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IRGS: Image Segmentation Using
Edge Penalties and Region Growing

Qiyao Yu and David A. Clausi, Senior Member, IEEE

Abstract—This paper proposes an image segmentation method named iterative region growing using semantics (IRGS), which is
characterized by two aspects. First, it uses graduated increased edge penalty (GIEP) functions within the traditional Markov random
field (MRF) context model in formulating the objective functions. Second, IRGS uses a region growing technique in searching for the
solutions to these objective functions. The proposed IRGS is an improvement over traditional MRF-based approaches in that the edge
strength information is utilized and a more stable estimation of model parameters is achieved. Moreover, the IRGS method provides
the possibility of building a hierarchical representation of the image content and allows various region features and even domain
knowledge to be incorporated in the segmentation process. The algorithm has been successfully tested on several artificial images and

synthetic aperture radar (SAR) images.

Index Terms—Markov random field (MRF), Gaussian mixture, hybrid region and edge, region growing, Region Adjacency Graph

(RAG).

1 INTRODUCTION

I MAGE segmentation is a process that decomposes an image
into disjoint regions and is a fundamental step for many
image-processing tasks such as image understanding and
content-based image retrieval. In general, image segmenta-
tion aims at producing regions that are homogeneous with
respect to the extracted features, such as gray level or
texture, and have significant different feature values across
region boundaries. Due to the existence of noise in
measurements and randomness of the features, pure
feature-based segmentation approaches such as histogram
thresholding [1] and clustering [2] often produce noisy
results and there are numerous other methods that more or
less utilize the spatial context information either implicitly
or explicitly. Some examples are edge-based methods [3],
[4], [5], [6], region splitting and merging [7], [8], and model-
based methods such as curve evolution [9], [10], [11] and
random fields [12], [13], [14], [15], [16], [17], [18]. These
approaches all have certain attractive features but also have
drawbacks. The edge-based methods are insensitive to image
nonstationarity and are efficient in describing local beha-
viors, but are ineffective in producing results globally
meaningful. The region splitting and merging category
provides the possibility of incorporating a variety of regional
features but often has difficulty in determining suitable
merging and stopping criteria for a result that is neither
oversegmented nor undersegmented. The model-based
methods have an established mathematical foundation but
require the model to be accurate and the optimization process
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to be able to find a satisfactory solution efficiently, both of
which are difficult for complex scenes.

In this paper, an image segmentation method named
iterative region growing using semantics (IRGS) is
proposed, based on our previous work in [19]. The IRGS
is characterized by two aspects: 1) It uses a sequence of edge
penalty functions to approximate the traditional Markov
random field (MRF) context model in formulating the
objective functions and 2) it uses a region growing
technique in searching for the solutions to those objective
functions. The MRF has been popular in modeling image
spatial context and, with a feature model combined under
the Bayesian framework, provides a statistically sound
formulation of the segmentation problem. Starting from
such an MRF-based formulation, the IRGS combines the
attractive features of edge-based and region-growing
methods. The motivation is fourfold.

1. Edge information should be efficiently used during
the optimization process of the traditional MRF
segmentation. For a complex scene, whether or not
the model is sufficiently accurate to describe the
image contents is often unclear. As a result, the
global minimum of the objective function of model-
based approaches may not correspond to the desired
segmentation. In fact, a satisfactory solution is not
necessarily the global minimum, but often local
minima obtained by guiding the optimization
process with good initial conditions or any helpful
information. The edge strength is one such helpful
feature and, hence, the IRGS incorporates the edge
strength into the traditional MRF model. Such a
model has something similar to the conditional
random fields [15], [16] in that the interactions in
labels are data dependent. However, the IRGS uses a
sequence of models instead of a single one, which is
fundamentally different from existing conditional
random field approaches and other hybrid region
and edge segmentation work [20], [21], [22] as well.
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2. The role of the spatial context model should be
adaptively weighted. The MRF spatial context model
favors the configuration composed of large regions
that are homogeneous in the defined features. Two
related tasks are then important for obtaining a
satisfactory solution to such an MRF-based formu-
lation—the parameter estimation of the feature
model and the optimization process for the segmen-
tation. For the unsupervised segmentation problem,
obtaining the feature model parameters a priori by
training is not practical and those parameters are
usually estimated and refined iteratively from
intermediate segmentation results. However, simul-
taneous parameter estimation and segmentation
often gives erroneous results due to the unpredict-
able role of the spatial context model on inaccurate
configurations. At the initial stages of iterations,
where the feature model parameters are far from the
true values, incorporation of the spatial context
model may produce meaningless segmentation,
which in turn can make the resulting updated
feature model parameters even worse. To alleviate
this problem, Deng and Clausi [23] use a variable
weighting scheme between the feature and spatial
context model so that the influence of spatial context
is minimum initially and then gradually increased.
The IRGS provides a similar but different scheme.

3. Multiscale segmentation is desirable. Due to the
different goals and models of the two tasks of image
segmentation and interpretation, regions obtained
by the segmentation process may not match the real
objects well enough for an accurate subsequent
interpretation. For example, it is often difficult to
determine a suitable scale so that the segmentation
result is neither oversegmented nor undersegmented
with respect to the interpretation need. A possible
solution to this is to generate multiple segmentation
results [24] corresponding to multiple scales and let
the interpretation process choose the best one. Such
a multiscale segmentation can be provided by IRGS
as it uses a sequence of objective functions with the
solutions corresponding to segmentations of various
coarseness.

4. Data should be taken into account at a region level.
Pixel-based combinatorial optimization techniques
[12], [14], [25], [26], [27] are either extremely slow or
are easily trapped into local minima. Large moves in
the searching space are thus desirable and can be
achieved by performing configuration changes on
groups of pixels instead of each single pixel during
the optimization process. The grouping structure of
pixels can be fixed [28], [29], [30], [31] or, more
attractively, data-adaptive [32], [33], [34] so that the
correspondence between the image structures and
true objects can be possibly established. The IRGS
uses a region growing technique to generate a
hierarchical data-adaptive structure and is different
from those approaches, as well as other model-based
region growing work [34], [35], [36].

The organization of the paper is given as follows:
Section 2 reviews the MRF-based image segmentations.
Section 3 improves the MRF work using a sequence of edge
penalty functions which, combined with a region growing
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technique, leads to the IRGS method presented in Section 4.
Section 5 is the experiments and discussions. Summary and
future work comprise Section 7.

2 IMAGE SEGMENTATION AND MRF CONTEXT
MODEL

2.1 Problem Statement and Notations

Let S denote the discrete rectangular lattice on which
images are defined. Suppose there are n different classes in
the image to be segmented. X .. fXsjs 2 Sg is a set of
discrete valued random variables constituting a random
field on S, with each variable X, taking a value in f1;...;ng
representing the class to which the site s belongs. Y ...
fYsjs 2 Sg is another random field somehow related to X
and the observed image is a realization from Y.

Let x ... TxXsjs 2 Sgand y ... fysjs 2 Sg denote the realiza-
tions of X and Y, respectively. The image segmentation is
an inverse process that attempts to estimate the best x given
the observed image y. With the obtained class labels x, S is
segmented to n classes, 1;...; n, such that

a t fsjXs ... i;s 2 Sg;

n

i1 S; 1
c 8|6j i\ jooeroan

2.2 MRF-Based Formulation of Image Segmentation

The image segmentation task can be formulated as a
maximum a posterior (MAP) problem for which maximiz-
ing the posterior P Xxjy gives a solution. By the Bayes’ rule,
this is equivalent to maximizing p yjx P x . Two models
are used for analytically representing p yjx (the feature
model) and P x (the spatial context model).

For the spatial context model P x, an MRF model
named the multilevel logistic model (MLL) has been
popular [13]. The MRF theory provides a way to model
the joint probability distribution of the image sites in terms
of local spatial interactions, which are analytically ex-
pressed by clique energy functions [17]. The clique energy
of MLL is defined as

if X5 6. Xt

Va Xsixe o otherwise;

where s and t are neighboring sites forming a pair-site clique
and isapositive number. Suchamodel makesthe priorP x
large if the local neighborhood is dominated by one single
class and small otherwise and, hence, is effective in suppres-
sing noisy configurations of class labels.

In modeling p yjx , ys is often assumed to be a constant
gray level (related to xg), corrupted by additive indepen-
dent noise. Furthermore, p ysjXs is often assumed to be a
Gaussian function for simplicity. With both the feature
model and the spatial context model defined, the MAP
formulation of the segmentation task is transformed into
minimizing an energy

E..Ef E;; 3
where
<
Es .. Vi Xs 4
s2S
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and
X
Es .. Vo Xs; Xt ; 5
<s;t>2C

where C is the set of all cliques on the entire lattice S. In the
above equations, we have
1 Ys X 2
ViXs ozln2 2 L% - 6
2 %s 2 2

where ; and ? are the mean and variance of the pixel
values in class i, and V, Xs; X; is defined in (2). Substituting
(6)* and (2) into (3), the image segmentation problem is

formulated as

_C D
- <1 2 Ys Xs z
arg _min sn2 {5
fxs;52Sg 25 2 s 2 3 .
<
1 Xs;Xt 9
<s;t>2C

where is the Kronecker delta function.

2.3 Optimization and Parameter Estimation

Finding a solution for (7) represents a combinatorial
optimization problem. Various combinatorial optimization
techniques are known, including iterated conditional mode
(ICM) [12], simulated annealing (SA) [14], mean field theory
[27], genetic algorithm [25], belief propagation [26], and
graph theoretic techniques [33]. The ICM [12] is the
simplest among all of these. Utilizing the local dependence
among pixels, the ICM iteratively refines the label config-
urations based on the provisional estimate of those
configurations, accepting changes that decrease the
energy E the most. Its greedy nature makes it easily
trapped in local minima and sensitive to the initial estimate.
A better and perhaps the most widely used approach is
simulated annealing (SA) [14]. Unlike ICM, SA employs a
random search scheme, for example, Metropolis-Hastings
sampling [37], which accepts or rejects changes not
deterministically but based on a probability:
e E:T;

where E is the change of energy if the new configuration is
accepted and T is a parameter named temperature, irrespec-
tive of the energy function involved. The SA process
simulates the physical process of annealing by slowly
decreasing the temperature T to force the system into lower
energy states. With a certain cooling schedule (annealing
schedule), the SA can be guaranteed to find the global
minimum [14]. However, the schedules leading to this
guarantee are impossibly slow and there is a trade-off
between the cooling speed and the quality of the solution.

In the above ICM or SA optimization process for (7),
several parameters are required to be known or estimated.
These include the number of classes n, the Gaussian
parameters ; and ,2 for each class i, and the MLL
parameter

The expectation-maximization (EM) algorithm [38] is
typically used to determine the parameters for the Gaussian
mixture and, hence, can be used to estimate j and i2. Let ;

1. Please note that (4) alone defines a Gaussian mixture problem.
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denote the prior for class i and wgj represent the probability
of site s belonging to class i given the observed data and
current estimate of all parameters. The EM algorithm
computes the Gaussian parameters through iterating the
E step,

PYsiis i i
Wi ... P . : 8
N ?mlp Ys) is i i
and the M step,
P W
o pasWsi¥s. 9
s2s Wsi
P 2
i2 szs!éQ’SI Ys i : 10
s2s Wsi
P
Wei
U =~ ha 11
i s2s Wsi

In such an estimation of ; and 2 using (8)-(11), the
spatial context has not been considered. Therefore, jand ?
may seem necessary to refine based on intermediate
segmentation results. That is, during each iteration of the
optimization process, the parameters are updated based on
the current segmentation result using the same M step, as in
(9)-(11), but a different E step, where
1 if Xs .. 10;

0 otherwise: 12

Wsj ...

However, such an updating scheme has problems. At the
initial stages of iterations where the feature model
parameters are not close enough to the true values,
incorporation of the spatial context model may produce
poor segmentation, which in turn can make the resulting
updated feature model parameters even worse. During the
optimization process, the point at which the spatial context
model begins to have a positive role and the point at which
the parameter updating should begin is unclear. This is an
issue addressed by the proposed method in Section 3.

Traditionally, is a constant, set a priori using an
experimentally satisfactory value. For example, Rignot and
Chellappa [39] reported that [1.0-1.6] is the best range for
in polarimetric synthetic aperture radar (SAR) image
segmentation. Yue [40] concluded that could be set
between 1 and 3 for SAR sea ice imagery. However, a single

cannot describe images of even a moderate range of
complexity. The should be set as a large value for simple
scenes and small for complex scenes. Descombes et al. [41]
derive the following mathematical formulation of the
relationship between the and the boundary length using
maximum likelihood estimation:

X

N x .. NXxP X ; 13

X

where N x is the total number of pairs of neighboring sites
that are of different labels. Equation (13) demonstrates that

should choose the value by which the expectation of the
boundary length over all possible configurations x is equal
to the current. A Monte Carlo scheme is then used to
estimate
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The number of classes n can be determined by explicitly
incorporating into the objective function a penalty term for
large n [18], [24], based on certain criterion such as the
minimum description length [42]. However, establishing n
is by no means a resolved issue. For the experiments in this
paper, n is assumed to be known a priori.

2.4 Extending to Region-Based Segmentation

More generally, the MRF can be defined on irregular graphs
rather than the regular image lattice. This allows the image
segmentation problem formulated by (7) to be based on a
set of interconnected groups of pixels (referred to here as
“regions”), with the MRF spatial context model based on a
region adjacency graph (RAG) [17]. Here, the labeling is not
on single pixels but on regions, where the regions are
commonly obtained by a deliberate oversegmentation. Each
node in the RAG represents a region and a link between the
nodes represents the existence of a common boundary
between the regions. Defined on the RAG, the MRF models
the behaviors of the regions in a similar way as for pixels.
Let R; denote node i in the graph and let x; denote the label
for all sites s 2 R;. The feature model energy for R; can be
defined as

D
=<1 Ys Xi 2
T2 14
s2R; Xi
and the MRF pair site clique energy for two neighboring
nodes R; and R;j is
P :
<sit>2C if Xj 6. Xj
S2Rj 12R; 15
otherwise:

Vo Xi; Xj
Summation of the above energies over the entire RAG,
similarly to (3)-(5), gives exactly (7). A combinatorial
optimization techniques is then applied to RAG nodes
instead of pixels. Such a region-based segmentation method
is advantageous in computation speed as the number of
RAG nodes is usually significantly less than the number of
pixels. The initial oversegmentation and RAG construction
time can be relatively trivial.

3 GRADUATED INCREASED EDGE PENALTY (GIEP)

This section focuses on one aspect of the proposed IRGS
method: using a sequence of edge penalty functions to
approximate the MRF spatial context model. This aspect
alone provides a basis for a novel segmentation method and it
will be referred to as the graduated increase edge penalty
(GIEP). The GIEP has two attractive features. First, it utilizes
edge information to improve the segmentation on nonsta-
tionary situations. Second, it provides a simple and elegant
method of simultaneously estimating model parameters and
searching solutions for the MRF-based formulation in (7).
Since the last summation term in (7) is nonzero only at
boundary sites (that is, having at least one neighbor
belonging to a different region), the corresponding MRF
spatial context model functions as a penalty for the
existence of boundary site pairs. Instead of penalizing
equally for all boundary site pairs, a greater penalty can be
applied to weak edge and a lesser penalty to strong edge so
that local statistic, such as edge strength, can be incorpo-
rated. Therefore, the penalty term can be replaced with
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some monotonically decreasing function g  (defined in
Section 3.1) of the strength of the edge between the two
neighboring sites astride the boundary. The clique energy
function in (2) is now changed to

g Fst if Xs 6. Xt

0 otherwise; 16

Vo Xs; Xt ...

where the edge strength r ... jy: Ysj. Correspondingly,
the new objective function can thus be defined as

C )
. <1 2 Ys Xs 2
arg min sin2 5§ 5
fxs;52S9 25 2 s 2 x) 17
>
f1 Xs; Xt g st g
<s;t>2C

Although inspired by the MRF spatial context model,
(17) can be viewed as a cost function by which the
segmentation problem is formulated more generally with-
out the Markov constraint and the Bayesian interpretation.
Similar cost functions can also be found in the research
literature, for example, [43]. However, the cost function (17)
may produce biased results for image segmentations. This
is clearer if we return to the Bayesian framework and view
(16) as a spatial context prior model.? Obviously, this prior
favors configurations in which the mean pixel values of the
classes are more apart. Although a suitable g can possibly
be selected to make the bias under control for a given class
of images, there is no clue as to how to choose this single
g for a variety of scenes and applications. Therefore,
instead of using a single edge penalty function, a sequence
of functions is designed to approach to the nonbiased MLL
prior model, as shown in Section 3.1. This is one major
difference between the proposed method and other pub-
lished approaches.

3.1 Choosing Edge Penalty Function

The edge penalty function g can be any monotonically
decreasing function so that the greater the edge strength is,
the smaller the penalty. Suppose the edge strength r for
any boundary site pair s and t has been normalized to [0, 1].
Then, the penalty function can be formulated as

— 2
grg ..e TR 18

The parameter K (Fig. 1) defines how fast the edge penalty
decays with the increase of edge strength. As K increases,
the penalty difference between weak and strong edges
decreases. When K approaches infinity, all edge penalties
are equally 1.

Thus, the defined sequence of edge penalty functions is
characterized by two aspects. With K gradually increased,
we have the following:

The sequence penalizes weak edges and strong
edges differently, but the penalty difference is
gradually decreased.

The sequence gradually increases the penalty for any
edge.

2. Here, we ignore the fact that a prior model, by definition, should not
depend on the data.
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Fig. 1. Edge penalty functions defined by (18).

3.2 Overall Algorithm

A nice property of using such a sequence of edge penalty
functions is that it provides a simple and elegant transition
from the standard Gaussian mixture problem to the MRF-
based formulation. From the point of view of a solution
searching for (7), this allows an effective simultaneous
parameter estimation and optimization, which is less
influenced by the possibly negative role of spatial context
model at the initial stages, as described earlier in Section 2.3.
The overall process of GIEP segmentation is summarized in

Table 1.
Starting from the extreme case of the Gaussian mixture

problem,? the algorithm in Table 1 introduces more and more
edge penalty during the solution searching. When K is
sufficiently large, the energy function is close to (7) and an

approximate solution to (7) is obtained by the algorithm.
The incremental schedule for the penalty function

parameter K is desired to be very slow in order to carefully
approximate the transition from the Gaussian mixture
problem to the final objective function of (7). On the other
hand, the processing time is required to be tolerable for the
method to be practically useful. A trade-off has to be made.
In all of the experiments in this paper, K is chosen to be

T 2t if0 t<50;t21

t1 ’

K LKt ift 50;t2 1 19
wheret ... 0;1;... is the sequence numberand K° .. 0.f i

is the value to which i percent of the site pairs have weaker
edge strength in comparison. Such a schedule is experi-

mentally satisfactory.
As in Section 2.4, a region-based GIEP is also possible.

The same single-node clique energy as in (14) is used and a
different pair-node clique energy is defined as

CcP .
5&?@22] grg ifXi6 X 20

Va Xi; Xj .
0 otherwise:

3. The extreme case corresponds to K ... 0, where the edge penalty
function has a nonzero value only at the zero edge strength point.
Therefore, strictly speaking, it is not an exact Gaussian mixture problem but
one with penalties on situations where neighboring sites with zero edge
strength between them belong to different classes. Such situations will
never happen in practice and the two problems are equivalent.
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4 ITERATIVE REGION GROWING USING SEMANTICS

In this section, we extend the GIEP method in Table 1 in a
hierarchical manner, leading to the IRGS method. Many
researchers have applied the MRF model on a hierarchical
structure of pixels instead of single pixels [28], [29], [30],
[31], since pixel-based methods are either easily trapped in
local minima or extremely slow in convergence. However,
the fixed hierarchical structure in those approaches does not
allow efficient descriptions of the underlying image
contents and may produce undesirable artifacts. There are
a number of papers that construct data-adaptive structures
using graph cuts [32], [33] or region growing [34]
techniques. The sequence of objective functions described
in the preceding section are introduced naturally as the
merging criteria corresponding to various scales and, here,
a simple region growing technique is used to construct the
hierarchical data-adaptive structures of the image for
optimization purposes.

4.1 Region Growing

Similarly to the GIEP, the proposed IRGS method is also
iterative, with each iteration an optimization process for
finding a local minimum of the objective energy function
(17) for a given K. Consider a hierarchical clustering
process for such an optimization purpose. The process
begins with a deliberate oversegmentation configuration
with many classes and tries to reduce to the true number of
classes. Examining each pair of classes, the energy (17) of
the configuration obtained by merging the two classes is
computed and compared with that before merging. If there
is a decrease, the merging is justified. In computing such an
energy difference, energy terms unrelated to the current
two classes can be cancelled and a simple merging criterion
can be derived from (17). Suppose two classes, jand j,
are being investigated. Let .. j j denote the class
obtained by merging and N; denote the number of pixels

belonging to . The energy difference
X > Vs K 2 X
Eij.. In « — In
s2 s2 2 k s2
x Ys ; 2 X
57 In
s2 1 S2
x y .2 <
s j
2 2 g gt
s2 j j <sit>2C
s2 jit2
x 1 X 1
. In k ENk In i §Ni 21
s2 i S2
> 1 X
In ENj g st
s2 j SES:T-TZZC,
X X <
In K In i In j
s2 X s2 s2 j
g st -
<s;t>2C
s2 jit2 j

If (21) gives a negative value, ; and j can be merged. If
(21) gives a nonnegative value, jand jcannot be merged.
Such a hierarchical clustering does not guarantee to
generate a given number of classes. A labeling process is
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TABLE 1
Algorithm of
Graduated Increased Edge Penalty Segmentation (GIEP)

1. Initially, K = 0. Assign each RAG node (representing a
region or a pixel) with a random label.

2. Based on the current segmentation result, compute the new
feature model parameters using (9)-(12).

3. Refine the segmentation. The process scans each RAG node
in a random order, and for each scan chooses the label that
produces the minimum energy for (17).

4. If a maximum number of iterations has not been completed,
increase K and go back to step 2.

then necessary to assign a given number of labels to the
clusters obtained.

A sequential merging order needs to be defined since the
merging cannot be performed simultaneously. A greedy
way is to find the two classes of which the merging
decreases the energy most and merge them first. At each
iteration, the merging begins on a configuration obtained by
a more conservative criterion from the previous iteration
and continues until the energy cannot be reduced.

In practice, letting each region be a unique class for the
initial oversegmented configuration is convenient. The IRGS
in this paper always uses such an initial configuration and,
hence, the hierarchical clustering is essentially a region
growing process. The energy difference between the two

neighboring regions R;; Rj and itsunion Ry ... Ri  Rjisthus
> > >
Eij In Kk In i In j
Ss2Rk s2R; s2Rj
=< _ ’ 22
g st !
<s;t>2C
52Ri;12Rj

4.2 Overall Algorithm

The overall algorithm is described in Table 2. Compared to
the GIEP algorithm in Table 1, the IRGS is different only by
an additional region merging process (corresponding to
Steps 3 and 4) at each iteration, which reduces the
dimension of the search space. In Step 3, energy differences
are only computed between regions with the same class
label. Two regions are not allowed to be merged if they
belong to different classes, the purpose of which is to
suppress the merging between parts of different objects that
have weak boundaries in between. This concept is known as
semantic region growing [44], [45] and similar ideas also
appear in other approaches [32]. Here, the merging and
labeling are iterative and, as such, are referred to as IRGS.
Although the labeling process in this paper has no semantic
meanings, it is possible to replace it with a domain specific
labeling process and to integrate high-level knowledge into
this system [46].

4.3 Estimating the MLL Parameter

Equation (13) demonstrates that the MLL parameter

should only be determined by the boundary length
expected in the image. This seems doubtful because also
needs to be adaptive to the noise strength of the image to
obtain a good segmentation. For example, if there is
sufficient overlapping of the pixel intensities between the
classes in the image (that is, noise strength is high), it is
quite likely that the global minimum corresponds to an
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TABLE 2
Algorithm of the
Iterative Region Growing on Semantics (IRGS) Segmentation

1. Initially, K = 0. Construct an initial RAG and assign each
node with a random label.

2. Based on the current segmentation result, compute the new
feature model parameters using (9)-(12).

3. Compute the energy difference dF using equation (22) for
each pair of linked nodes in the RAG that have the same class
label, and find the minimum 6 E,,,;, for each.

4.  If § Epin is negative, merge the corresponding two nodes and
2o back to step 3.

5. Perform the labeling on the new RAG. The process scans each
node in the RAG in a random order, and for each node scanned
chooses the label that produces the minimum energy for (17).

6. If a maximum number of iterations has not been completed,
increase K and go back to step 2.

undersegmentation (for example, all of the sites belong to
one single class) result if the is not reduced to a
sufficiently small value. However, this phenomenon does
not mean that the estimation of is wrong, but, rather,
indicates the inaccuracy of the MLL as the prior. Never-
theless, it is possible to adjust the MLL parameter to achieve

a good segmentation.
Let  represent the MLL parameter estimated by the

method in [41] and a different notation " represent its
adjustment. In the IRGS, the MLL parameter is estimated by
the following:
A J=C,
ZCr—; 23
"1 J=C,

where C; and C, are two constants and J is the minimum of
the Fisher criterion for any two classes in the image:

2

Jmin——J 24

[H] i JZ

J gives a measure of the separability of the classes in the
image with respect to the gray level. The equation gives a
small " when J is small (corresponding to high noise
strength) and vice versa. At the initial stages of the
segmentation, when spatial context information does not
play an important role and the regions are obtained mostly
based on features, J is relatively large (compared to those
obtained later). When the merging proceeds, J is generally
decreasing, causing " to be smaller. Therefore, the spatial
correlations decreases as the scales increases, which agrees

with intuition.
On the other hand, it seems counterintuitive that the

strength of the interactions in the spatial context model
should be small when the noise strength is high. However,
such an intuition is based on considering the problem in a
local manner. For example, methods that update labels
pixel by pixel generally do not suffer the undersegmenta-
tion problem and produce similar results using large MLL
parameters [47]. However, such a nice property of pixel-
based methods is due to its being trapped into a local
minimum, which is not theoretically desirable.
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5 EXPERIMENTS AND DISCUSSION

5.1 Experimental Setup

Five methods are tested and compared. The methods
include

1. the Gaussian mixture model-based clustering
(GMM),

2. the classical MLL approach that uses (7) as the
objective function and SA for optimization with a
constant (C) weighting between the feature and
context model (C-MLL),

3. Deng and Clausi’s method [23] that uses a variable
(V) weighting between the feature and context
model (V-MLL),

4. the GIEP described in Table 1, and

5. the IRGS described in Table 2.

Although there is no reason why the IRGS segmentation
in Table 2 cannot begin with each pixel being a node of the
RAG,* the construction of such a RAG has a high memory
requirement. Therefore, a watershed segmentation [6] is
performed first to provide an oversegmentation result upon
which the initial RAG is constructed. However, this implies
that, in addition to the overall model for merging and
labeling, a different model has been introduced in the
process. It is desirable that the initial watershed does not
greatly influence the robustness and accuracy of the overall
process and, hence, oversegmentation that produces very
tiny regions is deliberately chosen. The degree of over-
segmentation is determined by the variance of the Gaussian
filter for smoothing the gradient magnitude, of which the
local minima act as the seeds for the watershed process. In
this paper, the Gaussian filter has a variance of 1.0 and
highly oversegmented results are obtained initially. For
comparison, the C-MLL, V-MLL, and GIEP here are also
region-based using the same initial watershed result.

The annealing schedule, if applied, is always a simple
geometric cooling Tt ... 0:98! [48]. For all of the methods,
the segmentation is initialized with random labels and
multiple results have been obtained by multiple runs. For
each method, the quality of those results is generally very
similar and we present the best result.

The C-MLL first uses the feature model parameters
estimated without considering the spatial context by (8)-
(11), as in a pure GMM approach. Due to the unpredictable
role of the spatial context model at the initial stages, the
parameters are updated only when a sufficient number of
iterations have been completed, achieving low randomness
in the segmentation, i.e., the temperature is lower than 0.1.
This implementation improved these segmentation results.

The " of (23) is used as the MLL model parameter for all
methods if applied. The constants C; and C; in (23) are
application dependent and obtained by trial and error. For
synthetic images, C; ... 2 and C, ... 0:4. For SAR sea ice
imagery, which has more textures and structures, C; ... 5
and C, ... 0:4. In computing ", the original unadjusted MLL
parameter  is estimated and refined iteratively by the
method in [41] based on intermediate results along the
segmentation process. Since all of the methods except GMM

4. The only difficulty is the computation of ; in (22) if there is only one
pixel in j. However, this can be solved by assigning a certain initial value
to . For example, we can use the square root of the noise variance, which
can be estimated by the mode of local variances of the entire image.
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can be viewed as trying to find the global minimum of the
energy function (7), computing this energy to evaluate the
quality of the result is helpful. However, different ™ are
obtained by each different method, making any comparison
of the final energy meaningless. Therefore, we choose the "
obtained by the IRGS as the standard and run the other
methods using this fixed " instead of estimating it by
themselves in the segmentation process. The reason why
is estimated by the IRGS as opposed to any of the other
methods is based on the observation that other methods (C-
MLL, V-MLL, and GIEP) tend to give underestimates of the
appropriate " when heavy noise exists in the image. A
noisier image often corresponds to a noisier initial config-
uration, from which an oversegmentation is likely to occur
if the configuration changes are on single pixels or small
groups of pixels. The " computed from the segmentation
result is thus smaller than it should be and will then favor
oversegmented configurations in turn. Except for the
proposed IRGS method, all other tested methods are likely
to give underestimates of " and, hence, " is set a priori for
them for the purposes of comparing energies for final
solutions, as per (7).

Percentages of correctly labeled pixels are also computed
for comparisons of the segmentation methods. This requires
correspondence between the segmentation labels and truth
labels and we establish such a correspondence by making
the classes in the obtained result have the same brightness
order as that of the corresponding classes in the truth. That
is, the brightest of obtained classes should correspond to the
brightest class in the truth, the second brightest of obtained
classes should correspond to the second brightest in the
truth, and so on.

The methods have been tested on several synthetic
images and numerous SAR sea ice images and some of
these are presented here. All of the SAR sea ice images are
captured by RADARSAT in ScanSAR (C-band and HH)
mode and have 100-m pixel spacing. Ground truth is
provided by ice maps produced by professional ice analysts
at the Canadian Ice Service (CIS). Manual segmentations are
produced based on the ice analysts observations. Sea ice is
notoriously difficult to classify on a pixel-by-pixel basis, but
manual segmentations based on ice analyst observations
provide sufficient truth for quantitative evaluations here.
The authors have a working relationship with CIS and a
strong understanding of the challenges for SAR sea ice
image segmentation that helps to motivate the practical
aspects of this research.

5.2 Synthetic Images

The first experiment is on a synthetic image shown in Fig. 2a.
Theimage has three different gray levels: 96, 144, and 160. The
zero mean Gaussian noise of standard deviation 48 is then
added, with the resulting image shown in Fig. 2b and the
unimodal histogram shown in Fig. 2c. The noise causes a
significant overlapping of the intensity ranges among the
objects and background. A Gaussian mixture segmentation is
first applied and the corresponding result shown in Fig. 2d is
very noisy. Results of the various methods using spatial
context models are then presented in Figs. 2e, 2f, 2g,and 2h. In
Fig. 2e, noisy configurations have been greatly reduced by the
C-MLL approach, but most of the triangle area is labeled
incorrectly. The V-MLL method and the GIEP give improved
labeling in Figs. 2f and 2g, respectively, with the feature
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Fig. 2. Segmentations on an example synthetic noisy image. The three gray levels in the original image are 96, 144, 160, respectively. " obtained by

IRGS is 0.27. (a) An example image. (b) With zero mean Gaussian white noise

... 48 added. (c) Histogram of the image in (b). (d) By GMM.

Estimated mean: 60.0, 132.1, 205.4; Accuracy: 50.0 percent. (e) By C-MLL. Estimated mean: 96.6, 151.7, 169.8; Energy: 558363; Accuracy:
71.9 percent; Kappa: 0.57. (f) By V-MLL. Estimated mean: 96.6, 144.0, 157.7; Energy: 557647; Accuracy: 93.7 percent; Kappa: 0.90. (g) By GIEP.
Estimated mean: 96.7, 142.7, 158.6; Energy: 558553; Accuracy: 93.1 percent; Kappa: 0.89. (h) By IRGS. Estimated mean: 96.4, 144.3, 160.1;

Energy: 557210; Accuracy: 99.0 percent; Kappa: 0.98.

model parameters estimated more accurately at the same
time (the means shown in the figure). However, their results
still have obviousregional errors. Both methods update labels
on groups of a limited number of pixels and without a very
slow annealing schedule are trapped in a local minimum. A
successful segmentation has been given by IRGS in Fig. 2h.
The IRGS method is clear of any regional errors with only
minor boundary errors. The IRGS has achieved an accuracy of
99.0 percent and a Kappa coefficient close to 1. The IRGS
result also generates a lower energy than each of the other
methods.
To show the necessity of using the adjusted MLL
parameter ™ rather than , we estimate from the truth the
, Which is 4.49, and compute the corresponding energies
for the truth and the obtained configurations in Figs. 2e, 2f,
2g, and 2h. The results are shown in Table 3. The minimum
energy across all tests corresponds to the C-MLL result in
Fig. 2e and, hence, indicates that the objective function

using the unadjusted MLL parameter
the segmentation of the tested image.

Experiments are then performed on a set of synthetic
images. We are particularly interested in the segmentation
of SAR sea ice imagery and, hence, we try to synthesize
images that are similar to SAR sea ice scenes. In the
synthesis of these images, two different intensities are
chosen, one relatively dark for the background and one
relatively bright for the foreground objects. Those fore-
ground objects have round shape with a limited amount of
deformation and are generated at random locations in the

is inappropriate for

TABLE 3
Energies of the Configurations in Fig. 2
Using the Estimated (4.49) from the Truth
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