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Abstract— A novel interactive approach called Enhanced In-
telligent Scissors (EIS) is presented for segmenting regions of
interest in medical images. The proposed interactive medical
image segmentation algorithm addresses the issues associated
with segmenting medical images and allows for fast, robust, and
flexible segmentation without requiring accurate manual tracing.
A robust complex wavelet phase-based representation is used as
an external local cost to address issues associated with contrast
non-uniformities and noise typically found in medical images.
The boundary extraction problem is formulated as a Hidden
Markov Model (HMM) and the novel approach to the second-
order Viterbi algorithm with state pruning is used to find the
optimal boundary in a robust and efficient manner based on
the extracted external and internal local costs, thus handling
much inexact user boundary definitions than existing methods.
Experimental results using MR and CT images show that the
proposed algorithm achieves accurate segmentation in medical
images without the need for accurate boundary definition as
per existing Intelligent Scissors methods. Furthermore, usability
testing indicate that the proposed algorithm requires significantly
less user interaction than Intelligent Scissors.

I. INTRODUCTION

An important task in medical image processing is seg-
mentation, where regions of interest such as organs and
bone structures are partitioned from the rest of the image
content. Medical image segmentation has numerous important
applications in clinical analysis, such as tumor detection, tissue
classification [1], and growth analysis [2]. Manual medical
image segmentation is very laborious, time-consuming, and
inaccurate due to the need for manual tracing. Therefore,
computer-assisted methods for segmenting regions of interest
in medical images are much desired.

Recently, semi-automatic segmentation algorithms have
been proposed to overcome some of the issues associated
with automatic segmentation [3], [4]. These algorithms allow
for user interaction during the segmentation process, thus
taking advantage of user knowledge to guide the boundary.
Of particular interest are those based on Intelligent Scissors
(IS) [6], [7], first introduced by Mortenson et al. [5]. In these
methods, the user selects an initial starting point on the bound-
ary and, as the mouse moves along the boundary, the optimal
boundary path between the starting point and the current point
is shown. There are two main advantages to this approach to
segmentation. First, the segmentation is accomplished in real-
time as opposed to the iterative approach taken by automatic
methods, thus allowing for rapid image segmentation. Sec-
ond, the boundary accuracy of the segmentation using such
methods is generally higher than automatic methods since user

knowledge is used throughout the process [5]. However, there
are several drawbacks to existing Intelligent Scissor-based
methods when used by clinicians for the purpose of medical
image segmentation. First, like current automatic segmentation
methods, the boundary definition for existing IS methods is
refined based on image gradients, making it highly sensitive
to contrast non-uniformities typically found in medical images
(e.g., static field and RF non-homogeneities in MRI [8], [9]).
Second, existing IS methods require the clinician to perform
relatively accurate manual tracing along the region boundary,
which can be time-consuming and laborious, particularly for
complex regions of interest. Therefore, a method that addresses
these key issues is desired for the purpose of medical image
segmentation.

The main contribution of this paper is an Enhanced In-
telligent Scissors (EIS) algorithm designed for rapid medical
image segmentation. The proposed method is highly robust to
contrast non-uniformities and noise, which are key problems
faced in segmenting regions of interest in medical images.
Furthermore, the proposed EIS algorithm does not require the
user to perform accurate tracing along the region boundary
to work properly. This allows for faster user interaction
compared to existing IS methods. The proposed method is
described in Section II, and experimental results are presented
in Section III.

II. PROPOSED METHOD

The proposed EIS algorithm takes a fast interactive ap-
proach to the problem of medical image segmentation, where
a boundary is formed around the region of interest based on a
sequence of user-selected points. The proposed algorithm can
be described as follows. First, a phase-based representation of
the image is extracted as the external local cost using a robust
iterative complex wavelet phase moment estimation scheme.
Second, the boundary extraction problem between two user-
selected points is treated as an active contour problem and
formulated as a HMM. Third, a novel approach of solving the
formulated HMM using the second-order Viterbi algorithm is
performed by reformulating the second-order problem with
first-order Markovian assumptions and solving it based on the
internal and external local costs. Furthermore, a novel adaptive
state pruning scheme is performed based on the extracted
external local costs to significantly reduce the computational
complexity of the proposed EIS algorithm.
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A. User Interaction

In the conventional IS approach, the user starts at an initial
point near the boundary of the region of interest and moves the
mouse cursor closely along the boundary. As the mouse cursor
comes close to a boundary edge, a “live-wire” boundary snaps
to the edge [5]. Therefore, as the mouse cursor moves around
the region of interest, the live-wire wraps around the region to
form a segmentation boundary. In the proposed EIS approach,
the user first selects an initial point near the boundary of the
region, as with the conventional IS approach. However, rather
than tracing the mouse cursor closely along the boundary, the
user selects a sequence of discrete points around the boundary.
As the user selects points around the boundary, the user-
selected points snap to the region of interest and a boundary
is formed around the region of interest between these points.
Therefore, as points are selected, a segmentation boundary is
formed. The points selected by the user in EIS can be sparsely
spaced around the region boundary and does not need to be
placed in close proximity to the region boundary. The main
advantage of using the proposed approach of user interaction
over the conventional IS approach is that the user does not
need to trace around the boundary carefully. The user can sim-
ply click around the region boundary in an imprecise manner
and the EIS algorithm will automatically create a boundary
around the region of interest accordingly. This allows for
a much faster level of user interaction while still providing
accurate region boundaries based on user knowledge.

B. External Local Cost Extraction

The first step of EIS is to extract a set of external local
costs for driving the boundary extraction process. In current
Intelligent Scissors methods, the external local costs used
are based on the intensity gradients of the image. While
these external local costs are acceptable for general image
processing applications such as simple image composition [5],
they are not well suited to handle the issues associated with
medical images such as poor contrast resolution, contrast
non-uniformities, and additive or multiplicative noise. In the
proposed EIS algorithm, a more suitable external local cost
is utilized based on a robust complex wavelet phase-based
representation [10]. The phase-based external local cost can
be extracted as follows. Given the initial image I0, an initial
estimate of the local phase coherence of the image ρ0 is
extracted. During each new iteration k, the maximum phase
coherence moment σk is extracted based on the previous local
phase coherence estimate ρk−1. Using σk, a revised estimate
of the image Ik is determined based on the moment-adaptive
bilateral estimation approach [11]. Finally, the re-estimated
image Ik is used to re-estimate the local phase coherence ρk+1

to be used by the next iteration of the estimation process. This
is performed over n iterations to obtain the final phase-based
external local cost lext as defined by:

lext = σn (1)

where σn is the estimated maximum phase coherence mo-
ment at the end of n iterations. Based on testing, it was

Fig. 1. Trellis for an example boundary between two points a and b. In this
example, 10 normals are found along the constructed curve. Each normal is
then represented by 11 nodes.

observed that convergence typically occurs at n = 3. There are
several important benefits in using the proposed phase-based
representation as the external local cost. First, it is invariant
to contrast non-uniformities typically encountered in medical
images (e.g., static field and RF non-homogeneities) since only
phase information is used. Second, it is highly robust to signal
noise, which is typically found in medical images.

C. Hidden Markov Model of Boundary Extraction Problem

The second step of EIS is to formulate the boundary
extraction problem based on the inexact points along the
region boundary that the user selects in the user interface.
Suppose the user selects two points a and b along the boundary
of the region of interest with the coordinates (xa, ya) and
(xb, yb) respectively. In EIS, the boundary extraction problem
between two points is formulated using a Hidden Markov
Model (HMM). The trellis of the HMM is constructed as
follows. First, a curve between points a and b is created
and q normals are found along the curve. Each of the q
normals is then represented by p nodes, resulting in a total
of pq nodes. The trellis for an example boundary is shown in
Fig. 1. Based on the trellis, the hidden states of the HMM
is defined by the nodes along the boundary normals. The
observations are defined by the external local costs (complex
wavelet phase coherence moments) and internal local costs
(first-order elastic and second-order membrane constraints).
The main advantage to formulating the boundary extraction
problem using a HMM is that the solution to the problem can
be found in a very efficient manner using methods such as
the Viterbi algorithm [12]. This is as opposed to existing IS
methods, where the problem formulation does not allow such
a solution. Computational efficiency is very important for the
proposed EIS algorithm since the underlying goal is to provide
fast user interaction for clinicians.

D. Second-order Viterbi Boundary Optimization

The third and final step of EIS is to solve the HMM formu-
lated in Section II-C. As described in the previous section, a
highly efficient method for solving the proposed HMM is the
Viterbi algorithm. While the Viterbi algorithm is highly effi-
cient, it can become slow for situations where a large number
of states exist in the HMM. This is particularly problematic in
the case of complex boundaries where a large number of nodes
are needed to represent the boundary properly. Therefore, a
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novel phase-based adaptive state pruning scheme is introduced
to improve the computational performance of EIS. At the seed
point of the boundary, a global threshold τg is applied to
the initial states of the HMM based on the extracted phase
coherence moments. States that fall below the τg are pruned
from the HMM. As we move along the states in the HMM,
the threshold is adaptively adjusted based on the first-order
Markov assumption:

τs =
σs−rµs−r + σsµs

σs−r + σs
(2)

τ0 = τg (3)

where s is the current point, r is a fixed interval, σs−r and
µs−r are the variance and mean of phase moments from prior
points to the point s − r respectively, and σs and µs are the
variance and mean of phase moments from point s− r to the
point s respectively. In this manner, states that have a low
probability of residing on the boundary are pruned from the
HMM. In best case scenario, the number of states in the HMM
can be reduced from pq to q, thereby substantially reducing
the computational complexity of the proposed algorithm.

In conventional IS algorithms, only the first-order elastic
constraints are considered. The major drawback to accounting
for the first-order elastic constraints is it does not penalize
spurious edges. This is particularly problematic for medical
images, where such spurious edges often arise due to signal
noise. To address this issue, the proposed algorithm also
accounts for second-order membrane constraints. Since both
first-order and second-order constraints are considered in the
EIS algorithm, a second-order Viterbi algorithm must be used
to evaluate the partial hypothesis of each state of the HMM.
Let V be a matrix containing all nodes within the trellis:

V =
{
v1, v2, . . . , vi, . . . , vq

}
(4)

where vi is a column vector representing the ith normal
along the boundary v = [x, y]. To incorporate second-order
membrane constraints into the trellis, it is necessary to design
a second-order Viterbi approach where the present state not
only depends upon the previous state but also the state before
that. However, modifying the Viterbi algorithm to incorporate
second-order Markovian assumptions is difficult. To overcome
this problem, the approach taken by the proposed method is
to modify the trellis rather than the Viterbi algorithm itself to
incorporate second-order Markovian assumptions. This allows
the conventional Viterbi approach to be used to compute the
partial hypothesis at each node based on both first-order elastic
and second-order membrane constraints. Suppose we have n
hidden states and we are observing the states q times, as shown
in Fig. 2(a). Consider that the partial hypothesis of a state at
i depends upon states at i− 1 and i− 2. One can reformulate
the trellis by combining the states at i with states at i− 1 and
states at i−1 with states at i−2. The resulting trellis contains
n2 hidden states and q−1 observations as shown in Fig. 2(b).
In this way, the partial hypothesis of the modified trellis will
depend only upon the previous states without violating first
order Markovianity.

(a) (b)

Fig. 2. Reformulating the second-order Viterbi problem with first-
order Markovian assumptions: a) original trellis, and b) modified
trellis.

Based on the modified trellis, the partial hypothesis at each
node can be computed as follows. The probability of the
states at each node of the trellis is denoted as the confusion
matrix (B = bij) and is computed from the extracted phase
coherence moments. The state transition matrix (A = aij)
is computed from the first-order elastic and second-order
membrane constraints. The initial state probabilities (Π =
πi) are also computed from the extracted phase coherence
moments. Given the triplet [Π, A,B], the Viterbi algorithm
with first order Markovian assumptions is used to compute the
partial probability at each state. The states which maximizes
the likelihood of their next state are considered to be the
best hypothesis for that observation sequence. Based on this,
the most likely sequence of hidden states for an observation
sequence can be found. In our case, this sequence of hidden
states forms the optimal boundary around the region of in-
terest between two user-defined points. Utilizing the Viterbi
algorithm with state pruning provides an advantage in com-
putational efficiency. The EIS has a complexity ranging from
order q to pq, whereas the conventional IS utilizes a modified
Dijkstra’s Algorithm [5], with computational complexity on
the order p2q2. Therefore, the increase in speed makes EIS
more suited to real-time user interaction.

III. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed EIS method
in segmenting medical images, six medical images test cases
derived from the Visible Human project (VHP) and Whole
Brain Atlas [13] (WBA) are used. A summary of each test
case is given below.

1) Test 1: Head, sagittal, MR T1; ROI: cerebellum, WBA.
2) Test 2: Torso, axial, MR T1; ROI: pleural cavity, VHP.
3) Test 3: Torso, coronal, CT; ROI: pleural cavity, VHP.
4) Test 4: Head, transverse, ultrasound; ROI: aneurysm.
5) Test 5: Lumbar, sagittal, fluoroscopy; ROI: vertebrae.
To perform the segmentation using Enhanced Intelligent

Scissors, user-defined points were chosen near the boundary
of interest, but in an inexact manner such that they do not
fall on the boundary exactly. The Intelligent Scissors method
proposed by Mortensen et al. [5] was evaluated for comparison
purposes. To evaluate segmentation accuracy in a quantitative
manner, the normalized MSE between the ground truth contour
and the obtained contours using the conventional IS method
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and the proposed EIS method is computed for each test case
on a per-pixel basis. Usability tests were also conducted by
measuring the amount of time a user requires to segment each
image using both methods. A total of 5 trials were conducted
by 5 different users for each image, and the results were
averaged.

A summary of experimental results is shown in Table I.
The segmentation results for all tests are shown in Fig. 3, in
which the user-defined points for IS and EIS are overlaid. It
can be observed that the proposed EIS method produced very
accurate boundaries around the regions of interest. The MSE
is comparable for all cases, despite the fact that EIS uses fewer
user-defined points, while also requiring less computation
time. Also note that the user-defined points for EIS can deviate
from the boundary, whereas all the user-defined points in
conventional IS must fall on the boundary exactly. Visually,
it can be seen that the segmentation produced by EIS is
smoother, despite the fact that fewer user-defined points are
used. It can also be seen that an accurate segmentation is
obtained for both the ultrasound (Test 4) and fluoroscopy
(Test 5) cases, which are highly contaminated by noise and
contrast non-uniformity. The usability tests indicate that the
user interaction time for EIS is significantly lower than that
for IS in all test cases. From these results, it can be observed
that the proposed EIS algorithm can be used effectively for
the purpose of rapid medical image segmentation.

TABLE I
SEGMENTATION ACCURACY

Test Set MSE1 (pixels) User points1 User Time1 (s)
IS EIS IS EIS IS EIS

TEST1 3.15 2.30 14 8 29.3 14.5
TEST2 3.58 3.54 19 11 26.7 15.1
TEST3 1.75 1.66 18 6 12.4 7.4
TEST4 2.49 2.16 19 8 17.4 8.3
TEST5 3.62 2.98 27 11 30.5 10.9

1The results are computed as the average over 25 trials.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced Enhanced Intelligent Scissors
(EIS), a novel fast interactive approach to medical image
segmentation. The proposed algorithm is highly robust to
contrast non-uniformities and noise through the use of an
external local cost based on complex wavelet phase coherence
moments. The optimal boundary between user-selected points
is found by formulating the problem as a HMM and solved
using a novel approach to the second-order Viterbi algorithm.
Furthermore, a novel phase-adaptive state pruning scheme was
proposed to improve the computational performance of the
proposed algorithm. Experimental results show that a high
level of segmentation accuracy can be achieved for medical
images without requiring accurate manual tracing like existing
semi-automatic segmentation methods. Future work involves
extending the proposed method for interactive 3D segmen-
tation, which is very important for volume segmentation in
medical images.

(a) (b)

Fig. 3. Segmentation results for Tests 1, 2, 3, 4, and 5: (a) IS, and
(b) EIS. It can be seen that EIS produced accurate boundaries in all
cases without requiring accurate manual tracing of the boundary. The
circles denote the user-defined points.
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