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Abstract—This paper proposes an image segmentation method named iterative region growing using semantics (IRGS), which is

characterized by two aspects. First, it uses graduated increased edge penalty (GIEP) functions within the traditional Markov random

field (MRF) context model in formulating the objective functions. Second, IRGS uses a region growing technique in searching for the

solutions to these objective functions. The proposed IRGS is an improvement over traditional MRF-based approaches in that the edge

strength information is utilized and a more stable estimation of model parameters is achieved. Moreover, the IRGS method provides

the possibility of building a hierarchical representation of the image content and allows various region features and even domain

knowledge to be incorporated in the segmentation process. The algorithm has been successfully tested on several artificial images and

synthetic aperture radar (SAR) images.

Index Terms—Markov random field (MRF), Gaussian mixture, hybrid region and edge, region growing, Region Adjacency Graph

(RAG).

Ç

1 INTRODUCTION

IMAGE segmentation is a process that decomposes an image
into disjoint regions and is a fundamental step for many

image-processing tasks such as image understanding and
content-based image retrieval. In general, image segmenta-
tion aims at producing regions that are homogeneous with
respect to the extracted features, such as gray level or
texture, and have significant different feature values across
region boundaries. Due to the existence of noise in
measurements and randomness of the features, pure
feature-based segmentation approaches such as histogram
thresholding [1] and clustering [2] often produce noisy
results and there are numerous other methods that more or
less utilize the spatial context information either implicitly
or explicitly. Some examples are edge-based methods [3],
[4], [5], [6], region splitting and merging [7], [8], and model-
based methods such as curve evolution [9], [10], [11] and
random fields [12], [13], [14], [15], [16], [17], [18]. These
approaches all have certain attractive features but also have
drawbacks. The edge-based methods are insensitive to image
nonstationarity and are efficient in describing local beha-
viors, but are ineffective in producing results globally
meaningful. The region splitting and merging category
provides the possibility of incorporating a variety of regional
features but often has difficulty in determining suitable
merging and stopping criteria for a result that is neither
oversegmented nor undersegmented. The model-based
methods have an established mathematical foundation but
require the model to be accurate and the optimization process

to be able to find a satisfactory solution efficiently, both of
which are difficult for complex scenes.

In this paper, an image segmentation method named
iterative region growing using semantics (IRGS) is
proposed, based on our previous work in [19]. The IRGS
is characterized by two aspects: 1) It uses a sequence of edge
penalty functions to approximate the traditional Markov
random field (MRF) context model in formulating the
objective functions and 2) it uses a region growing
technique in searching for the solutions to those objective
functions. The MRF has been popular in modeling image
spatial context and, with a feature model combined under
the Bayesian framework, provides a statistically sound
formulation of the segmentation problem. Starting from
such an MRF-based formulation, the IRGS combines the
attractive features of edge-based and region-growing
methods. The motivation is fourfold.

1. Edge information should be efficiently used during
the optimization process of the traditional MRF
segmentation. For a complex scene, whether or not
the model is sufficiently accurate to describe the
image contents is often unclear. As a result, the
global minimum of the objective function of model-
based approaches may not correspond to the desired
segmentation. In fact, a satisfactory solution is not
necessarily the global minimum, but often local
minima obtained by guiding the optimization
process with good initial conditions or any helpful
information. The edge strength is one such helpful
feature and, hence, the IRGS incorporates the edge
strength into the traditional MRF model. Such a
model has something similar to the conditional
random fields [15], [16] in that the interactions in
labels are data dependent. However, the IRGS uses a
sequence of models instead of a single one, which is
fundamentally different from existing conditional
random field approaches and other hybrid region
and edge segmentation work [20], [21], [22] as well.
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2. The role of the spatial context model should be
adaptively weighted. The MRF spatial context model
favors the configuration composed of large regions
that are homogeneous in the defined features. Two
related tasks are then important for obtaining a
satisfactory solution to such an MRF-based formu-
lation—the parameter estimation of the feature
model and the optimization process for the segmen-
tation. For the unsupervised segmentation problem,
obtaining the feature model parameters a priori by
training is not practical and those parameters are
usually estimated and refined iteratively from
intermediate segmentation results. However, simul-
taneous parameter estimation and segmentation
often gives erroneous results due to the unpredict-
able role of the spatial context model on inaccurate
configurations. At the initial stages of iterations,
where the feature model parameters are far from the
true values, incorporation of the spatial context
model may produce meaningless segmentation,
which in turn can make the resulting updated
feature model parameters even worse. To alleviate
this problem, Deng and Clausi [23] use a variable
weighting scheme between the feature and spatial
context model so that the influence of spatial context
is minimum initially and then gradually increased.
The IRGS provides a similar but different scheme.

3. Multiscale segmentation is desirable. Due to the
different goals and models of the two tasks of image
segmentation and interpretation, regions obtained
by the segmentation process may not match the real
objects well enough for an accurate subsequent
interpretation. For example, it is often difficult to
determine a suitable scale so that the segmentation
result is neither oversegmented nor undersegmented
with respect to the interpretation need. A possible
solution to this is to generate multiple segmentation
results [24] corresponding to multiple scales and let
the interpretation process choose the best one. Such
a multiscale segmentation can be provided by IRGS
as it uses a sequence of objective functions with the
solutions corresponding to segmentations of various
coarseness.

4. Data should be taken into account at a region level.
Pixel-based combinatorial optimization techniques
[12], [14], [25], [26], [27] are either extremely slow or
are easily trapped into local minima. Large moves in
the searching space are thus desirable and can be
achieved by performing configuration changes on
groups of pixels instead of each single pixel during
the optimization process. The grouping structure of
pixels can be fixed [28], [29], [30], [31] or, more
attractively, data-adaptive [32], [33], [34] so that the
correspondence between the image structures and
true objects can be possibly established. The IRGS
uses a region growing technique to generate a
hierarchical data-adaptive structure and is different
from those approaches, as well as other model-based
region growing work [34], [35], [36].

The organization of the paper is given as follows:
Section 2 reviews the MRF-based image segmentations.
Section 3 improves the MRF work using a sequence of edge
penalty functions which, combined with a region growing

technique, leads to the IRGS method presented in Section 4.
Section 5 is the experiments and discussions. Summary and
future work comprise Section 7.

2 IMAGE SEGMENTATION AND MRF CONTEXT

MODEL

2.1 Problem Statement and Notations

Let S denote the discrete rectangular lattice on which
images are defined. Suppose there are n different classes in
the image to be segmented. X ¼ fXsjs 2 Sg is a set of
discrete valued random variables constituting a random
field on S, with each variable Xs taking a value in f1; . . . ; ng
representing the class to which the site s belongs. Y ¼
fYsjs 2 Sg is another random field somehow related to X
and the observed image is a realization from Y.

Let x ¼ fxsjs 2 Sg and y ¼ fysjs 2 Sg denote the realiza-
tions of X and Y, respectively. The image segmentation is
an inverse process that attempts to estimate the best x given
the observed image y. With the obtained class labels x, S is
segmented to n classes, �1; . . . ;�n, such that

aÞ �i ¼ fsjXs ¼ i; s 2 Sg;
bÞ

[n

i¼1
�i ¼ S;

cÞ 8i 6¼ j : �i \ �j ¼ ;:
ð1Þ

2.2 MRF-Based Formulation of Image Segmentation

The image segmentation task can be formulated as a
maximum a posterior (MAP) problem for which maximiz-
ing the posterior P ðxjyÞ gives a solution. By the Bayes’ rule,
this is equivalent to maximizing pðyjxÞP ðxÞ. Two models
are used for analytically representing pðyjxÞ (the feature
model) and P ðxÞ (the spatial context model).

For the spatial context model P ðxÞ, an MRF model
named the multilevel logistic model (MLL) has been
popular [13]. The MRF theory provides a way to model
the joint probability distribution of the image sites in terms
of local spatial interactions, which are analytically ex-
pressed by clique energy functions [17]. The clique energy
of MLL is defined as

V2ðxs; xtÞ ¼
� if xs 6¼ xt
0 otherwise;

�
ð2Þ

where s and t are neighboring sites forming a pair-site clique
and� is a positive number. Such a model makes the priorP ðxÞ
large if the local neighborhood is dominated by one single
class and small otherwise and, hence, is effective in suppres-
sing noisy configurations of class labels.

In modeling pðyjxÞ, ys is often assumed to be a constant
gray level (related to xs), corrupted by additive indepen-
dent noise. Furthermore, pðysjxsÞ is often assumed to be a
Gaussian function for simplicity. With both the feature
model and the spatial context model defined, the MAP
formulation of the segmentation task is transformed into
minimizing an energy

E ¼ Ef þ Es; ð3Þ

where

Ef ¼
X
s2S

V1ðxsÞ ð4Þ
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and

Es ¼
X

<s;t>2C
V2ðxs; xtÞ; ð5Þ

where C is the set of all cliques on the entire lattice S. In the
above equations, we have

V1ðxsÞ ¼
1

2
lnð2��2

xs
Þ þ ðys � �xsÞ

2

2�2
xs

; ð6Þ

where �i and �2
i are the mean and variance of the pixel

values in class i, and V2ðxs; xtÞ is defined in (2). Substituting
(6)1 and (2) into (3), the image segmentation problem is
formulated as

arg min
fxs;s2Sg

X
s2S

1

2
lnð2��2

xs
Þ þ ðys � �xsÞ

2

2�2
xs

( )(

þ�
X

<s;t>2C
f1� �ðxs; xtÞg

)
;

ð7Þ

where �ð�Þ is the Kronecker delta function.

2.3 Optimization and Parameter Estimation

Finding a solution for (7) represents a combinatorial
optimization problem. Various combinatorial optimization
techniques are known, including iterated conditional mode
(ICM) [12], simulated annealing (SA) [14], mean field theory
[27], genetic algorithm [25], belief propagation [26], and
graph theoretic techniques [33]. The ICM [12] is the
simplest among all of these. Utilizing the local dependence
among pixels, the ICM iteratively refines the label config-
urations based on the provisional estimate of those
configurations, accepting changes that decrease the
energy E the most. Its greedy nature makes it easily
trapped in local minima and sensitive to the initial estimate.
A better and perhaps the most widely used approach is
simulated annealing (SA) [14]. Unlike ICM, SA employs a
random search scheme, for example, Metropolis-Hastings
sampling [37], which accepts or rejects changes not
deterministically but based on a probability:

e��E=T ;

where �E is the change of energy if the new configuration is
accepted and T is a parameter named temperature, irrespec-
tive of the energy function involved. The SA process
simulates the physical process of annealing by slowly
decreasing the temperature T to force the system into lower
energy states. With a certain cooling schedule (annealing
schedule), the SA can be guaranteed to find the global
minimum [14]. However, the schedules leading to this
guarantee are impossibly slow and there is a trade-off
between the cooling speed and the quality of the solution.

In the above ICM or SA optimization process for (7),
several parameters are required to be known or estimated.
These include the number of classes n, the Gaussian
parameters �i and �2

i for each class i, and the MLL
parameter �.

The expectation-maximization (EM) algorithm [38] is
typically used to determine the parameters for the Gaussian
mixture and, hence, can be used to estimate �i and �2

i . Let �i

denote the prior for class i and wsi represent the probability
of site s belonging to class i given the observed data and
current estimate of all parameters. The EM algorithm
computes the Gaussian parameters through iterating the
E step,

wsi ¼
pðysj�i; �iÞ�iPn
i¼1 pðysj�i; �iÞ�i

; ð8Þ

and the M step,

�i ¼
P

s2S wsiysP
s2S wsi

; ð9Þ

�2
i ¼

P
s2S wsiðys � �iÞ

2P
s2S wsi

; ð10Þ

�i ¼
P

s2S wsiP
i

P
s2S wsi

: ð11Þ

In such an estimation of �i and �2
i using (8)-(11), the

spatial context has not been considered. Therefore, �i and �2
i

may seem necessary to refine based on intermediate
segmentation results. That is, during each iteration of the
optimization process, the parameters are updated based on
the current segmentation result using the same M step, as in
(9)-(11), but a different E step, where

wsi ¼
1 if xs ¼ i;
0 otherwise:

�
ð12Þ

However, such an updating scheme has problems. At the
initial stages of iterations where the feature model
parameters are not close enough to the true values,
incorporation of the spatial context model may produce
poor segmentation, which in turn can make the resulting
updated feature model parameters even worse. During the
optimization process, the point at which the spatial context
model begins to have a positive role and the point at which
the parameter updating should begin is unclear. This is an
issue addressed by the proposed method in Section 3.

Traditionally, � is a constant, set a priori using an
experimentally satisfactory value. For example, Rignot and
Chellappa [39] reported that [1.0-1.6] is the best range for �
in polarimetric synthetic aperture radar (SAR) image
segmentation. Yue [40] concluded that � could be set
between 1 and 3 for SAR sea ice imagery. However, a single
� cannot describe images of even a moderate range of
complexity. The � should be set as a large value for simple
scenes and small for complex scenes. Descombes et al. [41]
derive the following mathematical formulation of the
relationship between the � and the boundary length using
maximum likelihood estimation:

NðxÞ ¼
X

x

NðxÞP ðxj�Þ; ð13Þ

where NðxÞ is the total number of pairs of neighboring sites
that are of different labels. Equation (13) demonstrates that
� should choose the value by which the expectation of the
boundary length over all possible configurations x is equal
to the current. A Monte Carlo scheme is then used to
estimate �.
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The number of classes n can be determined by explicitly
incorporating into the objective function a penalty term for
large n [18], [24], based on certain criterion such as the
minimum description length [42]. However, establishing n
is by no means a resolved issue. For the experiments in this
paper, n is assumed to be known a priori.

2.4 Extending to Region-Based Segmentation

More generally, the MRF can be defined on irregular graphs
rather than the regular image lattice. This allows the image
segmentation problem formulated by (7) to be based on a
set of interconnected groups of pixels (referred to here as
“regions”), with the MRF spatial context model based on a
region adjacency graph (RAG) [17]. Here, the labeling is not
on single pixels but on regions, where the regions are
commonly obtained by a deliberate oversegmentation. Each
node in the RAG represents a region and a link between the
nodes represents the existence of a common boundary
between the regions. Defined on the RAG, the MRF models
the behaviors of the regions in a similar way as for pixels.
Let Ri denote node i in the graph and let xi denote the label
for all sites s 2 Ri. The feature model energy for Ri can be
defined as

V1ðxiÞ ¼
X
s2Ri

1

2
lnð2��2

xi
Þ þ ðys � �xiÞ

2

2�2
xi

( )
ð14Þ

and the MRF pair site clique energy for two neighboring
nodes Ri and Rj is

V2ðxi; xjÞ ¼
P

<s;t>2C
s2Ri;t2Rj

� if xi 6¼ xj
0 otherwise:

(
ð15Þ

Summation of the above energies over the entire RAG,
similarly to (3)-(5), gives exactly (7). A combinatorial
optimization techniques is then applied to RAG nodes
instead of pixels. Such a region-based segmentation method
is advantageous in computation speed as the number of
RAG nodes is usually significantly less than the number of
pixels. The initial oversegmentation and RAG construction
time can be relatively trivial.

3 GRADUATED INCREASED EDGE PENALTY (GIEP)

This section focuses on one aspect of the proposed IRGS
method: using a sequence of edge penalty functions to
approximate the MRF spatial context model. This aspect
alone provides a basis for a novel segmentation method and it
will be referred to as the graduated increase edge penalty
(GIEP). The GIEP has two attractive features. First, it utilizes
edge information to improve the segmentation on nonsta-
tionary situations. Second, it provides a simple and elegant
method of simultaneously estimating model parameters and
searching solutions for the MRF-based formulation in (7).

Since the last summation term in (7) is nonzero only at
boundary sites (that is, having at least one neighbor
belonging to a different region), the corresponding MRF
spatial context model functions as a penalty for the
existence of boundary site pairs. Instead of penalizing
equally for all boundary site pairs, a greater penalty can be
applied to weak edge and a lesser penalty to strong edge so
that local statistic, such as edge strength, can be incorpo-
rated. Therefore, the penalty term can be replaced with

some monotonically decreasing function gð�Þ (defined in
Section 3.1) of the strength of the edge between the two
neighboring sites astride the boundary. The clique energy
function in (2) is now changed to

V2ðxs; xtÞ ¼
�gðrstÞ if xs 6¼ xt
0 otherwise;

�
ð16Þ

where the edge strength rst ¼ jyt � ysj. Correspondingly,
the new objective function can thus be defined as

arg min
fxs;s2Sg

X
s2S

1

2
lnð2��2

xs
Þ þ ðys � �xsÞ

2

2�2
xs

( )(

þ �
X

<s;t>2C
fð1� �ðxs; xtÞÞgðrstÞg

)
:

ð17Þ

Although inspired by the MRF spatial context model,
(17) can be viewed as a cost function by which the
segmentation problem is formulated more generally with-
out the Markov constraint and the Bayesian interpretation.
Similar cost functions can also be found in the research
literature, for example, [43]. However, the cost function (17)
may produce biased results for image segmentations. This
is clearer if we return to the Bayesian framework and view
(16) as a spatial context prior model.2 Obviously, this prior
favors configurations in which the mean pixel values of the
classes are more apart. Although a suitable gð�Þ can possibly
be selected to make the bias under control for a given class
of images, there is no clue as to how to choose this single
gð�Þ for a variety of scenes and applications. Therefore,
instead of using a single edge penalty function, a sequence
of functions is designed to approach to the nonbiased MLL
prior model, as shown in Section 3.1. This is one major
difference between the proposed method and other pub-
lished approaches.

3.1 Choosing Edge Penalty Function

The edge penalty function gð�Þ can be any monotonically
decreasing function so that the greater the edge strength is,
the smaller the penalty. Suppose the edge strength rst for
any boundary site pair s and t has been normalized to [0, 1].
Then, the penalty function can be formulated as

gðrstÞ ¼ e�ðrst=KÞ
2

: ð18Þ

The parameter K (Fig. 1) defines how fast the edge penalty
decays with the increase of edge strength. As K increases,
the penalty difference between weak and strong edges
decreases. When K approaches infinity, all edge penalties
are equally 1.

Thus, the defined sequence of edge penalty functions is
characterized by two aspects. With K gradually increased,
we have the following:

. The sequence penalizes weak edges and strong
edges differently, but the penalty difference is
gradually decreased.

. The sequence gradually increases the penalty for any
edge.
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3.2 Overall Algorithm

A nice property of using such a sequence of edge penalty

functions is that it provides a simple and elegant transition

from the standard Gaussian mixture problem to the MRF-

based formulation. From the point of view of a solution

searching for (7), this allows an effective simultaneous

parameter estimation and optimization, which is less

influenced by the possibly negative role of spatial context

model at the initial stages, as described earlier in Section 2.3.

The overall process of GIEP segmentation is summarized in

Table 1.
Starting from the extreme case of the Gaussian mixture

problem,3 the algorithm in Table 1 introduces more and more

edge penalty during the solution searching. When K is

sufficiently large, the energy function is close to (7) and an

approximate solution to (7) is obtained by the algorithm.
The incremental schedule for the penalty function

parameter K is desired to be very slow in order to carefully

approximate the transition from the Gaussian mixture

problem to the final objective function of (7). On the other

hand, the processing time is required to be tolerable for the

method to be practically useful. A trade-off has to be made.

In all of the experiments in this paper, K is chosen to be

Kðtþ1Þ ¼ fð2tÞ if 0 � t < 50; t 2 I
1:1KðtÞ if t � 50; t 2 I;

�
ð19Þ

where t ¼ 0; 1; . . . is the sequence number and Kð0Þ ¼ 0. fðiÞ
is the value to which i percent of the site pairs have weaker

edge strength in comparison. Such a schedule is experi-

mentally satisfactory.
As in Section 2.4, a region-based GIEP is also possible.

The same single-node clique energy as in (14) is used and a

different pair-node clique energy is defined as

V2ðxi; xjÞ ¼
�
P

<s;t>2C
s2Ri;t2Rj

gðrstÞ if xi 6¼ xj
0 otherwise:

(
ð20Þ

4 ITERATIVE REGION GROWING USING SEMANTICS

In this section, we extend the GIEP method in Table 1 in a
hierarchical manner, leading to the IRGS method. Many
researchers have applied the MRF model on a hierarchical
structure of pixels instead of single pixels [28], [29], [30],
[31], since pixel-based methods are either easily trapped in
local minima or extremely slow in convergence. However,
the fixed hierarchical structure in those approaches does not
allow efficient descriptions of the underlying image
contents and may produce undesirable artifacts. There are
a number of papers that construct data-adaptive structures
using graph cuts [32], [33] or region growing [34]
techniques. The sequence of objective functions described
in the preceding section are introduced naturally as the
merging criteria corresponding to various scales and, here,
a simple region growing technique is used to construct the
hierarchical data-adaptive structures of the image for
optimization purposes.

4.1 Region Growing

Similarly to the GIEP, the proposed IRGS method is also
iterative, with each iteration an optimization process for
finding a local minimum of the objective energy function
(17) for a given K. Consider a hierarchical clustering
process for such an optimization purpose. The process
begins with a deliberate oversegmentation configuration
with many classes and tries to reduce to the true number of
classes. Examining each pair of classes, the energy (17) of
the configuration obtained by merging the two classes is
computed and compared with that before merging. If there
is a decrease, the merging is justified. In computing such an
energy difference, energy terms unrelated to the current
two classes can be cancelled and a simple merging criterion
can be derived from (17). Suppose two classes, �i and �j,
are being investigated. Let �k ¼ �i

S
�j denote the class

obtained by merging and Ni denote the number of pixels
belonging to �i. The energy difference

�Eij ¼
X
s2�k

lnð�kÞ þ
X
s2�k

ðys � �kÞ2

2�2
k

�
X
s2�i

lnð�iÞ

�
X
s2�i

ðys � �iÞ2

2�2
i

�
X
s2�j

lnð�jÞ

�
X
s2�j

ðys � �jÞ2

2�2
j

� �
X
<s;t>2C
s2�i ;t2�j

gðrstÞ

¼
X
s2�k

lnð�kÞ þ
1

2
Nk �

X
s2�i

lnð�iÞ �
1

2
Ni

�
X
s2�j

lnð�jÞ �
1

2
Nj � �

X
<s;t>2C
s2�i ;t2�j

gðrstÞ

¼
X
s2�k

lnð�kÞ �
X
s2�i

lnð�iÞ �
X
s2�j

lnð�jÞ

� �
X
<s;t>2C
s2�i ;t2�j

gðrstÞ:

ð21Þ

If (21) gives a negative value, �i and �j can be merged. If
(21) gives a nonnegative value, �i and �j cannot be merged.
Such a hierarchical clustering does not guarantee to
generate a given number of classes. A labeling process is
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3. The extreme case corresponds to K ¼ 0, where the edge penalty
function has a nonzero value only at the zero edge strength point.
Therefore, strictly speaking, it is not an exact Gaussian mixture problem but
one with penalties on situations where neighboring sites with zero edge
strength between them belong to different classes. Such situations will
never happen in practice and the two problems are equivalent.
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then necessary to assign a given number of labels to the
clusters obtained.

A sequential merging order needs to be defined since the
merging cannot be performed simultaneously. A greedy
way is to find the two classes of which the merging
decreases the energy most and merge them first. At each
iteration, the merging begins on a configuration obtained by
a more conservative criterion from the previous iteration
and continues until the energy cannot be reduced.

In practice, letting each region be a unique class for the
initial oversegmented configuration is convenient. The IRGS
in this paper always uses such an initial configuration and,
hence, the hierarchical clustering is essentially a region
growing process. The energy difference between the two
neighboring regionsRi;Rj and its unionRk ¼ Ri

S
Rj is thus

�Eij ¼
X
s2Rk

lnð�kÞ �
X
s2Ri

lnð�iÞ �
X
s2Rj

lnð�jÞ

� �
X
<s;t>2C
s2Ri;t2Rj

gðrstÞ:
ð22Þ

4.2 Overall Algorithm

The overall algorithm is described in Table 2. Compared to
the GIEP algorithm in Table 1, the IRGS is different only by
an additional region merging process (corresponding to
Steps 3 and 4) at each iteration, which reduces the
dimension of the search space. In Step 3, energy differences
are only computed between regions with the same class
label. Two regions are not allowed to be merged if they
belong to different classes, the purpose of which is to
suppress the merging between parts of different objects that
have weak boundaries in between. This concept is known as
semantic region growing [44], [45] and similar ideas also
appear in other approaches [32]. Here, the merging and
labeling are iterative and, as such, are referred to as IRGS.
Although the labeling process in this paper has no semantic
meanings, it is possible to replace it with a domain specific
labeling process and to integrate high-level knowledge into
this system [46].

4.3 Estimating the MLL Parameter

Equation (13) demonstrates that the MLL parameter �
should only be determined by the boundary length
expected in the image. This seems doubtful because � also
needs to be adaptive to the noise strength of the image to
obtain a good segmentation. For example, if there is
sufficient overlapping of the pixel intensities between the
classes in the image (that is, noise strength is high), it is
quite likely that the global minimum corresponds to an

undersegmentation (for example, all of the sites belong to

one single class) result if the � is not reduced to a

sufficiently small value. However, this phenomenon does

not mean that the estimation of � is wrong, but, rather,

indicates the inaccuracy of the MLL as the prior. Never-

theless, it is possible to adjust the MLL parameter to achieve

a good segmentation.
Let � represent the MLL parameter estimated by the

method in [41] and a different notation �̂ represent its

adjustment. In the IRGS, the MLL parameter is estimated by

the following:

�̂ ¼ C1
J=C2

1þ J=C2
�; ð23Þ

where C1 and C2 are two constants and J is the minimum of

the Fisher criterion for any two classes in the image:

J ¼ min
i;j

ð�i � �jÞ2

�2
i þ �2

j

: ð24Þ

J gives a measure of the separability of the classes in the

image with respect to the gray level. The equation gives a

small �̂ when J is small (corresponding to high noise

strength) and vice versa. At the initial stages of the

segmentation, when spatial context information does not

play an important role and the regions are obtained mostly

based on features, J is relatively large (compared to those

obtained later). When the merging proceeds, J is generally

decreasing, causing �̂ to be smaller. Therefore, the spatial

correlations decreases as the scales increases, which agrees

with intuition.
On the other hand, it seems counterintuitive that the

strength of the interactions in the spatial context model

should be small when the noise strength is high. However,

such an intuition is based on considering the problem in a

local manner. For example, methods that update labels

pixel by pixel generally do not suffer the undersegmenta-

tion problem and produce similar results using large MLL

parameters [47]. However, such a nice property of pixel-

based methods is due to its being trapped into a local

minimum, which is not theoretically desirable.
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TABLE 2
Algorithm of the

Iterative Region Growing on Semantics (IRGS) Segmentation

TABLE 1
Algorithm of

Graduated Increased Edge Penalty Segmentation (GIEP)
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5 EXPERIMENTS AND DISCUSSION

5.1 Experimental Setup

Five methods are tested and compared. The methods
include

1. the Gaussian mixture model-based clustering
(GMM),

2. the classical MLL approach that uses (7) as the
objective function and SA for optimization with a
constant (C) weighting between the feature and
context model (C-MLL),

3. Deng and Clausi’s method [23] that uses a variable
(V) weighting between the feature and context
model (V-MLL),

4. the GIEP described in Table 1, and
5. the IRGS described in Table 2.

Although there is no reason why the IRGS segmentation
in Table 2 cannot begin with each pixel being a node of the
RAG,4 the construction of such a RAG has a high memory
requirement. Therefore, a watershed segmentation [6] is
performed first to provide an oversegmentation result upon
which the initial RAG is constructed. However, this implies
that, in addition to the overall model for merging and
labeling, a different model has been introduced in the
process. It is desirable that the initial watershed does not
greatly influence the robustness and accuracy of the overall
process and, hence, oversegmentation that produces very
tiny regions is deliberately chosen. The degree of over-
segmentation is determined by the variance of the Gaussian
filter for smoothing the gradient magnitude, of which the
local minima act as the seeds for the watershed process. In
this paper, the Gaussian filter has a variance of 1.0 and
highly oversegmented results are obtained initially. For
comparison, the C-MLL, V-MLL, and GIEP here are also
region-based using the same initial watershed result.

The annealing schedule, if applied, is always a simple
geometric cooling T ðtÞ ¼ 0:98t [48]. For all of the methods,
the segmentation is initialized with random labels and
multiple results have been obtained by multiple runs. For
each method, the quality of those results is generally very
similar and we present the best result.

The C-MLL first uses the feature model parameters
estimated without considering the spatial context by (8)-
(11), as in a pure GMM approach. Due to the unpredictable
role of the spatial context model at the initial stages, the
parameters are updated only when a sufficient number of
iterations have been completed, achieving low randomness
in the segmentation, i.e., the temperature is lower than 0.1.
This implementation improved these segmentation results.

The �̂ of (23) is used as the MLL model parameter for all
methods if applied. The constants C1 and C2 in (23) are
application dependent and obtained by trial and error. For
synthetic images, C1 ¼ 2 and C2 ¼ 0:4. For SAR sea ice
imagery, which has more textures and structures, C1 ¼ 5
and C2 ¼ 0:4. In computing �̂, the original unadjusted MLL
parameter � is estimated and refined iteratively by the
method in [41] based on intermediate results along the
segmentation process. Since all of the methods except GMM

can be viewed as trying to find the global minimum of the
energy function (7), computing this energy to evaluate the
quality of the result is helpful. However, different �̂ are
obtained by each different method, making any comparison
of the final energy meaningless. Therefore, we choose the �̂
obtained by the IRGS as the standard and run the other
methods using this fixed �̂ instead of estimating it by
themselves in the segmentation process. The reason why �̂
is estimated by the IRGS as opposed to any of the other
methods is based on the observation that other methods (C-
MLL, V-MLL, and GIEP) tend to give underestimates of the
appropriate �̂ when heavy noise exists in the image. A
noisier image often corresponds to a noisier initial config-
uration, from which an oversegmentation is likely to occur
if the configuration changes are on single pixels or small
groups of pixels. The �̂ computed from the segmentation
result is thus smaller than it should be and will then favor
oversegmented configurations in turn. Except for the
proposed IRGS method, all other tested methods are likely
to give underestimates of �̂ and, hence, �̂ is set a priori for
them for the purposes of comparing energies for final
solutions, as per (7).

Percentages of correctly labeled pixels are also computed
for comparisons of the segmentation methods. This requires
correspondence between the segmentation labels and truth
labels and we establish such a correspondence by making
the classes in the obtained result have the same brightness
order as that of the corresponding classes in the truth. That
is, the brightest of obtained classes should correspond to the
brightest class in the truth, the second brightest of obtained
classes should correspond to the second brightest in the
truth, and so on.

The methods have been tested on several synthetic
images and numerous SAR sea ice images and some of
these are presented here. All of the SAR sea ice images are
captured by RADARSAT in ScanSAR (C-band and HH)
mode and have 100-m pixel spacing. Ground truth is
provided by ice maps produced by professional ice analysts
at the Canadian Ice Service (CIS). Manual segmentations are
produced based on the ice analysts observations. Sea ice is
notoriously difficult to classify on a pixel-by-pixel basis, but
manual segmentations based on ice analyst observations
provide sufficient truth for quantitative evaluations here.
The authors have a working relationship with CIS and a
strong understanding of the challenges for SAR sea ice
image segmentation that helps to motivate the practical
aspects of this research.

5.2 Synthetic Images

The first experiment is on a synthetic image shown in Fig. 2a.
The image has three different gray levels: 96, 144, and 160. The
zero mean Gaussian noise of standard deviation 48 is then
added, with the resulting image shown in Fig. 2b and the
unimodal histogram shown in Fig. 2c. The noise causes a
significant overlapping of the intensity ranges among the
objects and background. A Gaussian mixture segmentation is
first applied and the corresponding result shown in Fig. 2d is
very noisy. Results of the various methods using spatial
context models are then presented in Figs. 2e, 2f, 2g, and 2h. In
Fig. 2e, noisy configurations have been greatly reduced by the
C-MLL approach, but most of the triangle area is labeled
incorrectly. The V-MLL method and the GIEP give improved
labeling in Figs. 2f and 2g, respectively, with the feature
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4. The only difficulty is the computation of �i in (22) if there is only one
pixel in �i. However, this can be solved by assigning a certain initial value
to �i. For example, we can use the square root of the noise variance, which
can be estimated by the mode of local variances of the entire image.
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model parameters estimated more accurately at the same
time (the means shown in the figure). However, their results
still have obvious regional errors. Both methods update labels
on groups of a limited number of pixels and without a very
slow annealing schedule are trapped in a local minimum. A
successful segmentation has been given by IRGS in Fig. 2h.
The IRGS method is clear of any regional errors with only
minor boundary errors. The IRGS has achieved an accuracy of
99.0 percent and a Kappa coefficient close to 1. The IRGS
result also generates a lower energy than each of the other
methods.

To show the necessity of using the adjusted MLL
parameter �̂ rather than �, we estimate from the truth the
�, which is 4.49, and compute the corresponding energies
for the truth and the obtained configurations in Figs. 2e, 2f,
2g, and 2h. The results are shown in Table 3. The minimum
energy across all tests corresponds to the C-MLL result in
Fig. 2e and, hence, indicates that the objective function

using the unadjusted MLL parameter � is inappropriate for
the segmentation of the tested image.

Experiments are then performed on a set of synthetic
images. We are particularly interested in the segmentation
of SAR sea ice imagery and, hence, we try to synthesize
images that are similar to SAR sea ice scenes. In the
synthesis of these images, two different intensities are
chosen, one relatively dark for the background and one
relatively bright for the foreground objects. Those fore-
ground objects have round shape with a limited amount of
deformation and are generated at random locations in the
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Fig. 2. Segmentations on an example synthetic noisy image. The three gray levels in the original image are 96, 144, 160, respectively. �̂ obtained by
IRGS is 0.27. (a) An example image. (b) With zero mean Gaussian white noise ð� ¼ 48Þ added. (c) Histogram of the image in (b). (d) By GMM.
Estimated mean: 60.0, 132.1, 205.4; Accuracy: 50.0 percent. (e) By C-MLL. Estimated mean: 96.6, 151.7, 169.8; Energy: 558363; Accuracy:
71.9 percent; Kappa: 0.57. (f) By V-MLL. Estimated mean: 96.6, 144.0, 157.7; Energy: 557647; Accuracy: 93.7 percent; Kappa: 0.90. (g) By GIEP.
Estimated mean: 96.7, 142.7, 158.6; Energy: 558553; Accuracy: 93.1 percent; Kappa: 0.89. (h) By IRGS. Estimated mean: 96.4, 144.3, 160.1;
Energy: 557210; Accuracy: 99.0 percent; Kappa: 0.98.

TABLE 3
Energies of the Configurations in Fig. 2

Using the Estimated � (4.49) from the Truth
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image. With speckle noise added, the resulting images are
expected to give a rough simulation of SAR sea ice scenes
characterized by water and well-defined ice floes. For
adding the speckle noise common in SAR, Gaussian noise
with mean of 1.0 is multiplied with the image intensities.
Although SAR speckle is generally modeled as a Gamma
distribution [49], multiplicative Gaussian noise is conveni-
ent to use and gives a reasonable approximation to SAR
speckle. Fig. 3a shows an example simulated scene and
Fig. 3b is the one with multiplicative Gaussian noise of
variance �2

n ¼ 0:08 added.

For the experiments, 14 different levels of noise are
chosen, and 20 scenes different in floe shape and location
are generated, with each having an average floe diameter of
20 pixels. By combining each of the 20 scenes and each of
the 14 different levels of noise, a total of 280 synthetic
images are available for testing. Segmentations are then
performed on these images using each method. Table 4
gives a summary of the average percentage accuracies and
the Kappa coefficients of those methods at each noise level.
When the noise variance is relatively low ð�2

n � 0:07Þ, all of
the methods except GMM give satisfactory results. As noise
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Fig. 3. Segmentation on an example 512 � 512 synthetic noisy images. The two gray levels in the original image are 128 and 160. The mean
diameter of the simulated ice floes is 20 pixels. The �̂ obtained by IRGS is 0.23. (a) Original. (b) Synthetic noisy image (unit mean multiplicative
Gaussian noise, �2

n ¼ 0:08). (c) By GMM. Estimated means: 122.9, 194.0; Accuracy: 60.1 percent; Kappa: 0.23. (d) By C-MLL. Estimated means:
140.9, 164.9; Energy: 1:3891� 106; Accuracy: 66.0 percent; Kappa: 0.384. (e) By V-MLL. Estimated means : 128.5, 157.8; Energy: 1:3791� 106;
Accuracy: 91.6 percent; Kappa: 0.817. (f) By GIEP. Estimated means: 129.5, 160.1; Energy: 1:3797� 106; Accuracy: 92.4 percent; Kappa: 0.840.
(g) By IRGS. Estimated means: 128.9, 159.5; Energy: 1:3792� 106; Accuracy: 93.2 percent; Kappa: 0.855. (h) By C-MLL with true means. Energy:
1:3795� 106; Accuracy: 92.2 percent; Kappa: 0.834.

TABLE 4
Summary of Segmentation Results (Accuracy/Kappa) for Synthetic Floe Images

The gray levels in the original image are 128 and 160, respectively. The mean diameter of the simulated ice floes is 20 pixels. The image size is
512� 512. In the table, CF represents that at least one of the 20 samples has “convergence failure,” meaning that the method cannot converge to a
solution that segments the image into the specified number of regions (that is, all of the sites are labeled as one class).
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variance increases, the performance of C-MLL drops
quickly, whereas some others (V-MLL, GIEP, and IRGS)
are more stable since they are less influenced by the
unpredictable role of the spatial context model at the initial
stages. The GIEP is deterministic compared to V-MLL and
does not allow configuration changes on a hierarchical
structure of pixels as IRGS does. As a result, GIEP is
significantly inferior to V-MLL and IRGS when the noise
variance increases beyond 0.2. The IRGS performs well for a
wide range of noise strength and is comparable to the best
method, if itself not the best, at all noise levels.

The segmentations on the image with �2
n ¼ 0:08 are

shown in Figs. 3c, 3d, 3e, 3f, and 3g. At such a noise level,
the C-MLL performs poorly due to the inaccurate feature
model parameter estimation. In fact, accurate results can be
obtained by C-MLL if the feature model means are fixed
with the true values of 128 and 160, as shown in Fig. 3h.
Although the IRGS has achieved the highest accuracy in
Fig. 3g, the corresponding energy is higher than that of the
V-MLL result in Fig. 3e. We have also found that the energy
corresponding to the true configuration is 1:3793� 106 and,
hence, is also higher than the V-MLL result. Such a
phenomenon implies that the MLL context model is not
appropriate for describing the behaviors of the tested
image. The MLL context model penalizes the existence of
boundary site pairs and thus favors the configurations of
large regions with smooth boundaries. Unfortunately, the
image in Fig. 3a contains many small simulated floes and
the corresponding boundaries are irregular and have many
sharp corners. Therefore, the more energetically favorable
solution obtained by IRGS does not correspond to a better
configuration for the tested image.

Segmentations of images having larger floe sizes are also
investigated. Three additional floe sizes (40, 60, and 80 pixels
in diameter) are chosen for testing. Again, for each of the
three sizes, 20 scenes are simulated, with different levels
of noise added. Fig. 4 gives the IRGS segmentation
accuracies over the noise variances. As expected, the IRGS
have higher accuracies with the growth of the floe sizes.
However, such a tendency is not obvious for other methods
as those pixel-based methods typically locate local minima
and are less sensitive to the correctness of the prior model.

5.3 SAR Sea Ice Images

Two operational SAR sea ice images are tested. The first

image is shown in Fig. 5a, which was captured over the
Gulf of St. Lawrence on 20 February 1998. In the image, the
center of the bottom is water and land. Those regions that

are relatively dark and have brighter lines (ice ridges
caused by pressure) inside belong to an ice type called
“gray-white” ice and the rest are “gray ice.” The image is

difficult to segment because of the heavy noise and the large
intraclass variations of the gray-white ice. A manual
segmentation is provided in Fig. 5b. Figs. 5c, 5d, 5e, and

5f show the results by the various methods. The highest
percentage (92.2 percent) of correctly labeled sites is
produced by the IRGS method. Although this number

may not be convincing, since the manual segmentation is
inaccurate due to the ambiguity of the ice types in the
image, a subjective evaluation also indicates that IRGS is

superior than others in producing large homogeneous
regions consistent with human interpretation.

Fig. 6a shows another SAR sea ice image captured over

Baffin Bay on June 24, 1998. This image is associated with a
two-class segmentation (ice versus water) problem, with the
water being dark and the ice being bright. It should be

noted that there is an area of rough water toward the top
right part of the image that appears a little brighter than the
rest of the water and, hence, the image is not stationary with

respect to the statistics of water.
The C-MLL result in Fig. 6c is accurate for a majority part

of the image. However, due to the stationary model
assumed, many sites belonging to rough water are

incorrectly grouped into the other region (see the center
right part of the image). Such a phenomenon also occurs in
the V-MLL result in Fig. 6d. The GIEP and IRGS have

incorporated the edge information that is helpful in
describing local behaviors and, hence, improves signifi-
cantly on such nonstationary situations, as shown in Figs. 6e

and 6f. In the results, the rough water region is much
cleaner, with very few sites incorrectly labeled.

6 ALGORITHMIC SPEED

The computational complexity of the region-based CMLL,
VMLL, and GIEP are all OðmnkÞ, where k is the number of
the nodes of the constructed RAG, m is the number of

iterations, and n is the number of classes. Therefore, the
algorithmic speed depends on the complexity of the image
contents as it determines the number of RAG nodes.

Analyzing the computational complexity of IRGS is
difficult. Although the number of nodes keeps decreasing
with increased iterations and, hence, reducing the time for

the labeling process, the additional computation of the
merging process and the updating of the edge penalties are
not ignorable. Depending on the complexity of the image,

the IRGS can be much faster than other methods if the
number of iterations is large and most merging occurs early
(that is, the RAG nodes decrease significantly by the first

several runs of iterations). Table 5 gives a summary of the
runtime for the various algorithms on those images in the
previous experiments.
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Fig. 4. Percentage of correctly labeled pixels versus noise variance for

images of various floe diameters using IRGS.
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7 SUMMARY

This paper has presented an image segmentation method that

is based on the classical MRF formulation of the segmentation

problem. The strength of the proposed IRGS method lies in

three aspects. First, it incorporates the edge information in a

very simple manner without changing the ultimate formula-
tion of the problem. Second, it provides a transition from the
standard Gaussian mixture problem to the more difficult
MRF one, allowing a more elegant and accurate estimation of
the feature model parameters. Third, it uses a region growing
technique to generate a hierarchical organization of the pixels
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Fig. 5. Segmentation of a SAR image (1,209 � 865) captured over the Gulf of St. Lawrence on 20 February 1998. �̂ ¼ 1:68. (a) Original. (b) Manual

segmentation. (c) By C-MLL. Energy: 4:7475� 106; Accuracy: 76.7 percent; Kappa: 0.60. (d) By V-MLL. Energy: 4:7318� 106; Accuracy:

88.9 percent; Kappa: 0.789. (e) By GIEP. Energy: 4:7439� 106; Accuracy: 87.9 percent; Kappa: 0.772. (f) By IRGS. Energy: 4:7222� 106; Accuracy:

92.2 percent; Kappa: 0.849.
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on which the optimization is more efficient. The proposed

method is superior to the compared methods in obtaining

visually better segmentations and, for most of the tested

images, finds energetic better local minima.
Based on the hierarchical structure established during the

process, an application specific interpretation is possible and

is also allowed to influence the region growing. This can be

easily achieved by replacing the region-based labeling step in

the algorithm with the interpretation process [46]. Such a

bidirectional interaction between the segmentation and

interpretation is also a nice property of the proposed method,

but has not been discussed in this paper as this paper deals

with general image segmentations only.
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Fig. 6. Segmentation of a SAR image (1,252� 873) captured over the Baffin Bay on 24 June 1998. �̂ ¼ 1:35. (a) Original. (b) Manual segmentation.

(c) By C-MLL. Energy: 4:3067� 106; Accuracy: 94.2 percent; Kappa: 0.875. (d) By V-MLL. Energy: 4:3008� 106; Accuracy: 95.3 percent; Kappa:

0.898. (e) By GIEP. Energy: 4:2949� 106; Accuracy: 97.3 percent; Kappa: 0.941. (f) By IRGS. Energy: 4:3050� 106; Accuracy: 97.1 percent; Kappa:

0.936.
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The proposed IRGS method is deterministic and the
merging step is not reversible. Fast speed is achieved at the
expense of accuracy. More accurate results may be obtained
with the incorporation of a region splitting process and
adaptive updating of the hierarchical structure. This aspect
is part of future work.
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