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ABSTRACT

Methods of scientific imaging and image analysis have be-

come pervasive in a great variety of fields, including the prop-

erties of porous media. To study the large-scale morpho-

logical properties of porous media, high resolution random

(Monte Carlo) samples are required. The purpose of this pa-

per is to propose a novel approach for the statistical synthesis

of scientific images, based on the concept of Conditional Ran-

dom Fields. We explore two different sets of potential func-

tions are used to model the pore-structure characteristics, and

Monte Carlo Markov chain methods are also used to sample

the high resolution images from the trained model. The re-

sulting images are of high quality, and show the performance

of the proposed framework.

Index Terms— Graphical Models, Conditional Random

Fields, Image Synthesis, Porous Media, Image Sampling

1. INTRODUCTION
Scientific images and image models have played a significant

role in a wide variety of research fields, including chemistry,

medicine and astrophysics. The effectiveness of these mod-

els has been validated and supported through sophisticated

imaging tools including MRI, CT and ultrasound. A host

of computer vision and image processing techniques (super-

resolution, denoising, registration) have been developed to

solve imaging problems.

One such field that has taken advantage of computer vi-

sion is porous media, the science of water-porous materials

like wood, bone, cement, rocks and soil [1], of which two

examples are shown in Fig. 1. These media have great signif-

icance in the fields of construction, medicine, petroleum engi-

neering and environment. In order to study the permeability,

porosity, transport properties of porous media, high resolution

images are required [2]. Such images may be acquired using

current imaging tools, however the viewing of interior parts

of the medium requires cutting, polising, and exposure to air,

all of which act to alter the sample. On the other hand, 3D

MRI images offer non-invasive 3D imaging, but have limited

spatial resolution which resolve only the largest pores.

Fig. 1. Two examples of high resolution porous media images.

A possible alternative to acquiring high-resolution im-

ages, avoiding the problems of cutting and polishing, is based

on image synthesis, the process of randomly creating new

images from some form of image description or model.

Some past work has addressed synthesis of porous me-

dia images. Mohebi et. al. [3] used the posterior sampling

framework proposed by Fieguth [4] to model high resolution

images using a Gibbs Random Field (GRF) and Monte Carlo

Markov Chain (MCMC) methods. To take advantage of the

information present in a low-resolution image (e.g., MRI), the

Gibbs model includes constraints based on the measurements.

Conditional Random Fields (CRF) are a state-of-the-art

graphical model, extensively used in recent research [5]. The

CRF as a discriminative model has reduced the complexity of

joint probability modeling of generative models like Markov

Random Fields (MRF). The CRF has outperformed previous

graphical models in most machine learning and computer vi-

sion tasks [5, 6].

To meet our needs in the reconstruction of porous media

images, a novel statistical approach based on CRF is proposed

in this paper. The CRF is trained using a set consisting of

high- and low-resolution images, such that for any presented

low-resolution test sample the CRF will produce a high reso-

lution image.

2. CONDITIONAL RANDOM FIELDS
Conditional random fields were originally proposed by Laf-

ferty et. al. [6] for the segmenting and labeling of sequence

data. The key concept is that the CRF directly models the con-
ditional probability distribution, and not the joint distribution

as in MRFs. Here follows a brief definition of the CRF.
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Fig. 2. Flow diagram of proposed framework: low and high resolution images are assumed to be statistically equivalent. The high resolution and cubic-

interpolation upsampled images are presented to the CRF for training. The Gibbs sampler, right, generates new high samples from the constructed model.

Let G = (S, E) be a graph such that Y is indexed by

the vertices of G. Then (Y, X) is said to be a conditional

random field if, when conditioned on X , the random vari-

ables Yi obey the Markov property with respect to the graph:

P (Yi|X, YS−{i}) = P (Yi|X, YNi
), where S−{i} is the set of

all nodes in G except i, Ni is the set of neighbors of the node i
in G [5, 7]. Thus, CRF is a random field globally conditioned

on observation X . The conditional distribution is defined as:

P (Y |X) =
1

Z(X)

∏

Cp∈C

∏

Ψc∈Cp

exp(
K(p)∑

k=1

λpkfpk(Yc, X))

Z(X) =
∑

Y

∏

Cp∈C

∏

Ψc∈Cp

exp(
K(p)∑

k=1

λpkfpk(Yc, X)) (1)

where Cp is a clique template from the clique set C speci-

fied by the structure of the graph G, Ψc indicates a clique

of type Cp, fpk and λpk represent the kth real-valued feature

function defined on clique template Cp and the corresponding

model parameter, respectively. The number of feature func-

tions defined on clique template Cp is determined by K(p).
Z(X) is a normalizing constant — the partition function —

with respect to input X . The parameter λpk is the same for

all cliques Ψc belonging to a common clique template Cp, an

approach known as parameter tying.

There are different methods to estimate the parameters

of CRF model [8]. Maximum Likelihood Estimation (MLE)

approach is usually used for learning the parameters of the

model. However, MLE requires the computation of the parti-

tion function Z(X) which is a NP-hard problem. In this pa-

per, pseudo-likelihood [8] is used for parameter estimation as

an approximation of MLE. Assuming identically independent

training data, the conditional log-likelihood is given by

�(λ) =
∑

Cp∈C

∑

Ψc∈Cp

K(p)∑

k=1

λpkfpk(Yc, X) − log(Z(X)) (2)

Because the log-likelihood function �(λ) is concave, the pa-

rameters λ can be chosen so that the global maximum is ob-

tained and the gradient or vector of partial derivatives with

respect to each parameter λpk is zero. Differentiating �(λ)

Algorithm 1 : The sampling procedure

initialize a random image Y
set the temperature T as T0

while stopping conditions are not met do
decreasing the T slowly

for each site s in Y do
ys ⇐ pick a sample from distribution P (ys|yNs

, x)
using Gibbs sampler

end for
end while

with respect to parameter λpk gives

∂�

λpk
=

∑

Ψc∈Cp

fpk(Yc, X) −
∑

Ψc∈Cp

∑

Y ′
c

fpk(Y ′c , X)P (Y ′c |X)

(3)

As the exact, analytical solution does not exist, the parameter

is iteratively found by maximizing the log-likelihood function

using gradient descent.

Given the test X the task of assigning labels to its pixels is

inference, where the goal of inference is to find the maximum

a posteriori (MAP) solution Y ∗ = argmaxY P (Y |X). In-

stead of using the CRF method of inference, which is to some

extent biased towards classification, here we propose to use a

traditional sampling technique, such as the Gibbs sampler, for

inference.

Once our conditional model is constructed and trained,

we use the well-known Gibbs sampler [9], based on MCMC

methods, to generate a sample from the modeled distribution

[4]. In order to generate a probable sample, the Gibbs sam-

pler is used along with simulated annealing, in which the sam-

pler begins with a high temperature T0, then repeatedly scan-

ing all of the lattice sites and sampling from the conditional

P (ys|yNs
, x), gradually decreasing the temperature. As is

quite standard for simulated annealing, we use a geometric

cooling schedule [10]:

Tn+1 = αnT0, 0 < α < 1 (4)

The pseudo-code of the sampling phase is depicted in Algorithm 1.
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3. THE PROPOSED FRAMEWORK
Because of measurement cost, time, and complexity, only a

few training samples are available. For simplicity, we assume

that the given images are normalized, such that we have one

high resolution image H with pixel values in {−1, 1} and

one low resolution image L with intensities distributed over

the interval [−1, 1].
Porous media images are binary images representing

pores (black pixels) and solids (white pixels). Our goal is

to generate new samples with the same properties of H and

L, simultaneously. A CRF is used in order to construct a

model that characterizes the medium. From the Hammersley-

Clifford theorem, the conditional distribution of H given L is

defined as

P (H|L) =
1

Z(L)
exp(

∑

i

Ui(Hi, L)+
∑

i

∑

j∈Ni

Iij(Hi, Hj , L))

(5)

where Ui is the unary potential associated with single site Hi,

conditioned on L, whereas Iij is the potential function, de-

scribing the conditional interaction between the neighboring

sites Hi and Hj .1 As the porous media images under consid-

eration are homogeneous and isotropic, functions Ui and Iij

not a function of location ij therefore, with slight abuse of no-

tation, we will write just U and I . Thus two clique templates

are determined for the random field.

The clique potentials specify how local variables interact

and how much the interaction contributes to the global dis-

tribution. Here, we propose two types of potential functions:

one similar to the Ising model, used for segmentation in [5], a

second based on a chordlength distribution.

3.1. Ising-directed potential functions

The Ising model is a popular binary model which is exten-

sively used for modeling random fields [11]. The unary po-

tential U(Hi, L) is defined as

U(Hi, L) = λ0 + λ1hili (6)

where {λ0, λ1} are the model parameters and hi and li rep-

resent the pixel values corresponding to Hi and Li, respec-

tively. The potential function U specifies the properties of

each pixel of image to be either pore or solid, ignoring the

effects of neighboring pixels.

In the same way, the interaction potential function I(Hi, Hj , L)
can be written as:

I(Hi, Hj , L) = λ2 + λ3hihj |li − lj | (7)

where {λ2, λ3} are the parameters of the CRF with respect

to function I . It is expected that neighboring pixels have the

same behavior and tend to have the same value, clearly with

exceptions at an edge, where the neighboring sites are differ-

ent.
1A first-order neighborhood system is used so that sites

{(k − 1, l), (k + 1, l), (k, l − 1), (k, l + 1)} are the neighbors of (k, l).

Image 1 Image 2 Image 3

Ising PF 22% 17% 10%

Chordlength PF 11% 12% 6%

Table 1. The fraction of incorrectly reconstructed samples, inferred from

the MSE between truth and reconstruction, for the three sample images of

Fig. 3. The synthetic images are sampled using CRF models with two differ-

ent proposed potential functions (PF): Ising and Chordlength.

3.2. Chord-directed potential functions

The chordlength distribution has been widely used for the

characterization of pore structures in porous media [10, 3].

Motivated by the success of the chordlength approach in mod-

eling, we propose unary and interaction potential functions as

follows:

U(Hi, L) = λ4 + λ5hiliCi

I(Hi, Hj , L) = λ6 + λ7hihj(li + lj)(Ci + Cj) (8)

where Ci and Cj are the relative lengths of chords corre-

sponding to sites i and j, respectively. The relative chord as-

sociated with a general site s is computed as

Cs =
Cv,s

height
+

Ch,s

width
(9)

where Cv,s is the length of line segment starting at site s and is

extracted vertically and downward to the first dissimilar site,

based on pixel value (-1 or 1). In the same way, Ch,s is the

length of horizontal chord, and height and width normalize

the chords to the size of the entire image.

The chordlength is far more discriminating than the Ising

model, since the lengths and orientations of chords can say a

great deal about the structure of pores and solids in a high res-

olution image, such that it is likely that images with long/short

chords have large/chaotic pore structure.

The model is trained using images H and L, as described

in Sec. 2. Finally, given a low resolution image, a high res-

olution image is sampled by running the Gibbs sampler. The

generated images from the sampling phase obey the model

and also well describe the porous media structures. The overal

process of the proposed method is depicted in Fig. 2.

4. EXPERIMENTAL RESULTS
In order to evaluate the proposed method, we have applied it

to three samples of porous media, with the underlying high

resolution images having sizes of 128×128. The selected

porous media images were deliberately selected to have dif-

ferent pore structures and in order to demonstrate the robust-

ness of our proposed model.

The high-resolution images are actual microscopic im-

ages, however due to the cost and complexity of acquiring

measurements from multiple instruments, the low resolution
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images are generated by down-sampling the corresponding

high resolution samples, here down-sampled by simple aver-

aging by a factor of d = 8. Clearly the choice of d affects

the amount of information remaining in L to guide the re-

construction of H . The high resolution and down-sampled

images are shown in first two rows of Fig. 3.

For each image pair we have performed to reconstruction

experiments, based on the two proposed potential functions.

Given a low resolution sample, the high resolution one is sam-

pled based on the sampling method developed in Sec. 2. The

low resolution sample used for training is the same one given

to the model for sampling.

The reconstructed images are shown in Fig. 3. A visual in-

spection of the resulting images proves the success of the pro-

posed method. Furthermore, the effect of the CRF potential

function can be better understood, in comparing the poorer

reconstructions of the Ising model, a weak local model with

very limited descriptive power, relative to the fairly detailed

reconstructions returned by the chordlength model. In many

cases details not visible in L are palusibly reconstructed in H .

To supplement the visual evaluation of the results, the

Mean Squared Error (MSEs) between the ground-truth H and

reconstructed image R can be measured:

MSE(H,R) =
1
S

∑

s

(hs − rs)2 (10)

where S measures the number of pixels in H or R, and h and

r are the pixel intensities in H and R, respectively. Because

the images are binary, a given reconstructed pixel is either

correct, (h − r)2 = 0, or incorrect, (h − r)2 = 4. Therefore

MSE/4 directly measures the fraction of pixels which are re-

constructed incorrectly, as reported and quantified in Table 1.

5. CONCLUSIONS
In this paper, we proposed a graphical random field-based

model for the characterization of porous media images. The

model is trained using high and low resolution images. The

well-known Gibbs sampler is used to generate the artificial

samples from the model. The introduced energy functions are

simple, easy to interpret and descriptive. The experimental

results illustrate the success of the approach, in that pore and

solid structures are reconstructed from low-resolution inputs.
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