporini et al. [55] non-Gaussian —

Simoncelli [86] generalized Laplacian —

Moulin and Liu [70] generalized Gaussian —

Huang and Mumford [47] non-Gaussian, heavy-tailed —

Abramovich [2] a point mass f. & a Gaussian —

Donoho and Johnstone [33] non-Gaussian —

Vidakovich [96] a point mass f. & a Gaussian —

Crouse et al. [26] — hidden states

Romberg et al. [82] — hidden states (Bayes Ets.)

Choi and Baraniuk [19] — hidden states (Segmentation)

Nowak [73, 74] — hidden states (Bayes Ana.)

Xu et al. [101] — heuristic

Portilla et al.[79, 98] — Gaussian scale mixtures

Strela et al. [92] — Gaussian scale mixtures

Fan and Xia [36] — hidden states

Mihcak et al. [69] — adaptive

Simoncelli [78, 86] — local coeff. energy

Yoo et al. [103] — adaptive

Chang and Vetterli [14, 13] — adaptive

Crouse and Barabiuk[25] — hidden states of local NBHD

Fan and Xia [35] — hidden states of local NBHD

Maifait and Roose [62] — MRFs

Pizurica et al. [77] — MRFs

Fan and Xia [37] — hidden states on a hybrid quad-tree

Liu and Moulin [59] — mutual information, MRFs

Azimifar et al. [6, 7, 8] — MS, MRFs

Table 3.1: A list of the probabilistic models proposed to describe wavelet domain statistics.
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Figure 3.11: Two-state, zero-mean Gaussian mixture model for the wavelet coefficients.

Left: Two normal density functions with different variances; Right: mixture model of both

Gaussian distributions.

5. Generalized Gaussian distribution (GGD) [70, 78]

w ∼ C(σw, β) exp
{
− [α(σw, β)|w|]β

}

where the parameters are defined in (3.15).

6. Explicit modeling of edges and boundary-like features [33, 98].

7. Bessel functions [88].

All of these models propose heavy-tailed distributions for the individual wavelet co-

efficients. The heavy-tailed behaviour is supported by empirical tests, and is due to the

energy compaction property: the coefficient statistics are a mixture of low-variance (noise)

and a few high-variance (signal) elements.

Virtually all marginal models currently being used in wavelet shrinkage [78], assume the

coefficients to be decorrelated and treated individually; i.e., only the diagonal elements of

the wavelet covariance are considered. Although such independent models result in simple
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nonlinear operations on individual coefficients, the approach is suboptimal because the

WT is not a perfect whitening process.

3.4.2 Wavelet Joint Models

As opposed to the marginal models, the question of joint models is much more complicated

and admits for more possibilities, with structures possible across subbands, orientations,

and scales. Since Shapiro [85] proposed zerotree coding for image compression there have

been many efforts to model joint structures. Researchers have proposed a variety of wavelet

dependency models including

a. Hidden Markov models (HMMs) [26, 37, 82],

b. Markov random field priors (MRFs) [62, 77], and

c. Gaussian Scale Mixtures (GSMs) [79, 98].

These models are defined on the basis of the observed characteristics of wavelet coefficients:

across-scale persistence, within-scale clustering [82], and sparse representation. In general,

these models investigate a combination of these three main categories:

1- interscale [26, 82, 101],

2- intrascale (spatial) [35, 69, 74, 86], and

3- combined intra- and interscale [14, 25, 37, 62, 70, 77, 94] dependencies.

A brief discussion on some of these models follows.

In a similar Bayesian fashion but independent investigations, Malfait and Roose [62]

and Pizurica et al. [77] examined non-decimated wavelet-domain joint within- and across-

scale dependencies by assigning a significance mask and a binary label to the individual
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coefficients. The significance map is defined based on an estimation of the local Lipschitz

regularity and coefficient evolution and inside a local cone of influence. On a similar track

and motivated by the empirical Bayes estimator of Lee [57], a number of authors have

estimated the local variance from a collection of wavelet coefficients at nearby positions

and scales and used these estimated variances in order to denoise the coefficients [1, 13, 69].

Surprisingly, none of the aforementioned modeling procedures has investigated orientation-

dependent priors. Indeed, only very little literature has studied models to describe across-

orientation correlations.

A multivariate normal prior for the wavelet coefficients has been proposed by Vannucci

and Corradi [94]. By taking into account the correlation between the wavelet coefficients,

they showed that the wavelet prior Pw (wavelet covariance) is a J-diagonal matrix, where

J is the number of scales. The covariance structure is considered for coefficients within the

same resolution level as well as across different scales. The covariance matrix is expressed

as a diagonal band outside which the correlation is assumed zero and within the band,

the largest correlations happen between coefficients that are close in the same location

and scale. A thorough investigation of the wavelet domain covariance structure will be

discussed in Ch. 4.

Portilla et al. [79, 98] developed a Gaussian Scale Mixture (GSM) model to describe

the kurtotic behavior of marginal distributions as well as the pairwise joint distributions

and used Bayesian least square to estimate the coefficients. GSMs model the neighborhood

of coefficients at adjacent positions and scales as the product of two independent random

variables: a Gaussian vector and a hidden scaler multiplier [3]. This multiplier plays

a crucial rule: the key property of the GSM model is that the density of coefficient w

is Gaussian when conditioned on the multiplier value. A GSM assumes that the local

variance is governed by a continuous multiplier variable, which is an extension to the two-
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state hidden multiplier variable used by Romberg et al. [82] to characterize the two-mode

behavior of large and small valued coefficients.

Xu et al. [101] used the scale-dependent consistency between the wavelet coefficients

for the denoising process. In separate works by Simoncelli [86], Strela et al. [92], and

Crouse et al. [26] probabilistic models that capture wavelet coefficient dependencies, es-

sentially across scales, were studied. Crouse et al. [26] considered hidden states describing

each coefficient’s significance. Instead of the coefficients values, they proposed statistical

models for coefficient’s hidden state dependencies. Normally an assumption is present that

the correlation between coefficients’ states does not exceed the parent-child dependencies,

e.g., given the state of parent, the child is decoupled from the tree on the other side of its

parent. The wavelet-based HMMs [74], in particular, have been thoroughly studied and

successfully outperform many wavelet-based techniques in Bayesian denoising, estimation,

texture analysis, synthesis and segmentation. For the rest of this section I introduce the

HMMs as the most influential wavelet joint models, then explain how the issues assigned

to these models can direct and motivate this work.

3.4.3 Wavelet HMM Joint Models

As a finite state machine, an HMM is basically a Markov chain process characterized by

its state transition probabilities [80]. In an HMM, at every time interval an observation is

made from the current state according to a pdf depending only on that state. In contrast

to a Markov chain, it is not possible to determine the current state by simply examining

the current observation. Thus, the state of an HMM is hidden to the observer (empty

circles shown in Figure 3.12).

Although HMMs have been successfully applied in 1-D signal processing (e.g., speech

processing), it is hard to directly adopt them in the spatial domain image modeling due to
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large extent of spatial correlations which result in a large number of states. On the other

hand, the reported characteristics of the wavelet coefficients including across-scale persis-

tence and within-scale clustering [82], in addition to the sparse representation property of

the WT which results in reducing the number of states, has inspired researchers to propose

HMMs to describe the structure of wavelet local dependencies. The wavelet-domain HMMs

were developed and successfully applied in many image processing tasks, such as estima-

tion [26], Bayesian image analysis and denoising [73, 74], image segmentation [18, 82] and

texture analysis, synthesis and classification [37]. Since Nowak and his colleague [26] intro-

duced these models, significant work has been done to improve performance of the HMMs,

either in model accuracy or in parameter estimation. In general, these models adopt a prob-

abilistic graph in which every wavelet coefficient wi is associated with a discrete hidden

state si ∈ {0, 1, . . . ,M − 1} thus modeling wi as an M-state Gaussian mixture, condition-

ally independent of all of the other coefficients p(wi, wj|si) = p(wj |si)p(wi|si) ∀i 6= j. A

binary state, M = 2, is particularly common, used to specify a low/high variance of wi.

Figure 3.12 sketches a simple HMM on the 1-D wavelet tree. Clearly the tree branches

are formed by connecting the hidden states. The simplest case is when the coefficiets are

assumed maginally, i.e., the dashed lines are disappeared.

The wavelet parsimony representation indicates that the majority of the coefficients

are small and only a few coefficients are large in magnitude. As mentioned earlier,

Chipman et al. [15] showed that the heavy-tailed non-Gaussian marginal pdf, fW (w)

of the wavelet coefficient w can be well approximated by GMM (Figure 3.11). Accord-

ingly, wavelet non-linear shrinkage, such as Bayesian estimation has been achieved with

these non-Gaussian priors, which consider the kurtotic behavior of the wavelet coeffi-

cients (§ 3.3). At this point the marginal modeling of Chipman et al.is compared to

the HMMs of Crouse et al.. The main distinction between these two approaches is that
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Figure 3.12: The 1-D wavelet hidden Markov model. The statistics of each coefficient

(filled circle) are described by its associated hidden state (empty circle) value.

Chipman et al. [15] consider independence in the prior, while Crouse et al. [26] introduce

dependent priors on the mixture parameters. Crouse et al. [26] consider a Hidden Markov

Model (HMM) for the dependencies among the wavelet coefficients, in which whether or

not a specific coefficient is non-zero will depend on the state of its immediate neighbors.

This neighborhood can be at the same resolution but locations k ± 1, or at an analogous

location but across resolutions j±1, i.e., parent and children. In fact, if a certain coefficient

is significant, then its neighbors are likely to be significant.

The GMM observation of Chipman et al., in addition to the association of the hidden

states to each w (i.e., the hidden state indicates that the associated node is either negligible

or significant in magnitude), has directed the researchers to assume M-state GMM with

conditional pdf fW |S(w|s = m,m = 0, 1, . . . ,M − 1) with mean µm and variance σ2
m for

every w, given its hidden state value. The overall pdf of w is defined to be

fW (w) =
M−1∑

m=0

pS(m)fW |S(w|s = m), (3.17)
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where

fW |S(w|s = m) = N (w;µm, σ
2
m)

A practical two-state zero-mean GMM with parameter set Θ = {pS(m), σ2
m|m = 0, 1} is

shown in Figure 3.11.

Although, the GMM can necessarily describe the wavelet-domain marginal statistics,

it can not be a sufficient tool to characterize the joint statistics of the wavelet domain.

Therefore, different neighborhood structures (mostly Markov) are adopted to describe the

joint statistics of the hidden states. Indeed, the HMMs are multidimensional GMMs in

which hidden states have a Markovian dependency structure. Note that all different kinds

of HMMs assume that the wavelet coefficients have the same statistics, regardless of their

spatial position [37]. The class of HMMs includes

1- GMM: Gaussian Mixture Model [15],

2- IMM: Independent Mixture Model [26],

3- HMT: Hidden Markov Tree [26, 73],

4- HMT-2: Improved Hidden Markov Tree [36],

5- CHMM: Contextual Hidden Markov Model [25, 35], and

6- HMM-3S: Hidden Markov Model-Three Subbands [37].

A brief definition of each model follows.

Independent Mixture Model (IMM): The simplest HMM, the IMM [26] (Fig-

ure 3.13(a)) models the hidden states as independent GMMs, motivated by the observation

that the WT is an approximate whitening process such as Karhunen-Loeve transform, mak-

ing the coefficients nearly decorrelated.
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Although, the IMM can describe the wavelet marginal statistics well as a Gaussian mix-

ture, it does not characterize the remaining wavelet-domain joint statistics. More advanced

models in which hidden states have a Markovian dependency structure are discussed below.

Hidden Markov Tree (HMT): More sophisticated approaches sought to model the

local wavelet statistics by introducing Markovian dependencies between the hidden state

variables across scales and orientations. Crouse et al. [26] observed the persistence and clus-

tering properties of wavelet coefficients and introduced the HMT (Figure 3.13(b)) which

captures wavelet interscale dependencies by imposing a tree structure on the hidden states

across scales, while assuming independence within and across the three subbands. The

statistic of hidden state si is a function of its parent, sρ(i), based on a transition probabil-

ity pSi|Sρ(i)
(si = m|sρ(i) = n). It was shown in [82] that the HMT algorithm outperforms

traditional wavelet-based techniques.

Improved Hidden Markov Tree (HMT-2): A generalization, to capture additional

correlations between scales, is the HMT-2 [36], where the state sj depends on the state of

its parent sρ(j), as before, but also on siblings of its parent (Figure 3.13(c)). The approach

is motivated by the correlation of the wavelet bases in two adjacent scales and the long

length of the filters used in the decomposition process. It, however, leads to higher-order

hidden states. Unlike the HMT, in the HMT-2 each node is associated with a vector of

four hidden states (within-scale), i.e., if M = 4 is assumed, there are sixteen different

possibilities for each node. Since a vector of coefficients grouped in each node with two

different GMMs, the two-dimensional Gaussian mixture field is considered in the training

process of the HMT-2 model. HMT-2 empirical results show some improvement in signal

denoising [36].

Contextual Hidden Markov Model (CHMM): The HMT models focus on the vertical

interscale dependencies by imposing a tree structure in the wavelet domain. To support
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Figure 3.13: Illustration of hidden Markov models. Empty circles denote hidden states
and filled circles the coefficient values. (a) Independent hidden states; (b,c) Interscale
dependencies; (d) Three subbands (H, V, D) integrated into one hybrid HMT.

additional connectivity the CHMM was developed [25], which adds a context structure

to model both interscale and intrascale dependencies. The basic idea of the CHMM is
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to define contexts, as a function of the wavelet coefficient wj and its local neighbors, to

capture the spatial dependencies such that given the context the coefficients are treated

as independent. The CHMM has many potential advantages [25] over traditional HMMs

in exploiting the wavelet correlation structure, offering similar denoising performance with

reduced computational complexity compared with the HMT.

The lack of spatial adaptability of CHHM [35][69] may limit its advantages in image

processing tasks, so a Local CHMM was proposed [35]. This model exploits both interscale

correlations and local wavelet coefficients statistics.

Hidden Markov Model-Three Subbands (HMM-3S): The above joint models as-

sume that the three high-frequency subbands are independent, an almost universal assump-

tion. Although this simplifies wavelet image modeling, for natural textures the regular

spatial patterns may result in noticeable dependencies across subbands [37]. The HMT-3S

(Figure 3.13(d)) includes the joint interscale statistics captured by the HMT, but adds the

dependencies across subbands by integrating the three corresponding coefficients across the

three orientations. The HMT-3S was successfully applied in texture analysis and synthesis

with improved performance over the HMT models.

3.5 Chapter Summary

The literature of modeling wavelet statistics has been thoroughly reviewed. It is clear

that a significant body of research addresses wavelet joint statistics and modeling. The

more general the model, the broader the range of included correlations, and the better the

results.

This chapter answered several significant questions:

• Why are the wavelet coefficients assumed independent and non-Gaussian?
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Because of the WT primary properties (locality, multiresolution and compression)

and interpretation of the WT as a whitening process which attempts to make the

coefficients statistically independent.

• Why are the coefficients assumed jointly Gaussian?

Because this assumption helps to captures the linear correlation between the coeffi-

cients.

• Why are the coefficients assumed jointly non-Gaussian?

Because of the secondary properties of the wavelet coefficients (within-scale clustering

and interscale persistence).

• What sub-groups of the coefficients are described by the wavelet joint models?

Clusters of coefficients across scales, across subbands, or within subbands. The last

two groups are sometimes referred as intra-scale or within-scale statistics, but often

confusing!

Some important concepts still remain to be thoroughly understood:

• What should be measured in the wavelet domain?

• What statistics should be studied?

• What stochastic model (such as Markov random fields) can model these statistics?

• What are the best parameters describing the wavelet joint model?

The main theme of the next two chapters is to elaborate on the above issues. Ch. 4 will

establish a framework to study the existence and the characteristics of the wavelet joint

correlations, followed by Ch. 5 which will concentrate on bridging between the wavelet

joint statistics and the probabilistic models introduced in Ch. 2.





Chapter 4

Wavelet Correlation Structures

This chapter presents an empirical study of the joint wavelet statistics for a large range

of natural images and random fields. The study of wavelet statistics includes results of

straightforward Monte-Carlo simulations as well as the exact statistical analysis when the

given image is a sample of a Gaussian random field or a real seen picture. This sample

statistical study highlights, albeit only approximately, the significant residual correlations

between coefficients within and across scales. While recent developments in wavelet-domain

Hidden Markov Models (notably HMT-3S) [26, 37] account for within-scale dependencies,

empirically, wavelet spatial statistics are strongly orientation dependent, structures which

are surprisingly not considered by state-of-the-art wavelet modeling techniques.

This chapter describes possible choices of wavelet statistical interactions by examining

the wavelet domain covariance, joint-histograms, conditional distributions, correlation co-

efficients, and the significance of coefficient relationships. An efficient and fast strategy

which describes the wavelet-based statistical correlations and their significance of inter-

relationships will be demonstrated.

63
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4.1 Empirical Correlations: a Monte-Carlo Study

This statistical study of the wavelet coefficients starts by generating an ensemble of pa-

rameterized random fields with a spatially stationary assumption (only an assumption to

simplify the inference). Later observations of the real image wavelet statistics will show

that the structure of wavelet-domain joint correlations is not a direct consequence of sta-

tionarity assumption.

Because of the stationarity, the correlation structure of any random field X ∈ R
n×n is

invariant to spatial location, i.e.,

E[xi,jxi+∆i,j+∆j] = E[x0,0x∆i,∆j], 1 ≤ i, j ≤ n (4.1)

resulting in an autocorrelation structure

Πi,j = E[x0,0xi,j ], 1 ≤ i, j ≤ n (4.2)

a circulant matrix, which can be diagonalized by the 2-D Fast Fourier Transform

(FFT) [38]. Then a toroidally stationary random field covariance matrix P ∈ R
n2×n2

which

corresponds to Π can be formed. A Gaussian random fieldX ∼ N (0, P ) is then synthesized

as

X = FFT−1{
√
FFT{Π} · FFT{Q}} (4.3)

where
√· and · are element-by-element operations and Q ∼ N (0, I) is a matrix of unit

variance Gaussian random variables. Because of the Gaussian assumption in prior P this

model is called a Gauss-Markov Random Field (GMRF).

The prior covariance structure P plays a critical role in the sample generation, i.e.,

the first step in sampling is to have a prior model. In the absence of a particular prior

correlation structure of the field X, one can impose a smoothness constraint between the

field elements. This subject is known as data regularization [38]. Two regularization
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methods which are commonly used in surface interpolation problems, asserting local con-

straints between the spatially close pixels, are reviewed here.1 If the first-order derivative

is considered, then

Hmembrane(X) =

∫ ∫ ∣∣∣∣
∂X

∂x

∣∣∣∣
2

+

∣∣∣∣
∂X

∂y

∣∣∣∣
2

dxdy

=
∑∑

|Lx ∗X|2 + |Ly ∗X|2 (4.4)

where ∗ is a convolutional operator and Lx and Ly are defined to be the first-order convo-

lutional kernels

Lx = [−1 1] Ly =


 −1

1


 (4.5)

which form the associated membrane model [38]

Lmembrane = Lx ∗ Lx + Ly ∗ Ly

=




0 −1 0

−1 4 −1

0 −1 0




(4.6)

The smoothness constraint on second-order derivatives is called a thin-plate model:

Hthin−plate(X) =

∫ ∫ ∣∣∣∣
∂2X

∂x2

∣∣∣∣
2

+ 2

∣∣∣∣
∂2X

∂x∂y

∣∣∣∣
2

+

∣∣∣∣
∂2X

∂y2

∣∣∣∣
2

dxdy

=
∑ ∑

|Lxx ∗X|2 + 2 |Lxy ∗X|2 + |Lyy ∗X|2 (4.7)

1In solving for an interpolation problem if the measurement alone is considered, normally the problem

is not well-posed and a unique optimum solution is not guaranteed. However, by asserting certain prior

knowledge such as these smoothness constraints, the problem may become well-posed, in which case a

single estimate, i.e., least square is found [38].
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where Lxx and Lyy and Lxy are defined to be the second-order convolutional kernels

Lxx = [−1 2 1] Lyy =




−1

2

1


 Lxy =



 −1 1

1 −1



 (4.8)

with the associated discrete constraint model

Lthin−plate = Lxx ∗ Lxx + Lyy ∗ Lyy + 2Lxy ∗ Lxy

=




0 0 1 0 0

0 2 −8 2 0

1 −8 20 −8 1

0 2 −8 2 0

0 0 1 0 0




(4.9)

being employed in the linear estimation process (2.5).

Comparison of (4.6) and (4.9) with Figure 2.1 indicates that membrane is a first-order

Markov process and that thin-plate, which imposes a larger neighborhood, is third-order

Markov.

Figure 4.1 illustrates two different GMRF realizations based on (4.3) and a given thin-

plate autocorrelation Πx and covariance Px structures with different correlation lengths.

Correlation length is defined to be average distance between any pixel and its farthest

neighbor whose correlation is at least half of the maximum correlation. Figure 4.3 shows the

covariance matrix for two fields displayed in Figure 4.1. Note that Px shown in this figure

illustrates the correlation structure for the field elements when they are lexicographically

re-ordered into a vector format (e.g., column-wise) as is shown in Figure 4.2. In other

words, each row of the field covariance matrix Px is obtained by circularly shifting the

vector-formatted autocorrelation map Πx.
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(a) GMRF, long correlation length (b) GMRF, short correlation length
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Figure 4.1: Gaussian random fields generated based on the FFT algorithm given in (4.3).

Top panels : the thin-plate random fields X, Bottom panels : absolute values of the asso-

ciated autocorrelation map Πx, where zero-lag position is assumed in the middle of the

image.
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Figure 4.2: Lexicographical stacking a 2-D matrix into a 1-D vector.

Having defined the above framework to generate a number of model-based fields, a

Monte-Carlo study was done. An ensemble (∼ 500 iterations) of sample paths (thin-plate

prior) with various correlation lengths were transformed into the wavelet domain. For

each case the within scale sample correlation coefficients were calculated for a local spatial

neighborhood at every orientation, i.e., horizontal, vertical and diagonal directions. For

convenience in understanding the results, the resulting variances were normalized, so that

the inter-coefficient relationships are measured as a correlation coefficient

ρi,j =
E[(wi − µwi

)(wj − µwj
)]

σwi
σwj

, −1 ≤ ρi,j ≤ 1 (4.10)

where wi and wj are two wavelet coefficients, with mean and standard deviation µwi
, σwi

and µwj
, σwj

, respectively. Indeed, |ρi,j | = 1 shows that the coefficients are deterministi-

cally related, ρ = 0 indicates total uncorrelatedness between two wavelet coefficients and

|ρi,j| = 0.5 was considered the threshold in measuring the correlation length. In other

words

Pwi,j
=

Pwi,j√
Pwi,i

Pwj,j

(4.11)
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Figure 4.3: Absolute value of the covariance matrices Px ∈ R
n2×n2

of two Gauss-Markov

random fields obtained according to the autocorrelation structures Πx ∈ R
n×n of a thin-

plate model with two different correlation lengths.
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where Pw shows matrix of correlation coefficient values.

For a fixed spatial domain correlation length it was observed that

• the wavelet domain correlation length is much smaller than the spatial domain one,

but is not zero,

• the wavelet domain correlation strength reduces from fine to coarse scales,

• the extent of correlation is identical in both vertical and horizontal subbands (because

the spatial prior is identical in vertical and horizontal directions),

• correlations in the diagonal subband are weaker than in the other two orientations.

Figure 4.4(a) plots within-subband correlation length in the Haar wavelet domain for

all three orientation channels as a function of the spatial correlation length. In this ex-

periment the thin-plate model as a third-order neighborhood smoothness constraint was

considered. Although the whitening effect of the wavelet transform is quite clear for the di-

agonal subband coefficients, the coefficients at the horizontal and vertical channels exhibit

a residual inter-relation along their orientation which grows, albeit slowly, with increasing

correlation length in the spatial domain. Figure 4.4(b) highlights the correlations between

pairs of horizontal subband coefficients within four different scales. The increasing trend

of correlation between the coefficients up to five pixels apart is quite obvious in this plot.

This wavelet correlation study was started with the above Monte-Carlo examination

of the spatial and wavelet correlation lengths, and observing the wavelet residual sample

statistics (non-whitening effect of the wavelet transform) [5]. It is continued by investigat-

ing exact statistics of the wavelet domain.
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(a) within-subband correlation length for coefficients from each channel separately
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4.2 Empirical Correlations: A Statistical Approach

To analyze the statistical behavior of any random process, one alternative is to evaluate a

process whose statistical correlation is known, i.e., the exact covariance structure is given,

such that one can directly evaluate the actual correlation structure instead of manipulating

the sample statistics of data. In other words, since the objective is to assess any change in

correlation structure, by having a mathematical description of this structure it is possible

to directly work with the wavelet coefficients of synthetic or real-world data. Instead, one

can explicitly evaluate the wavelet transformation of the predefined spatially correlation

structure, explained as follows.

4.2.1 Examining one-dimensional signals

It is assumed that low and high frequency components of the 1-D signal x projected into

the wavelet domain, i.e., Wx, are represented by separate sets of coefficients, namely the

approximation aJ and the detail {wj}, 1 ≤ j ≤ J coefficients. If, as before (Eq. (3.9)), the

linear operators H and G are defined as low-pass and high-pass filters respectively, then

clearly the coefficient vectors may be recursively computed in scale as

aj+1 = Hjaj

wj+1 = Gjaj (4.12)

Having defined the vectors of aj and wj coefficients, one can recursively calculate the

within- and across-scale auto- and cross-covariances from the covariance Paj ,aj
at the finest
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scale j = 1 as follows:

Pwj+1,wj+1
= GjPaj ,aj

GT
j

Paj+1,aj+1
= HjPaj ,aj

HT
j

Paj+1,wj+1
= HjPaj ,aj

GT
j

Paj+2,wj+1
= Hj+1HjPaj ,aj

GT
j

Pwj+2,wj+1
= Gj+1HjPaj ,aj

GT
j

(4.13)

The extension of this process to the covariance structure for 2-D wavelet coefficients needs

to repeat the above processes for each row or each column of the wavelet coefficient matrix.

Having this well-defined variance-covariance structure of the wavelet coefficients, one

can exactly assess the extent of correlation between the coefficients at the same scale

or different resolutions. The very first observation one can make from (4.13) is that the

appearance ofH and Gmatrices in the recursive computing of each wavelet local covariance

indicates connectivity of all wavelet coefficients through these two operators.

A time domain model of correlation should be assumed to be re-assessed in the wavelet

domain. An exponential correlation structure is common for real signals and remotely-

sensed fields [50], so it is assumed that the second-order statistics of the finest-scale signal

x is given by x ∼ (0, Px), that is, x has zero mean and covariance structure

Pxi,xj
= cov(xi, xj) = σ2

x exp (−|i− j|
τ

) (4.14)

with parameter τ controlling the correlation length between two pixels.2 The chosen dis-

tribution has constant correlation length and is spatially stationary; this assumption is for

convenience only and is not fundamental to the analysis.

2The 1-D membrane GMRF model of (4.6) which is known to be exponentially distributed [38] can

also be considered, whose respective covariance has periodic boundaries more consistent with structures

of the GMRFs examined in § 4.2.2.
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With the covariance structure Px determined, one can transform it into the wavelet do-

main by computing the wavelet operator W, containing all translated and dilated versions

of the selected wavelet basis functions, e.g.,



aJ

wJ

...

w1




= Wx (4.15)

The covariance structure of the wavelet-decomposed signal is then

Pw = WPxWT (4.16)

The covariance matrix Pw is normalized to Pw by (4.11) so that the auto- and cross-

correlations of the coefficients at different scales are obtained. Figure 4.5 displays correla-

tion structure for a 1-D signal with exponential joint statistics (4.14) in both time domain:

Px, and “db1” wavelet domain: Pw.3 The resulting wavelet correlation is a block matrix,

with the block diagonals showing the within-scale autocorrelations and off-diagonal blocks

presenting the cross-correlations between aJ and {wj}, 1 ≤ j ≤ J , at different resolutions.

Figure 4.6 zooms into a small fraction (structure) of the correlation matrix display in

Figure 4.5(b) and summarizes the magnitudes of the covariance values between a typical

detail coefficient w and its spatially local neighbors, both within the same scale and across

scales. It is seen most clearly that the within-scale correlations tend to decay very quickly,

while the dependencies across different resolutions surprisingly remain strong, even for the

3 For the purpose of illustrations in this thesis the results of simulation with the piecewise linear family

of the first three members of Daubechies wavelet family are displayed. Simulations with other commonly

used basis functions such as longer Daubechies wavelet bases, and more regular wavelets of Coiflet [49]

and Meyer [67], exhibit a stronger decorrelation effect within scale, nevertheless the qualitative structure

is similar, and the across-scale correlations are no less significant.
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Figure 4.5: Time- and wavelet-domain correlation structures for exponentially correlated

signals. Pw was obtained from (4.16) by using a three-level wavelet operator W of Haar

basis function. The resulted Pw was normalized to correlation coefficient matrix Pw and

its absolute value is shown above.
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Figure 4.6: The extent of correlation between a typical 1-D wavelet coefficient at scale j and

its adjacent coefficients within the same scale and across several resolutions towards both

parents and children. For the purpose of demonstration the centered coefficient variance

value was set to zero.

coefficients located several scales apart. This result confirms that: the wavelet coefficients

are uncorrelated and in some cases their correlation can be quite significant!

This statistical result of 1-D wavelet coefficient inter-correlations is considered as a

motivating point to investigate wavelet correlation structures for higher dimensional data.

4.2.2 Examining two-dimensional signals

The joint-statistical study of 1-D wavelet coefficients can be extended to that of the 2-D

wavelet transform. To perform an empirical study of wavelet statistics with an assumed

spatial prior, one needs to examine the covariance matrix for the given random field. Any

n× n-sized image has an n2 × n2-sized covariance matrix. Consequently, the limitations

caused by huge covariance matrices in terms of computational time and space can affect
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the problem size. Due to the dramatic increase in covariance matrix size, the empirical

results discussed herein were obtained by examining the correlation structure of small sized

images (e.g., 32 × 32 pixels) with reasonably sized covariance matrices (e.g., 322 × 322).

The wavelet operator W is defined by, first, lexicographically re-ordering the 2-D image

is into a 1-D vector format (e.g., column-wise) as is shown in Figure 4.2. This pixel

arrangement keeps the vertically adjacent image pixels next to each other, while horizontal

neighbors are located n pixels apart. This phenomenon (the vicinity of vertical elements

and the segregation of horizontal pixels) still remains clearly visible when the associated

Px is projected into the wavelet domain, i.e., Pw, by (4.16).

Figure 4.7 illustrates the spatial (identical to those shown in Figure 4.3) and wavelet

domain correlation structures of a thin-plate GMRF with two different correlation lengths.

The main diagonal blocks in Pw show autocorrelation of coefficients correspond to the

same scale and orientation, whereas off-diagonal blocks illustrate cross-correlations across

orientations or across scales. To zoom in some detail coefficients inter-relationships given

by matrix Pw, Figure 4.8 presents the two-dimensional parallel of Figure 4.6, showing the

correlation pattern for a typical horizontal detail coefficient.

The wavelet covariance Pw, shown above, is not a diagonal matrix, indicating that the

wavelet coefficients are not, in fact, independent. Indeed, it is well known that localized

image structures, such as edges, tend to have substantial power across many scales. We

have observed [7] that, although the majority of correlations are very close to zero, a

relatively significant percentage (10%) of the coefficients are strongly correlated across

several scales or across orientations.

Since the wavelet statistical results illustrated by Figure 4.7 and 4.8 play a critical role

in this research study which focuses on developing wavelet joint probabilistic models, the

next section is devoted to performing a comprehensive examination and understanding of
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Figure 4.7: Correlation coefficient absolute values of the thin-plate GMRF model in the

spatial and wavelet domains. Top panels: |Px| and its associated |Pw| for the prior with

short correlation length. Bottom panels: |Px| and |Pw| for the prior with long correlation

length.
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Figure 4.8: Summary of correlation between a horizontal coefficient and its spatially local

neighbors at the same scale, but different orientations and across scales but the same

orientation. For the purpose of demonstration the centered coefficient variance value was

set to zero.

wavelet correlations.

4.3 Wavelet Covariance Matrix

In order to study wavelet correlations exactly various statistical GMRF textures x with

known covariance Px, as shown in Figure 4.10 are considered. The fine scale texture x ≡ x0

has a 2-D wavelet decomposition

Wx0 =




aJ

wJ

...

w1




(4.17)
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Figure 4.9: Schematic plot of the wavelet covariance matrix Pw. The main diagonal blocks

show autocorrelation of coefficients correspond to the same scale and orientation, whereas

off-diagonal blocks illustrate cross-correlations across orientations or across scales.

where

wj =




wj
h

wj
v

wj
d


 (4.18)

contains the three orientation subbands at scale j, and where aJ represents the scaling

coefficients at the coarsest scale J . The wavelet operator W is linear, therefore the chosen

spatial domain image x and its covariance structure Px can be projected into the wavelet

domain via (4.16). As before, and because it is so widely used in wavelet HMMs, the

Daubechies class of wavelets is considered.

Figure 4.9 plots a schematic view of Pw by labelling each block as a sub-covariance

showing expectation between two subbands. Figure 4.11 shows correlation structures for
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two textures displayed in Figure 4.10 in the spatial domain as well as in the wavelet

domain. The clear block structure governing the wavelet covariance Pw is due to vari-

ous subbands carrying high frequency components, i.e., edges with different orientations.

Blocks representing within-scale correlations (auto- or cross-) are square in shape, due to

equality between within-scale subband sizes. However, cross-correlations across scales with

subbands of different sizes result in rectangular sub-covariances.

The above illustrations of the wavelet domain covariances lead to the following obser-

vations:

• Diagonal sub-covariances in Pw: The diagonal blocks show the auto-correlation of

within-scale coefficients located at the horizontal, vertical and diagonal orientations,

respectively. Due to the column-wise 2-D to 1-D data stacking (Figure 4.2), large

magnitude auto-correlations of the vertical coefficients tend to concentrate near the

main diagonal, whereas those of the horizontal coefficients are distributed on the

diagonals n pixels apart.

• Within-subband correlations: It is significant to notice that regardless of the orienta-

tion, the large magnitude correlations at any subband are basically arranged in lines

following the orientation of the subband. The bottom panel in Figure 4.11 shows

Px and Pw for tree-bark texture (shown in Figure 4.10) with strong spatial domain

correlation among vertical neighbors. Consequently, the strong wavelet correlation

among vertical subband coefficients is apparent.

• Across-subband correlations: The off-diagonal square blocks represent within-scale

correlation between coefficients at the same spatial positions but from horizontal,

vertical, or diagonal directions (i.e., cousins).

• Across-scale correlations: In addition to the square blocks (representing within-scale
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(a) Membrane (b) Thin-plate

(c) Tree-bark (d) Grass

(e) Calf leather (f) Pigskin

Figure 4.10: Six GMRF textures used to generate wavelet statistics.
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Figure 4.11: Correlation coefficient magnitudes of the thin-plate and tree-bark models in

the spatial and db2 wavelet domains. The main diagonal blocks in Pw show autocorrelation

of coefficients correspond to the same scale and orientation, whereas off-diagonal blocks

illustrate cross-correlations across orientations or across scales.
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localities), the rectangular blocks exhibit significant correlations between subbands

across different resolutions, even for subbands located at several scales apart.

As is obvious from these results, there is a clear locality to the correlation structures

both within and across scales, and so the wavelet coefficients are proposed to be modeled

not as independent, but as governed by a random field. Just as with the HMM methods,

described in § 3.4, the neighborhood structures exhibited by the wavelet statistics must be

assessed.

4.3.1 Numerical Experiments with the Wavelet Correlations

So far, the first goal – to emphasize the non-whitening property of the WT – has been met.

This important observation and the block structure of the wavelet domain prior Pw led this

work toward a series of numerical studies which are discussed here. In this section, several

exhaustive tests on Pw are performed to characterize the underlying significant correlation

structure and to make its content values and relationship more meaningful. It is generally

infeasible to directly utilize the huge covariance matrix Pw in an estimation process, due to

space and time complexities. The goal is to study the properties of Pw in order to deduce

a simple, but still accurate, representation of the underlying correlation model; that is, to

construct a new sparse covariance matrix, which contains the most significant information

from the prior model. Of course, the study of large covariance matrices is for diagnostic

and research purposes; ultimately any practical estimation algorithm will be based on some

implicit sparse model of the statistics.

In these experiments the wavelet coefficients are treated in various ways, from complete

independence to full dependency among all coefficients over the entire wavelet tree. As is

shown in Table 4.1, eight different (amongst many) cases of adding more features to the

covariance matrix may be considered. For each case, except the diagonal case, at least one
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Figure 4.12 panels within subband across subbands across scales

(a) diagonal no no no

(b) intersubband no yes no

(c) interscale no no yes

(d) intersubband-interscale no yes yes

(e) within-subband yes no no

(f) within-scale yes yes no

(g) intrasubband-interscale yes no yes

(h) full yes yes yes

Table 4.1: Eight different ways to obtain a new wavelet-based covariance structure which

contains a combination of three important neighborhood correlation factors, namely intra-

orientation, intra-scale, and inter-scale.

of the three important neighborhood correlation maps – within-subband, within-scale, and

across-scale – is considered.

Figure 4.12 visualizes all eight structures obtained from the original correlation matrix

Pw in Figure 4.7. The test is started with the simplest case, in which all the wavelet co-

efficients are treated as being independent. Theoretically, this means that all off-diagonal

entities of Pw are zero as is depicted in Figure 4.12(a). Note that simple wavelet-based

algorithms, such as point-wise shrinkage [33], in which the coefficients are treated as sta-

tistically decorrelated, only consider the diagonal entries of the covariance matrix. This

is obviously a weak assumption which ignores the fact that significant interactions remain

between the coefficients. Hence, one needs to seek a structure which carries the most signifi-

cant correlations between wavelet coefficients and in a spare representation. It is important

to notice that the cross-correlation of any two subbands can be eliminated by simply re-
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Figure 4.12: The correlation structures from Table 4.1. As within-scale dependencies are

considered (e), the structural density increases dramatically. The across scale correlations

(g) add significant information, but have less impact on density increment.
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placing their corresponding correlation block in Pw by zero. The structures displayed by

Figure 4.12(f) and (g) indicate that adding intra-scale correlations increases the structure’s

density (Figure 4.12(f)) much more than the inter-scale dependencies (Figure 4.12(g)).

It is important to notice that there are many possible combinations of correlation

structures that one could examine. However, we are limited with the positive definiteness

of the resulted matrices. Among the structures tested here, Figure 4.12(c) and (d) are not

positive definite, thus are not used in estimator error evaluations discussed next.

As is illustrated in Figure 4.13, each variation shown in Figure 4.12 clearly will differ in

its complexity (matrix density) and statistical accuracy, a comparison which is discussed

below for the standard image denoising problem.

4.3.2 Bayesian Estimate: A Quantitative Evaluation

A simple estimation algorithm is adopted here to evaluate and compare the achieved vari-

ous wavelet statistical structures. To exploit the above dependency maps we implement a

method that estimates the original coefficients by explicit use of wavelet covariance struc-

ture.

Define the noisy observation y as

y = x+ ν, x ∼ (0, Px), ν ∼ N (0, R), (4.19)

where its wavelet counterpart is

wy = wx + wν , wx ∼ (0, Pw), wν ∼ N (0, R). (4.20)

The Bayesian Least Square (BLS) method which directly takes into account the covariance

structure is

x̂ = argx̂ min{E[(x− x̂)(x− x̂)T |y]}
x̂ = Px(Px +R)−1y

(4.21)
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Figure 4.13: RMSE plot as a function of covariance density. It is evident how a tiny

fraction of coefficients already provides the majority of the improvement. Labels match

the panels in Figure 4.12.

The goal is to estimate wx from noisy observation wy, where the additive noise wν is

decorrelated with the original data wx. Therefore the BLS may be applied in the wavelet

domain. Because of the linearity and orthogonality of the WT, it is necessary to substitute

(4.16) into (4.21). Then the orthogonal wavelet transform of the BLS method is obtained

as

ŵx = WPxWT (WPxWT + WRWT )−1Wy

ŵx = Pw(Pw +R)−1wy

∴ x̂ = W−1[Pw(Pw +R)−1wy]

In order to perform appropriate comparisons all structures of Pw illustrated in Fig-
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ure 4.12 are considered in the BLS framework, except those shown in Figure 4.12(c),(d),

due to not being positive definite. The resulting estimation error is obtained as

RMSE =
1

n

√√√√
n2∑

i=1

P̃w(i, i) (4.22)

where

P̃w = (P−1
w +R−1)−1

is the estimation error covariance [38].

Figure 4.13 displays the RMSE noise reduction achieved as more correlations are taken

into the estimation process:

• The RMSE performance is not necessarily monotonic in matrix density!

• The vast bulk of the benefit is to be gained from relatively few coefficients.

• There is a significant RMSE reduction when across-scale correlations are considered.

• Larger extent of intra-scale dependencies, however, does not lead to significant RMSE

reduction. This fact confirms the earlier discussion of reducing the within-scale neigh-

borhood dependency in the model.

It is obvious that modeling the complete joint probability density function of wavelet

coefficients f(w) is computationally intractable. On the other hand, the statistical inde-

pendence assumption, i.e., f(w) =
∏

i f(wi) ignores the coefficients interconnections. The

need to assume dependencies among the coefficients is, thus, obvious and the extent of

wavelet dependencies can be deduced from the above numerical simulations, which indi-

cate that, surprisingly, a large fraction of intra-scale correlation values are very close to
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zero and there are only few significant within-scale correlations. This fact reveals the im-

portance of taking into consideration a small within-subband correlation range, e.g., 3× 3

spatially located coefficients, along with a large extent of across-scale dependencies.

In summary, the goal is revisited: a study of probabilistic models which describe the

wavelet random field with a small fraction of coefficients, but which accurately absorb

each pixel’s dependency on the rest of the wavelet tree. Therefore, the above empirical

examinations will continue to highlight the most significant coefficient inter-relationships,

which will lead to insights regarding hierarchical correlation models describing the wavelet

statistics.

4.4 Wavelet Domain Joint Histograms

Because correlation can be a misleading indicator of statistical relationship (correlation

may not be a good measure of degree of dependence, and uncorrelation does not mean

independence), before making any further conclusions or drawing any map of wavelet

statistics, examine the joint probability densities of pairs of coefficients, illustrated via

joint histograms and wavelet dependencies via conditional histograms.

To obtain wavelet joint and conditional histograms a collection of 500 real-world images

has been used.4 Figure 4.14 displays sample images of this image set. The images were

projected into the wavelet domain with Figures 4.15 and 4.16 demonstrating the joint his-

tograms of a horizontal wj
h(x, y) or vertical wj

v(x, y) coefficient, respectively, with a chosen

set of other significantly related coefficients. Figures 4.17 and 4.18 illustrate the condi-

tional histograms of, respectively, an horizontal or vertical coefficient, given the magnitude

of a coefficient within subband, across subbands and across scales. Each individual plot

4California Institute of Technology CVI Database: www.vision.caltech.edu/html-files/archive.html.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.14: Samples of real images used in the study of wavelet joint and conditional

histograms.
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corresponds to those shown in Figures 4.15 and 4.16.

The conditional distribution were also calculated for an ensemble of GMRF textures

displayed in Figure 4.10 and are depicted in Figures 4.19 and 4.20. Each panel in these

plots is parallel to its counterpart in Figures 4.17 and 4.18.

These plots highlight the following important aspects:

• Panels (a-d): the correlation direction of two spatially adjacent coefficients are a

function of subband: within its subband, a horizontal coefficient is more correlated

with its vertical neighbors than its horizontal ones. This observation is intuitive:

the row elements in the horizontal channel result from the application of a high-

pass filter, and are thus more decorrelated than the column elements which result

from low-pass filtering. Similarly, an analogous vertical coefficient is more correlated

with its horizontal neighbors. Surprisingly, the second-order neighbors are almost

uncorrelated (panel d).

• Panels (e-h): a child coefficient strongly depends not only on its parent (a fact

observed by many other researchers) but also on its parent’s adjacent neighbors,

vertically in Figure 4.15. By symmetry, in Figure 4.16 a vertical coefficient depends

on its parent’s horizontal neighbors.

• Panels (i & m): coefficients at the same location but from different orientations are

essentially independent (panel i), directly at odds with most inter-orientation models!

• Panels (j-l) & (n-p): there is, however, inter-orientation correlation, but with pixels

at other locations, dependent on the direction of the associated subband.

Thus, the expected child-parent relationships are confirmed, together with a strong sub-

band dependence in the spatial correlations.
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Figure 4.15: Empirical joint histograms of a db2 horizontal coefficient of the real images

and at position wj
h(x, y) associated with coefficients at the same scale and orientation (a-d),

at the same orientation but adjacent scales (e-h), at the same scale but across orientations

(i-p). The skewness in the ellipsoid indicates correlation.



94 Image Models for Wavelet Domain Statistics

0

5

10

15

20

25

(a) wj
v(x± 1, y)

0

5

10

15

20

25

(b) wj
v(x ± 2, y)

0

2

4

6

8

10

12

14

16

18

20

22

(c) wj
v(x, y ± 1)

0

5

10

15

20

25

(d) wj
v(x− 1, y − 1)

0

5

10

15

20

25

(e) wj+1
v (⌊x/2⌋, ⌊y/2⌋)

0 

5 

10

15

20

(f)

wj+1
v (⌊x/2⌋ − 1, ⌊y/2⌋)

0

2

4

6

8

10

12

14

16

18

20

22

(g)

wj+1
v (⌊x/2⌋, ⌊y/2⌋ − 1)

0

2

4

6

8

10

12

14

16

18

20

22

(h) wj+2
v (⌊x/4⌋, ⌊y/4⌋)

0

5

10

15

20

(i) wj
h(x, y)

0

5

10

15

20

25

(j) wj
h(x± 1, y)

0

2

4

6

8

10

12

14

16

18

20

(k) wj
h(x− 1, y − 1)

0

5

10

15

20

25

(l) wj
h(x+ 1, y − 1)

0

5

10

15

20

25

(m) wj
d(x, y)

0

2

4

6

8

10

12

14

16

18

20

(n) wj
d(x, y ± 1)

0

5

10

15

20

(o) wj
d(x+ 1, y)

0

2

4

6

8

10

12

14

16

18

20

(p) wj
d(x− 1, y)

Figure 4.16: Plots parallel to Figure 4.15 showing joint histograms of a db2 vertical co-

efficient at position wj
v(x, y). Dependencies for horizontal and vertical coefficients are

symmetrically identical.
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Figure 4.17: Conditional histograms of a db2 horizontal coefficient corresponding to the

plots in Figure 4.15. In each plot, brightness indicates probability, with each column being

independently rescaled to cover the whole range of intensities.
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Figure 4.18: Plots parallel to Figure 4.17 showing conditional densities for a db2 vertical

coefficient. The vertical-band dependence map is symmetrically identical to the horizontal-

band dependence map.
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Figure 4.19: Parallel plots to those displayed in Figure 4.17 for a db2 horizontal coefficient,

but for GMRF thin-plate texture of Figure 4.10.
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Figure 4.20: Parallel plots to those displayed in Figure 4.18 for a db2 vertical coefficient,

but for GMRF thin-plate texture of Figure 4.10.
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In summary, this section is not to report the striking wavelet correlations exhibited in

these empirical observations, as it was seen earlier in this chapter. Rather, it is observed

that, surprisingly, the existing wavelet joint models not only consider a subset of these inter-

relationships but also choose to relate some coefficients which are indeed independent, e.g.,

in HMT-3S three coefficients at the same location from three subbands are grouped into

one node, an assumption that is rejected by these plots. With the joint and conditional

distributions of Figures 4.15-4.20 by way of introduction, a thorough study of wavelet

correlations is considered next.

4.5 Simulation of Wavelet Joint Statistics

Because all of the joint histograms displayed in § 4.4 are well-characterized by their re-

spective correlations (red curves), a more comprehensive study of wavelet correlations is

justified.

Figure 4.21(a) illustrates the arrangement of a typical coefficient at a fine scale along

with its spatially closed neighbors painted in different colors (right) and the corresponding

parents (left) at the coarser scale. Figure 4.21(b) displays the top panel locality in a quad-

tree structure. It is immediately obvious that first-order neighbors (siblings) of a pixel are

not necessarily spawned from the same parent.

The purpose of these illustrations is to point toward an important issue: although two

coefficients may be spatially close, they can be located on distantly separated branches

of the wavelet tree. Consequently a standard wavelet quad-tree, modeling only parent-

child relationships (as was done mostly and exclusively in the literature), will only poorly

represent spatial interrelationships, in those cases where they are found to be significant.

A clear neighborhood structure, such as for a Markov random field [41], which is capable
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Figure 4.21: Illustration of a coefficient in the fine scale (shown by •), whose spatial

neighbors come from different parents in the coarser scale.

of describing these statistical interactions of wavelet coefficients, is required.

Answering this question is challenging because of the issues raised in Figure 4.21: the

tree-relationship between a pixel and its spatial neighbors is pixel dependent. So notions
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Figure 4.22: The correlation structure of a db2 wavelet coefficient (marked by •) with

all other coefficients. (a): Correlation structure of a horizontal coefficient for the tree

texture Figure 4.10(c). (b): Correlation structure for a horizontal coefficient of the thin-

plate model Figure 4.10(b).

of stationarity, obvious in the spatial domain, become subtle (or completely invalid) in

the wavelet domain. In short, does one need to specify a different neighborhood structure

for every wavelet coefficient (since each coefficient occupies a unique position on the tree),

or perhaps one structure for all of the “lower-left” children of parents and another for

“upper-right” etc., or is there some degree of uniformity that applies?

4.5.1 2-D Wavelet Diagram of Wavelet Correlations

The problem was studied visually, and without any particular spatial assumptions. For

simplicity of interpretation, and as shown in Figure 4.22, a tool which utilizes the tradi-

tional 2-D WT structure to display the correlation between any specified coefficient and all

other coefficients on the entire wavelet tree, was devised. In this simulation, the wavelet

covariance Pw is employed from which the associated correlation row (column) showing the
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chosen coefficient’s covariance with all other wavelet coefficients is extracted and displayed

in 2-D WT diagram. For the purpose of illustration, only, the autocorrelation of the se-

lected coefficient is set to zero. Figure 4.22(a) shows the correlation of a typical horizontal

coefficient (indicated by •) of the tree texture (Figure 4.10(c)), exhibiting a strong vertical

correlation both within and across scales. Similarly Figure 4.22(b) displays correlation

structure of a selected horizontal coefficient of the thin-plate model (Figure 4.10(b)).

Evidently the coefficient interactions show a clear preference to locality, as must be

expected. This locality increases toward finer scales, which supports the persistency prop-

erty of wavelet coefficients, the basic attributes which nearly all wavelet models have in

common [19]. In particular, the correlation structure is spatially-localized and sparse. The

local neighborhood definition for any given pixel does not confine to the pixel’s subband:

it extends to dependencies across directions and resolutions. Besides the long range across

scale correlations, every typical coefficient exhibits strong correlation with its immediate

neighbors both within subband and scale. The correlation structure for horizontally and

vertically aligned coefficients are almost symmetrically identical. For textures whose edges

extend more or less toward one direction (such as tree-bark), this similarity does not hold.

Figure 4.23 shows the correlation coefficients, averaged over the wavelet priors corre-

sponding to the textures of Figure 4.10: the behaviors evidenced in the plots are thus

persistent patterns, not the peculiar behavior of a single, particular texture.

There is a very clear consistency between these maps and the conclusions reached from

the joint histograms. There are, however, striking patterns which are not reflected in other

models:

• A given coefficient is not correlated with siblings at other orientations: the hybrid

HMT-3S model proposed by Fan and Xia [37] integrates three corresponding siblings

across other orientations. These observations, however, indicate that within any par-
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Figure 4.23: Wavelet (db2) correlation structures averaged over the textures displayed

in Fig. 4.10, except tree-bark (because of its special structure). Each panel plots the

correlation of a selected coefficient (•) with all other coefficients at all orientations and

scales.

ticular scale, across-subband siblings are nearly decorrelated, though across-subband

neighbours of siblings are related.

• Within-subband correlations are orientation-dependent: horizontal coefficients are

vertically correlated, vertical coefficients are horizontally correlated.

• Inter-subband correlations are orientation-dependent: horizontal coefficients are cor-
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Figure 4.24: Wavelet (db2) correlation structures averaged over a collection of 5000 real

images. Each panel contains three plots illustrating the correlations of a given coefficient (•)
with its local neighborhoods in the horizontal, vertical, and diagonal subbands.

related with vertical neighbours in the diagonal subband, vertical coefficients are

correlated with horizontal neighbours.

• Inter-scale correlations are orientation-dependent: in addition to its parent, a coeffi-

cient is correlated with the spatial neighbors of its parent, e.g. a horizontal coefficient

is more related with vertical neighbors of its parent.

Finally, to confirm that the conclusions are not the result of Markovianity, Gaussianity,
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Figure 4.25: Wavelet (db4) correlation structures averaged over a collection of 5000 real

images. Each panel contains three plots illustrating the correlations of a given coefficient (•)
with its local neighborhoods in the horizontal, vertical, and diagonal subbands.

or other coincidences associated with our choices of textures, Figures 4.24 and 4.25 plot

the correlation maps for db2 and db4 wavelets averaged over a collection of 5000 randomly

cropped and subsampled real-world images, with example shown in Figure 6.4. The

consistency between Figures 4.24 and 4.25 and Figure 4.23 is very clear. Furthermore,

all panels of Figures 4.24 and 4.25 support the conclusion of sibling uncorrelatedness and

orientation-dependence.
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4.5.2 Significance of Wavelet Correlations

Because correlation coefficients can mislead (a high coefficient between two tiny-variance

wavelet elements may not be of modeling significance), we propose to measure the correla-

tion significance [7] as the reduction in mean-square estimation error induced by including

the correlation relationship.

It is not remotely obvious that the correlation coefficients plotted above necessarily

quantitatively correspond to importance in considering coefficient interactions. That is,

can one more objectively quantify what it means for some correlation to be important or

significant?

For small test problems the wavelet-based covariance Pw can be determined exactly.

Suppose two coefficients w1, w2 are observed in the presence of noise:

 wn1

wn2


 =


 w1

w2


 +


 ν1

ν2


 ,


 ν1

ν2


 ∼ N


0,


 r 0

0 r





 (4.23)

Under the standard independence assumption, if only the coefficient variances are kept

from the full covariance, then their estimate is

 ŵ1

ŵ2


 =





 σ2

x 0

0 σ2
y




−1

+


 r 0

0 r



−1


−1 

 r 0

0 r



−1 

 wn1

wn2


 (4.24)

with the associated estimation error

∼
P 1=







 σ2
w1

0

0 σ2
w2




−1

+



 r 0

0 r




−1


−1

(4.25)

On the other hand, if we model the two coefficients with their precise correlation, the

estimation error proceeds as

∼
P 2=





 σ2

w1
λw1,w2

λw2,w1 σ2
w2




−1

+


 r 0

0 r




−1


−1

(4.26)
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Figure 4.26: Plot of the estimation MSE significance of the db2 wavelet interrelationships

depicted in Fig. 4.23.

In other words, the importance of this particular correlation can be quantified as the degree

to which it affects the accuracy of the estimation, which although related to the correlation

coefficient, is not proportional to it. Define the significance to be the difference of the total

MSE under the two approaches:

λ̂w1,w2 = tr(
∼
P 1) − tr(

∼
P 2) (4.27)

Figure 4.26 shows the significance of correlations for the corresponding coefficients dis-

played in Figure 4.23. It is evident from these diagrams that within scale dependency
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range reduces to shorter locality, but across scale activities still present up to several

scales. The computation of significant covariances, thus, confirms that the well-structured

coefficients dependencies to be hierarchical.

4.6 Chapter Summary

In summary, a thorough study of empirical 2-D wavelet correlation structures has been

presented in this chapter. The expected patterns – correlation sparsity and parent-child

persistence – are clear, however, there are additional striking relationships which, as yet, are

not normally found in wavelet models. Examples of interscale and intra-scale dependencies

that are missing in the existing models were discussed. In particular, coefficients are

very nearly decorrelated with siblings across orientations, however, there is a very strong

orientation-dependence governing correlations within subbands, across orientations, and

across scales.

Following the wavelet statistical observations discussed here, there are two primary

research directions: (1) proposing models with high and precise capability to describe the

wavelet statistics along with utilizing tools to examine the model accuracy by comparing

it with the current thresholding methods, in an RMSE sense (Ch. 5), and (2) devising an

estimation/ denoising/ shrinkage algorithm, which takes into account the proposed models

and results in optimum error and low computational cost (Ch. 6).



Chapter 5

Models of Wavelet Statistics

This chapter presents a detailed description of the statistical modeling approaches that

have been taken throughout this research to approximate the interrelationships among

wavelet coefficients. The essential goal is to reduce the dimensionality of the wavelet joint

statistics (studied in Ch. 4) but to account for the most striking local structures.

As discussed in Ch. 4, the numerical simulations of the wavelet covariance structure

have revealed the importance of devising a model which covers a small within-scale locality

along with a large extent of across-scale dependencies. In order to meet this objective, there

are two alternatives to consider:

1. Imposing models which describe the long range statistical dependencies, such as the

full covariance matrix. Such models, however, lead to estimation algorithms that

are considerably complex and difficult to implement. If high accuracy is desired,

however, one can resort to this approach.

2. Proposing a statistical model which approximates the structural correlations over the

entire wavelet tree. The advantage of this approach is in the existence of estimation

109
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techniques which are fast and very easy to implement [100].

Having followed the latter approach, and in addition to the HMM work of others, described

in Ch. 3, two models of the wavelet joint statistics are developed in this study:

1. A wavelet multiscale statistical model [7], which captures the parent-child correlations

with no assumption of the activities across orientations.

2. An approach to Markov modeling [6, 8] the wavelet across scale, orientation, and

space activities.

The theories and methodologies associated with each of these two models are defined and

discussed in the current chapter. Just as with the HMM methods, we seek to better assess

the neighborhood structures asserted by these probabilistic models, which describe the

wavelet random field with a small fraction of coefficients, but which accurately absorb

each pixels dependency on the rest of the wavelet tree.

5.1 Multiscale Modeling

This section proposes the MS modeling of the wavelet joint statistics. It explains the results

of MS-based approximations of the wavelet domain covariance matrix corresponding to 1-D

as well as 2-D signals.

Before getting into the details of the proposed modeling approach, first the general

class of MS models organized on a quad-tree (Figure 5.1) is defined as a natural tree of

wavelet subbands.1 In this model, a random variable or random vector x(w) is associated

with each node w, representing some information related to the resolution and location

1Although methods of multiscale modeling are the topic of § 2.3, the principle intuition is discussed

here for the sake of clarity and continuity.
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corresponding to that node. In particular, assume wJ denotes the root node, located at

the top of the tree, i.e., coarsest resolution, to which a covariance P (x(wJ)) is assigned

to show the root’s marginal distribution. Note that J = log2 n (n: data size) depicts

the number of resolution levels between the finest scale up to the coarsest one, i.e., tree’s

depth. To all other nodes w a parent node pw is connected which is located at the next

coarser scale. Accordingly, one can define a coarse-to-fine transition probability density

Pr(x(w)|x(pw)). A complete set of these transition probabilities in addition to the root’s

initial distribution is sufficient to specify the joint pdf of x(.) over the entire MS tree.2

A significant assumption in MS modeling is the conditional independence. Given the

statistics of a node, all subtrees initiated from that node are conditionally independent,

e.g., for the children of node w shown in Figure 5.1:

Pr(x(c1w), x(c2w), x(c3w), x(c4w) | x(w)) =

Pr(x(c1w)|x(w)) Pr(x(c2w)|x(w)) Pr(x(c3w)|x(w)) Pr(x(c4w)|x(w)) (5.1)

Consider a class of linear MS models, where P (x(wJ)) is assumed to be Gaussian along

with the following coarse-to-fine recursive stochastic dynamic:

x(w) = Awx(pw) +Bwνw (5.2)

where Aw and Bw are parameter matrices associated with node w and νw ∼ N (0, I) is a

Gaussian white noise process.

The connection between the MS modeling framework and the wavelet tree can be

intuitively explained as follows. In Figure 5.1, each wavelet coefficient w is shown as a

node with pw as its parent and {ciw|i = 1, . . . , 4} being the set of its four children. As the

2Note that when w is root, pw is empty, implying that the expression P (x(w)|x(pw)) ≡ P (x(w)), the

prior probability of w.
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Figure 5.1: Tree-based illustration of a typical coefficient w along with its parent and four

children within one wavelet tree subband. At the top: the coarsest resolution. At the

bottom: the finest resolution, expressed by the image pixels themselves.

scale j decreases, the children add finer and finer details into the spatial regions occupied

by their ancestors [19].

The first-order scalar MS model (5.2) is adopted to devise an approximate model of

wavelet coefficient. First-order means that only the parent-child relationship, i.e., the

parent-child transition probability Pr(x(w)|x(pw)) is assumed. A scalar MS model means

that only one coefficient d = 1 is considered per node, i.e., x(.) is a random variable. The

discussion on the higher-order MS modeling with random vector processes investigated in

the present work, will follow in § 5.1.1.

At the coarsest resolution, the root node, the stochastic process x(wJ ) obeys the fol-

lowing statistics:

E [x(wJ)] = 0

E
[
x(wJ) xT (wJ)

]
= PJ

(5.3)

and the cross-correlation of each node w with its parent is computed through the scale-
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recursive relationship [100]:

Pw,pw
= E

[
x(w) xT (pw)

]

= E
[
{Awx(pw) +Bwνw} xT (pw)

]

= AwPpw

(5.4)

where Ppw
is the auto-covariance of node pw.

Having defined the initial conditions in (5.3) and across-scale statistics in (5.4), one can

easily calculate the system parameters A and B given in (5.2) [100]

Aw = Pw,pw
P−1

pw

BwB
T
w = Pw − AwPpw

AT
w

(5.5)

Following the above introduction to the theory of MS modeling, two basic directions

taken to examine the wavelet correlation structure of both 1-D and 2-D signals are discussed

next. The objective is to study the capability and accuracy of the MS framework in

capturing the significant wavelet correlations.

5.1.1 MS Modeling of a Binary Tree

The very first step is to understand the behavior of the MS model (5.2) applied on a binary

tree (Figure 5.2), when the 1-D wavelet domain covariance is given.

Once again an exponentially distributed signal of size n = 128 as given in (4.14) is

considered with its wavelet covariance Pw and its associated correlation map Pw depicted

in Figure 5.3(a). The first-order scalar MS modeling (5.2) was used with the root’s auto-

covariance PJ extracted directly from the wavelet covariance Pw and resulted the ap-

proximated covariance P̂w. The approximated wavelet correlation map P̂w is shown in

Figure 5.3(b).
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Figure 5.2: A binary tree with seven decomposition levels.

The above methodology leads to the following observations:

• The finger structure of Pw is preserved in P̂w. Note that the number of fingers

depends on the number of decomposition levels [43].

• The parent-child dependencies exhibited by P̂w are quite clear.

• Although the tree-based correlations are captured up to many scales apart, the

within-scale stationarity is lost, because the first-order MS model is not accurate

enough to assert an efficient within-scale conditional decorrelation, i.e., this model is

a relatively poor approximate of the true within-subband model.

To solve the wavelet-spatial modeling issue associated with the MS-based modeling,

i.e., to make the conditional decorrelation asserted by the MS model more valid, either (or

both) of the following two alternatives can be considered:
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Figure 5.3: (a) A 1-D wavelet correlation map and (b) its MS-based approximate. Pw, the

correlation coefficient of Pw, is displayed.
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1. Dimension: the number of coefficients that form each node on the tree can vary.

A particular node may contain only a single wavelet coefficient, i.e., a scalar, or a

finite set of the coefficients, i.e., a vector. Figure 5.4 shows several possible node

sizes which could be employed in the MS-based modeling of the typical binary tree

of Figure 5.2.

2. Order: the modeling accuracy can be increased from first-order (the state of the

parent is sufficient for a child to be decoupled from all other nodes) to second-order

(the grand-parent’s statistics are also necessary for a node to be independent from

the rest of the tree), and even to higher orders. Figure 5.5 illustrates second-order

MS modeling with various node sizes applied on a binary tree.

To understand the trade off between the accuracy of the MS model and the computational

complexity of the estimation process, a variety of MS models, including first-order to

log2nth-order and scalar to vector of coefficients per node, are examined. In particular,

the first-order MS model with all six tree node sizes depicted by Figure 5.4 was used

to approximate the entities of the wavelet covariance Pw with the experimental results

displayed in the top left panels in Figures 5.6-5.12. The lower left panels of each figure

show the difference between each estimate and the original covariance matrix, and the right

panels zoom into the finest scale diagonal block entries of the left panels. Clearly, as the

model complexity increases the parsimony in the estimated P̂w decreases.

The purpose of this study is to demonstrate that the MS-based accuracy grows as

a function of its complexity. In accordance, Table 5.1 summarizes the computational

complexity for each MS model. From top left to bottom right the correlation structure

becomes dense while the complexity of even simple estimation algorithms gets harder.

The observations, up until now, indicate that the MS-based approximation is an elegant

and reasonable tool to model the 1-D wavelet coefficients locality. The next step is to
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(a) node size d=2 (b) node size d=4

(c) node size d=8 (d) node size d=16

(e) node size d=32 (f) node size d=64

Figure 5.4: Illustration of first-order MS modeling with various node sizes applied on a

binary tree.
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(a) node size d=3
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(b) node size d=6
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Figure 5.5: Illustration of second-order MS modeling with various node sizes applied on a

binary tree.
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MS Model Order

1st 2nd 3rd 4th · · · (log2n)th-order

d = 1(m = n− 1) - - - - -

d = 2(m = n
2
) d = 3 - - - -

d = 4(m = n
4

+ 1) d = 6 d = 7 - - -

d = 8(m = n
8

+ 2) d = 12 d = 14 d = 21 - -
...

...
...

...
...

...

d = n
2
(m = log2n) d = Σ2

i=1
n
2i d = Σ3

i=1
n
2i d = Σ4

i=1
n
2i · · · d = n− 1(m = 1)

Complexity of each case is O(d3m), where m = # of nodes on the tree

Table 5.1: Summary of computational cost of the MS model to approximate a wavelet

binary-tree for a 1-D signal of size n. Each number shows the complexity for a combination

of MS model order and number of coefficients per node (dimension d).

examine the extended MS framework and test its effectiveness in modeling 2-D wavelet

statistics.
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Figure 5.6: Wavelet binary tree first-order MS modeling; node size d=1. (a) shows the ap-

proximate |P̂w|, (b) zooms into the finest scale approximation, and (c-d) show the accuracy

of the model through its difference with the original Pw, which was shown in Figure 5.3(a).
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Figure 5.7: Plots parallel to those shown in Figure 5.6, except for node size d=2. The

more complex the model, the more accurate the approximation.
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Figure 5.8: Plots parallel to those shown in Figure 5.6, node size d=4. The white color

area in panels (c-d) correspond to the node size.
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Figure 5.9: Plots parallel to those shown in Figure 5.6, node size d=8.
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Figure 5.10: Plots parallel to those shown in Figure 5.6, node size d=16.
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Figure 5.11: Plots parallel to those shown in Figure 5.6, node size d=32.
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Figure 5.12: Plots parallel to those shown in Figure 5.6, node size d=64. Note how the

accuracy of the MS model can exactly recover the finest scale correlations in this example.
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5.1.2 MS Modeling of a Quad Tree

The two-dimensional expansion of the MS model implemented in the previous section is

adapted to approximate the quad-tree associated with the 2-D WT. Figure 5.13(b) shows

the correlation structure obtained by imposing the first-order scalar MS process (5.2) on

the original model of Figure 4.12(h)3, leading to the following observations:

• The inter-scale correlations, even up to distantly separated scales, are well absorbed

by this recursive stochastic model.

• The clear locality of neighborhood dependencies exhibits a within-scale Markovianity.

• The MS modeling is an approach to sparsify the wavelet joint statistics by describing

the most significant statistical information between tree parents and children.

Figure 5.14 compares statistical accuracy (RMSE) and complexity (matrix density) of

the proposed MS-based wavelet model with the variety of possible wavelet correlation

structures examined in § 4.3.1. The MS-based correlation structure is promising and

outperforms the estimation based on the decoupling assumption of the WT. The MS-

based structure with relatively few coefficients (a sparse structure of the huge covariance

matrix) reduces the RMSE.

Regardless of its successful absorption of the across-scale dependencies, this model still

demands improvements in describing the within-scale relations. The interrelationship of

pixels within a scale (i.e., across and within subbands) is only implicit and very limited

(Figure 4.21). Two coefficients may be spatially close, they can be located on distantly

separated branches of the wavelet tree. In other words, the correlations between spatially

3In order to compare the MS-based approximation with the numerical study of the wavelet covariance

structure the same spatial prior as used in § 4.3.1 is adopted here.
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Figure 5.14: RMSE performance as a function of covariance density for an image denoising

problem. It is evident how a tiny fraction (but significant) of correlations absorbed by MS

model already provides the majority of the improvement.

close siblings are hidden through their parents, because of the MS conditional indepen-

dence assumption. This performance makes the MS modeling a wavelet orientation inde-

pendent approach. As is seen in Figure 5.13(a), the diagonal block entities indicate that

the direction of correlation between siblings depends explicitly on the subband orientation.

However, this important property of the spatial neighborhood is hidden in Figure 5.13(b).

Figure 4.21 demonstrates that how the spatial proximity of two coefficients within a sub-

band is different from their location on distantly separated branches of the wavelet tree.

Consequently a standard wavelet quad-tree, modeling only parent-child relationships, will

only poorly represent spatial interrelationships in those cases where they are found to be
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significant.

This is a disadvantage of wavelet first-order MS modeling of only parent-child relation-

ships with poor representation of spatial interactions. An alternative is to use higher order

MS models with higher node dimensions. This, however, increases the computational cost

of the corresponding estimation algorithms [100]. Instead, one can consider a more explicit

but appropriate modeling of wavelet statistical dependencies on spatial neighbors. Since

correlations are present both within and across scales, there should exist MRF models gov-

erning these local dependencies. The remainder of this chapter is focused on investigating

random fields modeling of wavelet joint statistics.

5.2 Markov Random Fields Modeling

Assuming that the wavelet coefficients are correlated, a neighborhood structure must first

be defined. Consider the wavelet correlation maps discussed in § 4.5 (for convenience

Figure 5.15, a copy of Figure 4.24, is included here). These maps demonstrate a correlation

structure with obvious dependency at scales and subbands, which is weakly modeled by

the MS method. Based on these maps six different symmetric neighborhood structures can

be chosen. For a coefficient wi belonging to the wavelet coefficients set w = {wh, wv, wd}
define

pk(i) = {p1(i), . . . , pk(i)}

ck(i) = {c1(i), . . . , ck(i)}

sud(i) :
r

r

×
r

s1(i) : r × r

r

r r r

s2(i) : r × r

r r r

s2
ud(i) :

r

r

r

r

× slr(i) : r r× s2
lr(w) : r r × r r
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Figure 5.15: Wavelet (db2) correlation structures averaged over a collection of 5000 real

images. Each panel contains three plots illustrating the correlations of a given coefficient (•)
with its local neighborhoods in the horizontal, vertical, and diagonal subbands. This is a

copy of Figure 4.24.

where pα(i) is the ancestor of i of α generations (scales), cα(i) is the set of descendants of

i of α generations (scales), and sα
n(i) defines various sibling sets (at the same scale as i).
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This allows us to propose six neighborhood structures:

N 1(i) = {p1(i), c1(i), s1(i)}
N 2(i) = {p1(i), c1(i), s2(i)}
N 3(i) = {p2(i), c2(i), s1(i)}
N 4(i) = {p2(i), c2(i), s2(i)}

N 5(i) =






{p2(i), c2(i), s2(i), slr(sud(v(i))), sud(d(i))}, if i ∈ wh

{p2(i), c2(i), s2(i), slr(sud(h(i))), slr(d(i))}, if i ∈ wv

{p2(i), c2(i), s2(i), slr(v(i)), sud(h(i))}, if i ∈ wd

N 6(i) =





{p2(i), c2(i), s
2
ud(i), slr(sud(v(i))), sud(d(i))}, if i ∈ wh

{p2(i), c2(i), s
2
lr(i), slr(sud(h(i))), slr(d(i))}, if i ∈ wv

{p2(i), c2(i), s1(i), slr(v(i)), sud(h(i))}, if i ∈ wd

(5.6)

where operators d(i), v(i), and h(i) return diagonal, vertical, and horizontal subband

counterparts to a given index i. The last two neighborhood systems are visually illustrated

by Figure 5.16. With these hypothesized structures in place, the remainder of this section

develops and tests two associated models.

5.2.1 Local Estimation

Before any attempt to approximate the wavelet-domain covariance with a sparse structure,

the effectiveness of the notion of wavelet locality observed in Figure 5.15 and introduced

by (5.6) is examined. I begin with an explicitly local estimator, where only those measure-

ments within the neighborhood are used. Thus, given the noisy measurements

y = w + ν, ν ∼ N (0, R)
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(a) N 5-Horizontal (b) N 6-Horizontal

(c) N 5-Vertical (d) N 6-Vertical

(e) N 5-Diagonal (f) N 6-Diagonal

Figure 5.16: Structures of two proposed MRF neighborhood systems N 5 and N 6 in (5.6).

Note the symmetric structure between the horizontal and the vertical subbands.
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and a neighborhood system N , form two neighborhood vectors

y
i

= [yi, {yj; j ∈ Ni}]T

wi = [wi, {wj; j ∈ Ni}]T

If wi is assumed jointly Gaussian (as an approximate assumption), the standard estimator

follows trivially

ŵi = Pwi,yi
· P−1

y
i
· y

i

ŵi = Li · yi

(5.7)

where

ŵi = ŵi(1)

= E[wi|yi
]

(5.8)

is the only quantity of interest at this stage.

The estimation error covariance for ŵi = Li · yi
is

cov(ŵi − wi) = cov(Li · yi
− wi)

= (Li · yi
− wi)(Li · yi

− wi)
T

= Li(Pwi
+Ri)L

T
i − LiPwi

− Pwi
LT

i + Pwi

P̃i = (I − Li)Pwi
(I − Li)

T + LiRiL
T
i (5.9)

For every individual wavelet coefficient the local covariances Pwi,yi
and Py

i
are obtained

from the original wavelet domain covariance Pw. However, because the true covariance

matrix Pw is hard to obtain, then we want to use an approximate estimate, based on the

approximated P̄wi,yi
and P̄y

i
, which leads (5.7) to

ˆ̄wi = P̄wi,yi
· P̄−1

y
i
· y

i

ˆ̄wi = L̄i · yi

(5.10)
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Figure 5.17: RMSE plot as a function of local neighborhood systems of (5.6) used in the

explicit local estimation technique of (5.7). The estimation error of even the simplest local

system is lower than that of the MS-based estimation.

To calculate the error covariance for ˆ̄wi = L̄i · yi
assuming P̄w may be wrong, i.e.,

˜̄Pi 6= (I − L̄i)P̄wi
(I − L̄i)

T + L̄iRiL̄
T
i (5.11)

because P̄w is not the true model. Therefore the actual estimation error covariance is

˜̄Pi = (I − L̄i)Pwi
(I − L̄i)

T + L̄iRiL̄
T
i (5.12)

the only value of interest is ˜̄Pi(1, 1) as the true error variance of ˆ̄wi.

Figure 5.17 plots the estimation error computed by (5.12) as a function of local neigh-

borhood systems of (5.6) used in the above explicit local estimation technique of (5.10).

The improvement of the local-based modeling over MS-based modeling is evident. It is of
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interest to note that a rather simple neighborhood system leads to a lower estimation error

in comparison to the MS-based estimation.

The next section explains how the principles of Markov Random Fields (MRFs) can

be adopted to approximate the wavelet covariance Pw based on the striking hierarchy of

random fields governing the correlation structure of the wavelet coefficients.

5.2.2 MRF-Based Estimation

For the past three decades, MRFs have been used for texture synthesis and analysis with

significant improvements over traditional methods [24, 46, 51]. Although, this framework

has not been the best choice for image modeling [86], MRFs can be reasonable choices of

modeling wavelet domain statistics because the WT can substantially decrease the spatial

large neighborhood to more local structures.

An alternative to the explicit use of local structures is an MRF-based modeling ap-

proach, where P̄−1
w is sparse. It is known that the sparse values in P̄−1

w are parameters

of the Markov model being considered. However, since the true prior Pw is not Markov,

then P−1
w won’t be sparse. Therefore a Markov model, which approximates Pw, needs to

be estimated. The following approximation technique [56] was employed to sparsify P−1
w

based on the given neighboring system.

Wavelet Covariance Approximation:

• Choose a neighborhood structure N α from (5.6).

• Zero out non-neighbor elements from the true model inverse

Λ−1
w (i, j) =





P−1

w (i, j) i, j ∈ N α

0 i, j /∈ N α
(5.13)
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forming the simple diagram

Pw → P−1
w

Nα

−−→ Λ−1
w → Λw

• Modify Λw to get the same variance values as the original model Pw:

di =

√
Pw(i, i)

Λw(i, i)

P̄w(i, :) = di · Λw(i, :)

P̄w(:, i) = di · Λw(:, i) (5.14)

Now P̄w is a Markov prior. To obtain the actual MRF model coefficients, the following

learning process is used.

Parameter Estimation:

• Local interaction for every wavelet coefficient wi is assumed to be

wi =
∑

j∈Nα
i

gi,jwj + ηi (5.15)

with η ∼ Λ as a driven non-white noise process, uncorrelated with the process wi.

• To find the relationship between wi and its neighbors N α
i , let the local parameters

gi,j be estimated using the Linear Least Square (LLS) method [51]

wNα
i

= [wj; j ∈ N α
i ]T

Θs,o =
[
wNα

1
| · · · | wNα

i
| · · · | wNα

k

]

where k denotes the size of the subband, s the scale, and o the orientation, meaning

that the data-set Θ is scale and subband dependent. With this neighborhood matrix

in hand, the estimated parameters are

ĝs,o =
[
Θs,oΘs,oT

]−1
Θs,o ws,o (5.16)
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Figure 5.18: The MRF model parameters calculated for a first-order within- and across-

scale neighborhood site N 1. The parameters are scale dependent and the hierarchical

correlation increases from coarser to finer scales.

Figure 5.18 displays the model parameters calculated for a simple first-order within-

and across-scale neighborhood site N 1 defined in (5.6) for a thin-plate MRF 5-level

db2 wavelet transformed. The estimated parameters are scale dependent. They

increase the MRF model strength as coefficients dependencies increase from coarse

to fine resolutions. The within-scale correlations of horizontal and vertical subbands

are symmetrically identical and are stronger than those of the diagonal subband.

To have a clear understanding of the MRF model parameters, the linear system given

in (5.15) is re-written in matrix format

Gw = η

where G is a sparse matrix including all the estimated parameters gs,o as its off-diagonal
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Figure 5.19: All six MRF parameter matrices GNα obtained by the LLS estimation algo-

rithm (5.16). The spatial prior was thin-plate MRF and the mother wavelet was db2.
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elements and one on its main diagonal. Matrix G shows the structure of wavelet MRF

model parameters. Figure 5.19 displays all the G matrices obtained by (5.16) given the six

neighborhood systems in (5.6). The parsimony of MRF parameters is obvious, and in all

cases the matrix shows a nice sparse structure, which is not necessarily symmetric. Each

matrix includes two sets of off-diagonal bands: those parallel to the main diagonal and the

finger-like bands. While the former set shows within-scale but across-subband correlations,

the latter represents across-scale correlations. Magnitudes of the finger-like bands above

the diagonal line are larger than their symmetric counterparts below the diagonal band.

Note that, in distinct contrast to the vast majority of planar MRF models in which G

is stationary, the structure of the wavelet tree (asymmetry between parent and child, or

between siblings) makes G nonstationary and considerably complicates model estimation.

This property is theoretically explained in the following discussion.

In (5.15) ηi was assumed to be a non-white noise process, uncorrelated with the process

wi. Assuming j ∈ N α
i and that wj and wi belong to different subbands, then

E [ηi · ηj ] = E
[
ηi ·

{
wj −

∑
gj,kwk

}]

= −gj,iE [ηi · wi]

= −gj,iE
[
ηi ·

{∑
gi,jwj + ηi

}]

= −gj,iE [ηi · ηi]

= −gj,iλ
2
i

E [ηj · ηi] = −gi,jλ
2
j

gi,j

gj,i
=

λ2
i

λ2
j

(5.17)

where the above ratio does not have to equal one, because λ2
i and λ2

j are the variances of

two nodes belonging to two different regions. In other words, one can say that parent-child

dependency in the wavelet domain is direction dependent, clearly because the wavelet
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subbands have different variance values with larger values at coarser scales. Thus, the

model parameter gi,j which describes the status of a parent wi (greater variance) by its

child wj (smaller variance) is not necessarily equal to gj,i describing a child wj by its parent

wi.

This section started with the strong belief that the structure of wavelet correlation

was not limited to the parent-child dependencies, meaning that the MS-based modeling

assumed only a subset of wavelet correlations. The empirical investigations in this sec-

tion indicate that although any spatial Markovianity is lost with WT of an image [51],

the MRF-based modeling still results in an approximated wavelet covariance with a very

sparse structure which preserves the significant correlations within and across scales and

orientations. Before leaving this chapter, a quantitative evaluation of the proposed random

field models, in terms of their accuracy and complexity will be presented.

5.3 Quantitative Evaluations

The six different wavelet neighborhood structures of (5.6) are examined here. Clearly each

choice of neighborhood will differ in its statistical accuracy. The six local and MRF-based

results are compared with the null estimator

ŵi = yi

and the pointwise estimator

ŵi =
σ2

wi

σ2
yi

yi

with the RMSE of all cases plotted in Figure 5.20. It is clear that significant benefit is

obtained from relatively few coefficients in the locality of the center coefficient. Empirically,

the presence of within-scale (and across-orientation) correlation in these simulations (from
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Figure 5.20: RMSE plot as a function of local neighborhood systems of (5.6) used in the

MRF-based approximation techniques. Evidently, the estimation error the MRF-based

models for each local structure is lower than that of the MS-based estimation. This is a

comprehensive plot comparing to the one displayed in Figure 5.17.

N 1 to N 6) reduces the estimation error. Evidently, the local estimation (5.10) outperforms

the MRF-based method (5.14). The local estimate is an explicit use of the actual local

covariances Pw rather than the approximated values P̄w of (5.14), but with no assumption

of correlations beyond a per-defined locality. The MRF-based estimate uses its approximate

model rather than the true model, but it asserts conditional independence, in which the

long range correlations are implicitly considered.

The second aspect of comparison is computational complexity. In increasing order of

complexity is a) Pointwise, b) Local, c) Multiscale, d) MRF, e) Full model.

Clearly the pointwise method is a linear approach with its complexity growing linearly
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as the number of wavelet coefficients n increases. On the other side, the complexity of

the MS-based estimator is O(d3n), where d shows the tree-node’s dimensionality (in the

simplest case d = 1); see Table 5.1.

Re-write (5.7) to investigate the complexity of the local models

ŵi = Pwi,yi
· P−1

y
i
· y

i
= Li · yi

1 ≤ i ≤ n (5.18)

with matrix Li of size m×m, where m≪ n denotes the neighborhood size. The complexity

of calculating Li is of order O(m3). The cost of the estimator, however, depends on the

prior, which can be stationary or not. Both cases are considered at this point.

• Stationary wavelet prior model:

In this case the complexity of the model estimation process L is fixed to O(m3),

because Li = Lj , if j 6= i. Thus total complexity of the estimation process w = Ly is

O(m3 + n ·m2).

• Non-stationary wavelet prior model:

It is known that a stationary prior projected into the wavelet domain changes to

nonstationary because of the multiscale nature of the wavelet domain. In this case

the complexity of the model estimation process L is O(n ·m3), because Li 6= Lj, if

j 6= i. Thus, the overall complexity of the local estimator ŵ = Ly is O(n ·m3).

The computational cost for the MRF-based estimator is more complicated. In this

work, only the simple linear case, i.e., a Gaussian prior is assumed. Consider the MRF

prior

Gw = η, η ∼ N (0,Λ)

and the measurement

y = w + ν, ν ∼ N (0, R)
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Figure 5.21: Maximum number of iterations for the PCG to solve (5.19) as a function of

wavelet domain MRF neighborhood systems (5.6). These simulations were run for thin-

plate prior GMRF with three different correlation lengths. The mother wavelet was db2.

Define a linear estimator to find w which minimizes

argw min
∣∣∣∣y − ŵ

∣∣∣∣
R−1 + ||Gŵ||Λ−1

⇒ ŵ =
(
R−1 +GT Λ−1G

)−1
R−1y (5.19)

which is a linear system of equations to be solved. Several iterative solvers such as

Gauss-Sidel [84] and Preconditioned Conjugate Gradient (PCG) [84] were tested. The

empirical results for the PCG algorithm is discussed here. The computational complexity

of the PCG is O(itrn ·m · n), where m is the neighborhood size and itrn shows number

of iterations for a solver to converge to a predefined tolerance value. The experimental

results indicate a surprisingly fast convergence speed. The PCG algorithm was run for
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Figure 5.22: Maximum number of iterations for the PCG adopted in solving (5.19) as a

function of wavelet domain MRF neighborhood systems (5.6). The simulations were run

for thin-plate GMRF with fixed spatial correlation length. The mother wavelets db1-4

were considered.

six different MRF-based neighborhood systems. In these experiments a thin-plate prior

model with three different correlation lengths was considered. For the purpose of simplicity

textures of size 32 × 32 projected by Daubechies wavelets are examined.

Figure 5.21 illustrates the itrn number for the PCG to solve (5.19) for all six neigh-

borhood systems, where the mother wavelet was fixed to be db2. A thin-plate prior of

three different correlation lengths was used. The results indicate that the convergence

speed is very fast for the PCG. For a fixed correlation length, itrn number remains almost

unchanged for different neighborhood sizes. However, the increment of correlation length,

i.e., the larger extent of pixels connectivity (smoothness), results in estimators with higher
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Methodology Assumption Complexity

Pointwise independence O(n)

Local stationarity O(m3 +m2 · n)

Local non-stationarity O(m3 · n)

Multiscale first-order O(n)

Multiscale log4n
th-order O(3(n

4
)3)

MRF Guass-Sidel O(itrn ·m · n)

MRF PCG O(itrn ·m · n)

Table 5.2: List of the model-based wavelet estimators’ complexities. m: neighborhood size,

n: data size, itrn: no. of iterations.

computational cost.

To examine the sensitivity of the proposed MRF-based technique with change of basis,

various Daubechies wavelets were investigated. Figure 5.22 shows the itrn number of the

PCG solver for all N α, α = 1, · · · , 6 systems, where a thin-plate GMRF with a fixed

correlation length was used. The term itrn remains small for all cases and grows slowly

where more regular wavelets is considered. In all experiments itrn is a relatively small

number which represents the low complexity for the wavelet linear MRF-based estimator.

Table 5.2 lists the complexities associated with the wavelet estimators based on the

proposed models. The relatively fast convergence rate of the PCG method makes the

MRFs reasonable choices of wavelet local models.
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5.4 Chapter Summary

A probabilistic study of wavelet joint statistics was presented in this chapter. An exami-

nation of the coefficient correlations, within or across scales, revealed that there exist local

stochastic models (explicit or MRF) governing these local dependencies. The proposed

hierarchical random fields models exhibit a sparse neighborhood structure which absorbs

correlation of any coefficient with the rest of the wavelet tree. The accuracy of the proposed

models was evaluated in RMSE sense and in terms of their computability and complexity.

This chapter was only one step in the broader goal (Figure 1.1) of building more capable

joint models for image representation. The principal motivation of this work is to devise

an estimation or correlated shrinkage algorithm which takes into account the proposed

wavelet joint model and results in an optimum estimation error and low computational

cost. Chapter 6 will focus on the development of a non-linear correlated empirical Bayesian

shrinkage algorithm, with illustrations and evaluations of its estimation results.





Chapter 6

Correlated Wavelet Shrinkage

This chapter proposes a novel correlated shrinkage method based on wavelet joint statistics.

The objective is to demonstrate the effectiveness of the wavelet correlation models [4, 9]

of Ch. 5 in estimating the original signal from a noisy observation.

The structures of the existing wavelet correlations were studied

1. In § 4.3: Finding the wavelet sample covariance over a large collection of real images

and adopting the standard diagram of 2-D WT to display the correlation map for

every individual coefficient.

2. In § 4.5: Empirically observing that the wavelet spatial statistics are strongly orien-

tation dependent, structures which are surprisingly not considered by state-of-the-art

wavelet modeling techniques.

3. In Ch. 5: Studying probabilistic models including the multiscale as well as Markov

random fields to describe the exhibited wavelet neighborhood structure.

Having accomplished the above empirical steps, this chapter is focused on the develop-

ment of a non-linear correlated empirical Bayesian shrinkage algorithm. Simulation results

149
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will demonstrate the advantages of the new correlated shrinkage function. In comparison

with popular nonlinear shrinkage algorithms [13, 26], it improves the denoising results.

The goal is to obtain a shrinkage method which outperforms the current joint-model based

shrinkage algorithms such as HMMs [26] and GSM [79] based techniques.

6.1 Independent Wavelet Shrinkage

Suppose a random field x is projected into the wavelet domain with a resulting coefficient

vector w. The objective is to estimate ŵ, given the noisy observation y:

y = w + ν ν ∼ N (0,Σν)

yi = wi + νi νi ∼ N (0, σ2
ν)

where ν is assumed additive i.i.d. random noise. In general, if the coefficients are assumed

independent and normally distributed, then the linear Bayesian estimate [38] is optimum

in the mean squared error sense

ŵi = E[wi|yi] =
σ2

w

σ2
w + σ2

ν

yi (6.1)

However, since the wavelet marginal prior is well-known to be non-Gaussian (general-

ized Gaussian [14] or generalized Laplacian [86]), then E[w|y] is non-linear. One of the

superior non-linear shrinkage methods, known as BayesShrink [14], determines a threshold

TBayes = σ2
ν

σw
for each subband assuming a Generalized Gaussian Distribution (GGD) for the

coefficients. Chang et al. [14] observed that the threshold value TBayes is very close to the

optimum threshold. BayesShrink performs soft thresholding, with its data-driven, subband

dependent threshold. The results obtained by BayesShrink visually look more appealing

than those obtained using VISUShrink and SUREShrink.1. This makes BayesShrink a

reasonable choice of comparison with the experimental results obtained in this chapter.

1 Section 3.3 has already covered a comprehensive review of wavelet shrinkage.
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All of these shrinkage algorithms treat the non-Gaussian coefficients as independent,

however, based on our observations of the wavelet joint statistics we propose a correlated

shrinkage method whose non-linearity is approximated through an empirical Bayesian ap-

proach. As opposed to the state-of-the-art wavelet-domain HMMs [26] where the co-

efficients non-linear relationships are considered through their conditional independence

assumption, the proposed algorithm is based on the wavelet linear joint statistics followed

by a non-linear Bayesian estimator. The future improvements of this shrinkage algorithm

is to be compared with the shrinkage results of the HMMs.

6.2 Empirical Bayesian Estimation

The generalized Gaussian [14] or generalized Laplacian [86] priors for wavelets are, at best,

heuristics or approximations. Different classes of images will necessarily have different

wavelet priors. It is, therefore, very difficult to talk about or even formulate the optimum

Bayesian estimates, making an empirical approach attractive.

6.2.1 Marginal Bayesian Estimate

Given a vast number of {wi, yi} pairs, the optimum Bayesian expectation can be formulated

as a sample mean

ŵi = E[wi|yi] ≃ average{wj|yj ≃ yi} (6.2)

where the {wi} are marginally considered. This is non-linear shrinkage, as the conditional

mean will normally not be a linear function of yi, implemented through the steps in Algo-

rithm 1, where the parameter winsize specifies the one-sided length of a window containing

those coefficients whose magnitude are close.
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Algorithm 1 Empirical Bayesian Estimate

1: sort {wi} and {yi} based on w

2: select a windowing size winsize

3: ŵi =
∑

|j−i|<winsizeαj−1wj , α0 = 0

Clearly the choice of winsize is very important in this method. The larger the averaging

window size, the lower the estimation error but the smoother the estimated result. For

the purpose of clarification, the independent Bayesian estimate (6.2) was implemented for

the “Lena” image and was compared to the universal soft and hard thresholding as well as

BayesShrink. Figure 6.1 plots MSE of the estimation method as a function of the additive

noise standard deviation. Although, in this experiment the empirical Bayesian was applied

universally, i.e., it did not benefit from the scale and subband dependency of BayesShrink,

it still outperforms the other shrinkage methods at some noise regions, even for different

choices of winsize.

This simple demonstration showed that the empirical Bayesian approach is a good

estimator to approximate the original data. With this confirmation in hand, this rather

independent empirical approach will be expanded to an estimation which depends on the

locality of wavelet coefficients.

6.2.2 Joint Bayesian Estimate

To define the joint Bayesian estimate, it must be noticed that

E[wi|y] 6= E[wi|yi]

because the {yi} are not assumed independent because of the correlation in the {wi} [4, 8].

To solve the joint estimate one normally limits the attention to some neighborhood N
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Figure 6.1: Comparison of MSE measures of uniformed-window empirical wavelet shrink-

age with universal shrinkage (VISUShrink) and BayesShrink. “Lena” image was 4-level

decomposed into the db4 wavelet basis.

of the coefficients

E[wi|y] ≃ E [wi|{yj; j ∈ Ni}] (6.3)

This is a high dimensional problem, where it is hard to find the sample average. In principle

(6.3) can be solved as before, using empirical Bayes Algorithm 1, but where we now take

a sample mean over similar neighborhoods

E[wi|y] ≃ average {wk|yl ≃ yj; l = Nk,m j = Ni,m} (6.4)

where Ni,m is the mth element index in the neighborhood of i. However, the required

data grows exponentially with neighborhood size and is impractical for all but the smallest

neighborhoods.

An alternative is

E[wi|y] ≃ E [wi|f({yj; j ∈ Ni})] (6.5)
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where f(·) can be any simple or complicated function.

Instead, imagine combining (6.2) and (6.5), using a linear function f(·) in (6.5) to take

into account the joint relationships (e.g., the standard linear prediction ŵi =
∑

j∈Ni
gi,jyj,

where j ∈ Ni, if yj is related to wi). However, since this linear function does not account

for the non-linearity of the shrinkage algorithm the empirical Bayes (6.2) is used to infer

any needed non-linearity to find a good estimate. The development of such an approach

follows.

6.3 Correlated Shrinkage

This section is meant to develop a probabilistic shrinkage algorithm which considers models

of wavelet localities. It was observed that the wavelet correlations are scale and subband

dependent, meaning that the correlated shrinkage must be subband dependent.

Based on the correlation map of Figure 5.15 and neighborhood symbols (5.6), §5.2

defined various different neighborhoods, of which only two structures are repeated here.

For a coefficient wi belonging to the wavelet coefficients set w = {wh, wv, wd} define two

asymmetric neighborhood structures:

N asym1(i) =






{sud(i), p1(i)}, if i ∈ wh

{slr(i), p1(i)}, if i ∈ wv

{slr(i)), sud(i), p1(i)}, if i ∈ wd

N asym2(i) =





{sud(i), slr(i), slr(sud(v(i))), sud(d(i)), p1(i)}, if i ∈ wh

{sud(i), slr(i), slr(sud(h(i))), slr(d(i)), p1(i)}, if i ∈ wv

{sud(i), slr(i), slr(v(i)), sud(h(i)), p1(i)}, if i ∈ wd

(6.6)

where operators d, v, and h return diagonal, vertical, and horizontal subband counterparts.

With these local structures defined, this section proposes correlated wavelet shrinkage:
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1. Neighborhood Selection: The given random field x is projected into the wavelet

domain with the resulting coefficient vector w and the noisy observation:

yi = wi + νi

A neighborhood system N is chosen and two neighborhood vectors are formed:

y
i

= [yi, {yj; j ∈ N (i)}]T

wi = [wi, {wj; j ∈ N (i)}]T

2. Linear Estimate: If wi is assumed correlated (albeit a highly non-Gaussian joint cor-

relation) with the calculated local covariances, then the best linear relaxing operation

on the noisy coefficients is

zi = Pwi
· P−1

y
i
· y

i
(6.7)

where we are only interested in

zi = zi(1) = E[wi|yi
]

For every individual wavelet coefficient wi the quantities Pwi
and Py

i
are obtained

numerically (by sampling).

3. Non-linear Estimate: The estimate ŵi is found via the non-linear empirical

Bayes (6.2)

ŵi = E[wi|zi] ≃ average{wj|zj ≃ zi}

4. The computation of average{·} can be done in different ways, such as uniform or

triangular windowing.
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This is only a starting and simple approach to a correlated shrinkage, while a complete

schema of the Correlated empirical Bayesian Shrinkage (CBS) algorithm is

WT corrupted local map empirical Bayes WT −1

x −→ w −→ y −→ z −→ ŵ −→ x̂ (6.8)

whose effectiveness in estimating from a noisy measurement is discussed in the following

section.

6.4 Experimental Results

To test the performance of the proposed CBS algorithm, it was applied to a class of

Gauss Markov random fields, as well as a collection of real images. The simulation results

were compared with BayesShrink and independent empirical Bayesian estimate (6.2). The

objective is to compare this shrinkage whit the state of the art shrinkage algorithms such

as GSM and HMMs ones.

6.4.1 CBS and Gauss Markov Random Fields

Sample statistics were found over a class of GMRF, including five textures (grass, pigskin,

tree-bark, calf leather, and thin-plate) shown in Figure 4.10. The averaged sample covari-

ance over all five fields with association of the asymmetric neighborhood structures defined

by (6.6) was used in (6.8) to linearly calculate z. Then, non-linear uniform averaging was

adopted in (6.8) to estimate ŵ. The simulation results of triangular averaging technique

are similar to those of the uniform widowing method.

Figure 6.2 plots RMSE for BayesShrink as well as independent and correlated empirical

Bayesian shrinkage with various averaging window sizes, applied on a GMRF corrupted

with a large range of noise variances. The results were obtained by using “db2” mother
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wavelet and the neighborhood system N 2. All panels show that shrinkage with the as-

sumption of correlated coefficients always outperforms the shrinkage with independent

assumption. The correlated shrinkage is mostly better than the BayesShrink and as the

window size gets bigger, this superiority becomes apparent.

The sensitivity of the CBS algorithm with the non-linear part of the averaging window

size was also studied. The plots in Figure 6.3 show RMSE of the above methods measured

as a function of window size for four different noise levels. BayeShrink is windowing size

independent; it is displayed for the purpose of comparison only. The results are consistent

across all four plots indicating that regardless of the noise level, the window size is an

almost fixed number (about 15 for this particular simulation).

The above experiment with GMRFs was repeated with “db1” and “db4”, leading to

consistent observations and similar conclusions. The GMRFs played just as a necessary

medium to test accuracy of our proposed model. The complementary step is to examine

this framework with real world images, for which stationary is not assumed.

6.4.2 CBS and Real Images

The above framework was also applied on several standard real images. Results for the

two images shown in Figure 6.4 are discussed here. The bottleneck in the implementation

of the CBS method includes computing the local covariances and finding the optimum

averaging window size:

• Wavelet Local Covariances:

For each test image, the local covariances, i.e., Pwi
in (6.7), were calculated. The

structures of these local statistics depend on the regularity of the chosen mother

wavelet and connectivity of the image pixels. Figure 6.5 through 6.7 display the



158 Image Models for Wavelet Domain Statistics

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logarithmic Scaled Noise Standard Deviation

R
o

o
t 
M

e
a

n
 S

q
u

a
re

 E
rr

o
r

Bayes Shrink
Independent Empirical Bayes
Local Estimate
Correl. Empirical Bayes
Noise Std. Deviation

(a) windowsize 2

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logarithmic Scaled Noise Standard Deviation
R

o
o

t 
M

e
a

n
 S

q
u

a
re

 E
rr

o
r

Bayes Shrink
Independent Empirical Bayes
Local Estimate
Correl. Empirical Bayes
Noise Std. Deviation

(b) windowsize 6
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(c) windowsize 10
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Figure 6.2: Plots of RMSE measurement for db2 BayesShrink as well as independent and

correlated empirical Bayesian shrinkage, with thin-plate as the prior and uniform averaging

window sizes of 2, 6, 10 and 20.
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Figure 6.3: Plots of RMSE measurement for db2 BayesShrink as well as independent and

wavelet local correlation based empirical Bayesian shrinkage, with Thin-plate as the prior

and given noise level.
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(a) Gold Hill (b) Lena

Figure 6.4: Two real images were tested with the CBS algorithm.

orientation-dependent sample covariances obtained for four-level “db1” to “db4”

wavelet transform of the “Goldhill” image. In this experiment N asym2 was used,

i.e., the order of the entities in each sample covariance is associated with:

wi =
{
wi, wj|j ∈ N asym2

}

where for local structure N asym2 and for scale j = 1, · · · , J − 1

∣∣wh
i

∣∣ = 12 P j,h
i : 12 × 12

|wv
i | = 12 P j,v

i : 12 × 12
∣∣wd

i

∣∣ = 10 P j,d
i : 10 × 10

(6.9)

where |w| denotes size of the vector w. In these plots, dark red squares show max-

imum correlation and the dark blue ones maximum anti-correlation. Clearly, the

horizontal-band coefficients are vertically correlated and vertical-band coefficients are
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horizontally related. Both the horizontal- and vertical-band coefficients are strongly

correlated with their parents (a phenomenon which is less significant for the diagonal-

band coefficients). Similar simulations were performed for the “Lena” image with the

associated local covariances displayed by Figure 6.8 through Figure 6.10.

The striking consistency between these figures and the plots in Figure 5.15 is very

interesting. Apparently the wavelet local maps are more orientation dependent than

scale dependent, e.g., the color distributions in P j,h
i are almost identical across scales.

These local maps were substituted in (6.7), completing the local estimation part.

• Averaging Window Size:

The next subtlety was the notion of local averaging size, which was studied in this

simulation. As is illustrated by Figure 6.11 and Figure 6.12, the averaging win-

dow size depends on the resolution as well as the additive noise standard deviation.

The coarser the resolution (i.e., the less information), the smaller is the averaging

window size. It is observed that window sizes at adjacent scales are one to four

proportional. To some points the optimum window size also depends on the original

image attributes.

Having the local covariances and optimum averaging window sizes in hand, now the

CBS algorithm is ready to estimate the above real images from their noisy observations.

Each panel in Figure 6.13 and Figure 6.14 compares BayesShrink and our CBS algorithm

applied on a real image in RMSE sense with different wavelet decomposition level J . It is

evident that regardless of decomposition level, the CBS works better.

The final demonstration, but the most important one, is the qualitative comparison.

The proposed CBS algorithm was tested on above two images for a variety of wavelet

bases consistent results visualized by Figure 6.15 through Figure 6.18. The improvement
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Figure 6.5: The scale-dependent sample covariances we obtained for four-level db1 wavelet

transform of the “Goldhill” image. The order of the entities in each sample covariance is

associated with that of the elements in N asym2 given by (6.6).



Correlated Wavelet Shrinkage 163

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.6: As in Figure 6.5, for Goldhill, using a db2 wavelet transform.
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Figure 6.7: As in Figure 6.5, for Goldhill, using a db4 wavelet transform.
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Figure 6.8: Parallel to Figure 6.5, The scale-dependent sample covariances obtained for db1

wavelet transform of the “Lena” image. The order of the entities in each sample covariance

is associated with that of the elements in N asym2 given by (6.6).
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Figure 6.9: As in Figure 6.8, for Lena, using a db2 wavelet transform.
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Figure 6.10: As in Figure 6.8, for Lena, using a db4 wavelet transform.
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Figure 6.11: RMSE of the CBS method calculated at several scales as a function of the

averaging window sizes. The optimum window size at each scale (◦) depends on the

resolution as well as the additive noise level σν . Test image: “Goldhill”
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Figure 6.12: As in Figure 6.11, RMSE of the CBS method calculated at several scales as

a function of the averaging window sizes. Test image: “Lena”
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of the CBS algorithm in depicting less blocky edges and in removing the artifacts appear

in BayesShrink results is quite clear in these figures.

6.5 Chapter Summary

This chapter proposed a new correlation-based shrinkage scheme with considerable im-

provement over the performance of the well-known shrinkage methods with their assump-

tion of generalized Gaussian or generalized Laplacian as the coefficients prior. The pro-

posed CBS algorithm adopts joint statistics of the underlying image and results in a smaller

estimation error and better visualization.
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(d) J = 1

Figure 6.13: RMSE comparison of BayesShrink and CBS algorithm applied on Goldhill

image as a function of noise level and wavelet decomposition level J . The proposed CBS

always results in lower estimation error.
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(d) J = 1

Figure 6.14: Similar to Figure 6.13, for Lena image.
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(a) Original Image (b) Noisy Image, σν = 0.25

(c) BayesShrink, db1, RMSE=0.0603 (d) CBS, db1, RMSE=0.0558

Figure 6.15: The proposed CBS algorithm was applied on the Goldhill image with db1 basis

function. It was successful to reduce the block artifacts appear in BayesShrink results and

to depict more clear edges.



174 Image Models for Wavelet Domain Statistics

(a) BayesShrink, db2, RMSE=0.0589 (b) CBS, db2, RMSE=0.0562

(c) BayesShrink, db4, RMSE=0.0568 (d) CBS, db4, RMSE=0.0540

Figure 6.16: The proposed CBS algorithm was applied on the Goldhill image with db2 and

db4 basis functions. The CBS results in reduced block artifacts and clear edges.
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(a) Original Image (b) Noisy Image, σν = 0.25

(c) BayesShrink, db1, RMSE=0.0583 (d) CBS, db1, RMSE=0.0554

Figure 6.17: The proposed CBS algorithm applied on Lena image with db1 basis function.

It reduced the block artifacts appear in BayesShrink results and depicted more crisp edges.
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(a) BayesShrink, db2, RMSE=0.0541 (b) CBS, db2, RMSE=0.0529

(c) BayesShrink, db4, RMSE=0.0515 (d) CBS, db4, RMSE=0.0504

Figure 6.18: The proposed CBS algorithm applied on Lena image with db2 and db4 basis

functions. The CBS results in reduced block artifacts and clear edges.



Chapter 7

Conclusions and Future Perspectives

This thesis addressed the problem of developing probabilistic descriptions for image ele-

ments when they are projected into the orthogonal wavelet domain and shed further light

on understanding wavelet joint statistics. This chapter draws some conclusions by pointing

out the original contributions and explaining how the work in this thesis raises directions

for future research.

7.1 Research Contributions

A probabilistic study of image models for wavelet domain statistics was the primary goal

of this research. The goal has been met with the following contributions:

• Structures of Wavelet Statistics: A thorough study of empirical 2-D wavelet

correlations was performed. The significant achievement at this stage was a novel

invention of an approach to localize the coefficients joint structures. Representing

the wavelet domain correlation maps with the 2-D WT diagram is a useful tool

which not only shows the exact patterns of wavelet statistics, without any guess
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or approximation, but also displays the significance of those correlations. This was

found to be the most crucial step towards defining the wavelet priors which govern

those sparse statistics.

• Models of Wavelet Statistics: According to the achievements of statistical depen-

dencies between the wavelet coefficients we proposed to model the wavelet coefficients

not as independent, but as governed by a Markov random field. Since correlations

are present both within and across scales, a random field model for the wavelet coef-

ficients with itself needs to be hierarchical. The development of Markov random field

methods on hierarchies has some past literature, but is still relatively new [43]. The

contribution of this model is its capability in absorbing all direct correlations among

the wavelet coefficients without any further consideration such as hidden states.

A technique which approximates wavelet covariance based on an MRF neighborhood

assumption was devised. The model parameters indicate a non-symmetric structure

in the wavelet covariance which is an important consideration in the future model-

based wavelet algorithms.

• Applicability of the Wavelet Joint Models: The effectiveness of the proposed

model was examined by applying it to the wavelet shrinkage problem. By coupling

the wavelet coefficients, the shrinkage problem is complicated considerably, in that

the processing of the wavelet coefficients now depends on all others, in precisely the

same way that inverting a banded matrix is much harder than a diagonal one. The

very first step was to account for those correlations within a linear framework (least

square estimate) which still outperforms the state-of-the-art BayesShrink algorithm.
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7.2 Future Research Directions

The work presented in this thesis is only one single step in the broad evolution of the

model-based wavelet estimation. This research provided answers to some open problems

and perhaps raises new questions. At this point I outline ideas for future research related

to this work:

• Non-linear shrinkage: The initial direction involves a further improvement to

the correlated Bayesian shrinkage (CBS) algorithm [10]. Significant challenges still

remain to be addressed. There are several directions and challenges associated with

this kind of undertaking, with the first being the notion of non-Gaussianity for real

images. The proposed CBS will be studied for a large class of real images with highly

non-Gaussian joint statistics, where the joint linear estimator will not be an optimum

method, thus the effect of the non-linear estimator will become significant.

• Improvements to HMMs: The wavelet HMMs assign a state to each coefficient

and consider dependencies among those discrete states. Although, the conditional

independence assumption connects all states (and consequently the coefficients) im-

plicitly, the locality assumed for hidden states can be modified based on the pro-

posed correlation maps. For instance, the conditional independence of a state associ-

ated with a horizontal-band coefficient can be considered when a state set including

the parent state, states of the within-subband vertical siblings and across-subband

cousins are given. This dependency map is anticipated to outperform the HMT-2

and HMT-3S methods where the state neighborhoods are assumed intuitively and

based on heuristics.

• Extensions to other transforms: The limitation caused by shift-variance associ-

ated with wavelet transforms has led to a variety of alternatives such as the over-
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complete steerable pyramids [87], and the complex WT [53]. The image singularity

detection shortcoming of the wavelet transform has also caused a new generation

of transforms including the wedgelet [31], ridgelet [12] and curvelet [89] transforms,

which combine ideas of multiscale analysis and geometry. In these frameworks a

large number of orientations results in many subbands, i.e., there exists a significant

degree of across-subband correlations. I believed that the statistics of these newly

proposed transformations can be modeled by extensions of our modeling framework

in conjunction with some explicit geometrical constraints.

• Change of basis: There exists past literature on the use of wavelets for the precon-

ditioning of linear systems problems [102]. Such preconditioning is mathematically

very similar to the wavelet change of basis in wavelet shrinkage, and may have insights

to offer.

• Applications: Because of the great impact of the wavelet transform on the broad

spectrum of information processing, the applicability of the proposed wavelet model

is to be explored in many different disciplines, including biophysics, medicine, re-

mote sensing, earth science. For example, in the area of medical imaging one can

investigate possible improvements in model-based and adaptive image enhancement,

motion tracking, and template matching by incorporating the wavelet joint models.
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