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Abstract—Unsupervised feature extraction from hyperspectral
images (HSI) relies on efficient data representation. However,
classical data representation techniques, e.g., principal compo-
nent analysis (PCA) and independent component analysis (ICA),
do not reflect the intrinsic characteristics of HSI, and as such are
less efficient for producing discriminative features. To address
this issue, we have developed an intrinsic representation (IR)
approach to support HSI classification. Based on the linear
spectral mixture model (LSMM), the IR approach explains the
underlying physical factors that are responsible for generating
HSI. Moreover, it addresses other important characteristics of
HSI, i.e., the noise variance heterogeneity effect in spectral
domain and the spatial correlation effect in image domain. The
IR model is solved iteratively by alternating the estimation of
IR coefficients given IR bases and the update of IR bases given
the coefficients. The resulting IR coefficients are discriminative,
compact and noise-resistent, thereby constitute powerful features
for improved HSI classification. The experiments on both sim-
ulated and real HSI demonstrate that the features extracted by
the IR model are more capable of boosting the classification
performance than the other referenced techniques.

I. INTRODUCTION

By using hundreds of spectral bands of very narrow band
width, hyperspectral imagery (HSI) is more capable of dis-
criminating different ground targets than the other remote
sensing techniques, and thereby providing a powerful mea-
sure for the classification of different land cover types. The
existence of various spectral bands greatly increases the data
dimensionality, thereby increasing the difficulty to perform
classification. According to the Hughes phenomenon [1] [2],
the increase in data dimensionality requires an exponential
increase in the number of training samples. With limited
training samples in remote sensing applications, the high
dimensionality causes a huge training burden and eventually
insufficient classification accuracy of supervised classification
techniques [3] [4]. To address this problem, developing an
informative data representation that can reduce the dimension-
ality while in the meantime preserve useful information for
supporting classification is essential.

Different approaches can be used for hyperspectral feature
extraction and dimension reduction. A widely used technique
is the principal component analysis (PCA) method [5]. PCA
assumes that the informative variables have large variance
and are statistically uncorrelated with each other. Based on
this assumption, PCA intends to find linear orthogonal sub-
spaces where most data variance in HSI can be explained.
Another popular feature extraction technique, the independent
component analysis (ICA) has been adapted for HSI analysis

[6]. Comparing with PCA, ICA seeks statistically independent
signals using higher-order statistics, and, as such is more
capable of capturing subtle material substances that are not
sufficient to constitute reliable second-order statistics [6].
Another technique that improves PCA for remote sensing
image analysis is the maximum noise fraction (MNF) method
[7]. MNF seeks variables with the largest signal-to-noise ratio
(SNR), and can be treated a noise-adjusted version of PCA
[8]. The projection pursuit approaches have been designed
for unsupervised feature extraction from HSI [9]-[11]. Non-
linear feature extraction technique, i.e., ISOMAP, has been
applied to HSI [12]-[15]. The Morphological Transformation
approach has been extended for dimensional reduction and
classification of HSI using spatial-spectral information [16].
Other techniques include the lower rank tensor approximation
[17] and minimum change rate deviation [18], accounting for
the spatial correlation among neighboring pixels.

Most of the above-mentioned feature extraction techniques
constitute constrained representations of HSI, which rely on
some statistical criteria for defining the “informativeness”
of features. However, these criteria do not reflect the data
generation mechanism of HSI, and are thereby not tailored to
the characteristics of HSI for classification purpose. Recently,
obtaining physically-meaningful features has been studied to
support HSI classification [19]-[22]. These studies adopt some
spectral unmixing techniques to obtain the abundance of end-
members (i.e., the spectra of the pure materials), which is after-
ward used as features for supervised HSI classification. These
studies suggest that the physical features have interpretational
advantage and can outperform the standard feature extraction
techniques, e.g., PCA and ICA. In this paper, we extend this
idea by presenting an intrinsic representation (IR) approach for
unsupervised feature extraction. IR is essentially a generative
model that seeks physically meaningful features based on the
data generation model of HSI. Here, the word “intrinsic” is
used to describe the innate endmember-abundance patterns
of the spatial processes from a physical perspective, and IR
therefore differs essentially from the intrinsic image decom-
position (IID) approaches where the same word describes
the reflectance, illumination and shading characteristics of the
targets from a computer vision perspective [23], [24].

Following the linear spectral mixture model (LSMM) that
is commonly used to describe the data generation process of
HSI [25], IR expresses a HSI pixel as a nonnegative linear
combination of some latent bases plus Gaussian noise. The
latent bases in IR correspond to the endmembers, i.e., the
spectra of the pure materials, whereas the nonnegative coeffi-



cients in IR correspond to the abundances of endmembers, i.e.,
the fractional contribution of individual endmembers. Based
on this latent structure, IR is capable of disentangling the
underlying factors that are responsible for HSI generation.
Moreover, IR addresses other important characteristics of HSI,
i.e., the correlation effects among pixels in spatial domain and
the noise variance heterogeneity effect across spectral bands
in spectral domain. The IR model is solved iteratively by
alternating (1) the estimation of nonnegative coefficients given
the latent bases and the (2) updating of latent bases given the
coefficients.

Consequently, the nonnegative coefficients of latent bases
in IR constitute desirable features for HSI classification. First,
different land cover types tend to assume different material
compositions. Since the IR features reflect the material com-
position in HSI pixels, they exploit this fundamental factor
that distinguishes different classes in HSI. Second, the IR
features maintain the spatial correlation effect in class labels,
i.e., adjacent pixels in HSI tend to assume the same class
label. Since IR features yield similar values for spatially-
close pixels, they encourage close pixels to have the same
class membership. Third, IR features can better resist the
influence of noise. In IR, the noise of different spectral bands
are explicitly estimated and separated to produce “noise-free”
features. Last, the IR features can reduce data dimensionality.
Since the number of latent bases in IR is generally fewer than
the number of spectral bands in HSI, the use of IR features can
greatly reduce the data dimensionality, thus reducing the risk
of overfitting when performing supervised HSI classifications.

The rest of the paper is organized as follows. Section II de-
scribes the proposed IR method and the optimization schemes.
Section III conducts experiments to compare the proposed
IR method with several other feature extraction methods for
supervised HSI classification. Section IV concludes the study.

II. CONSTRAINED REPRESENTATION OF HSI

In constrained representation of HSI, the observed spectral
pixel stack X € RV*P is represented by the product of a
latent bases matrix A € RP*X and a feature matrix S €

RNXK, plus some Gaussian noise N € RNxP.
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where the P x 1 dimensional spectral pixel x; is associated
with K x 1 dimensional feature s; in the subspace defined by
A:

x;=As;+n (fori=1,2,..,N) 3)

and the noise distribution is assumed to satisfy a Gaussian
model:
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Based on the generative model defined above, the task of
feature extraction intends to obtain s; (for ¢ = 1,2,...,N)
by minimizing the representational error subject to some
constraints:

S =arg gnsir}\Zdist(a:hAsi) s.t. C(S) (5)

where dist(x;, As;) represents the distance between x; and
A s; based on a particular distance measure, and C'(S) denotes
the constraint imposed on S.

The constraint on S defines the “informativeness” of the
extracted features. Different constraints lead to different types
of features. For example, to achieve uncorrelated features,
PCA forces variables in S to satisfy a Gaussian distribu-
tion [26]. To achieve statistically independent features, ICA
requires variables in S to satisfy super-Gaussian or sub-
Gaussian distributions [27]. However, these constraints define
the “informativeness” of features from statistical perspectives,
and could not reflect the intrinsic characteristics of HSI.
According to LSMM, the physical quantities hidden in HST are
nonnegative. Therefore, in the proposed IR approach, the terms
in S are constrained to be nonnegative to promote physically-
meaningful features for HSI classification. Moreover, some
other constraints are also adopted in IR to address other
important characteristics of HSI, as detailed in section III.

IITI. INTRINSIC REPRESENTATION OF HSI

The proposed IR of HSI is based on the same generative
model defined in (3), which can be reformulated as:

K
Ti =) apsik+n (6)
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Accordingly to LSMM, {ay| for k =1,2,..., K} represents
the collection of endmembers that are responsible for gener-
ating HSI, and s;; is the abundance of aj on spectral pixel
x;. In LSMM, the abundances are required to be nonnegative
and sum-to-one, i.e., Vs;; > 0 and Zk s;k = 1. However,
we only adopt the nonnegative constraint to simplify the
model optimization. Besides the nonnegative constraint, other
constraints are also adopted to account for other important
characteristics of HSI, leading to the following objective
function:

S =aryg (i — As;))" A" (x; — As;y)

{AS.A} <
(7
s.t.Vsir, >0 and As; — Z As;/M =0
JEP(i)
where U (i) represents the neighborhood centered at site ¢ that
involves M neighboring pixels {x;,, Z;,, ..., T, }-
In (7), (x; — As;)T A= (x; — As;) measures the represen-
tation error, where A is expressed as a diagonal matrix:
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in which o7 is the noise variance of the ith band. In HSI, o2
of different bands are not necessarily equal considering the
varying physical properties of different spectral bands as well
as the existence of junk bands [28]. This phenomenon is called
noise heterogeneity effect in this paper. Using A defined in (8)
allows accommodating such effect.

In (7), Asi—zjeq,(i) As; /M = 0is the spatial smoothness
constraint. This constraint encourages adjacent pixels to have,
in average, similar values in feature space. Since spatially-
close pixels in HSI have higher possibility of belonging to the
same class, the spatial smoothness constraint adopted here is
supposed to enhance the discriminative capability of features
by yielding similar feature values for adjacent pixels.

The unknown parameters in IR includes A, S and A. Since
the number of unknown parameters is more than the number of
observations, the objective function defined in (7) constitutes
an ill-posed optimization problem. In section IV, the model
is optimized iteratively by alternating the estimation of S and
A given A, as detailed in section IV-A, and the update of A
given S, as detailed in section IV-B. The final estimate of S
will be used to feed classifiers for HSI classification.

IV. MODEL OPTIMIZATION

This section details the iterative optimization approach for
solving the objective function defined in (7). We first introduce
the estimation of S Given A in section IV-A, then describe the
update of A based on S in section IV-B. We finally provide
a summary of the proposed algorithm.

A. Estimate s Given A

Based on A, the elements s; (for i =1,2,...,N) in S are
estimated separately. Since the final algorithm is built up sim-
ple ones, below, we illustrate the estimation of s; progressively
by addressing objective functions with increasing complexity.

1) Least Squares: Without any constraints, the estimation
of s; given A can be achieved by minimizing the representa-
tional error:

8 = argmin |lz; — Asi; )
which can be solved by the classical least squares approach:

5 =(ATA)(ATx)) (10)
2) Nonnegative Least Squares: The solution provided by
(10) may lead to negative values in §;, which, however,
is required to contain only nonnegative values according to
LSMM. As a result, §; should be estimated by optimizing the
following objective function with nonnegative constraint:

Y

3, = argmin||x; — Asng s.t. Vs =0
S

Due to the nonnegative constraint, there is no known ana-
lytical solution to (11). Nevertheless, (11) can be solved by
an iterative approach called active-set proposed by Lawson
and Hanson in [29] and modified by Bro and Jong for fast
computation [30]. The fast active set algorithm is summarized
in Algorithm 1.

Algorithm 1 NNLS

Input: z = x;, A = (a1, as,...,ax)

Olltpllt: s = (Si1,8i27 ...,SiK)T

Initialization: two complementary indices sets P = O
and Z = {1,2,.,K}, s = 0, w = AT(xz —
As)

1: while Z # @ and mazx(w? > toll) do
2. t= index of max(w?) in w

3 add ¢ to P, and remove t from Z

& gP = [(ATA)T]I(ATH)

s g2=0

6:  while min(g?) < toll do

7 o =min(sg/(sk — gy) for iin P)

8 s=s+a(g—s)

9: Q = indices in s where abs(s”) < toll
10: add Q to Z

11: remove @ from P

2 gP = [(ATA)P]"1(ATb)
13: g?2=0

14:  end while

15: s=g

16:  w=AT(x— As)
17: end while

Note: I” is restricted to the row and column variables of I
that are included in indices set J.

3) Weighted Least Squares: However, (9) and (11) assume
that noise variables in n are Gaussian distributed. To adjust
the noise heterogeneity effect across spectral bands, we adopt
the diagonal covariance matrix in (8). Accordingly, (9) is
reformulated to accommodate the noise heterogeneity effect:

8; = argmin(z; — As)TA  (z; — As)) (12)
which can be reformulated as:
8; = argmin HA_O‘ssz- — A_0‘5A3¢H2 (13)
8

and (13) can be solved by a weighted least squares approach:

5= (ATATTA) N ATA 12y) (14)

4) Weighted Nonnegative Least Squares: Similarly, the
objective function in (11) is reformulated using A to accom-
modate the noise heterogeneity effect:

§; = argmin ||A70'5wi — A70‘5As,;||§ s.t. Vs;r =0 (15)
s

Note that NNLS algorithm defined in Algorithm 1 assumes
i.i.d. noise, and thereby does not apply to (15). To adapt NNLS



for addressing the noise heterogeneity effect, we present a
weighted NNLS (WNNLS) algorithm, defined in Algorithm
2, where the A and x; are adjusted using A before being
used as input to the NNLS algorithm.

Algorithm 2 WNNLS

Input: ¢ = z;, A = (a1, as, ...
Output: s = (51, 82, ..., Six )~
Initialization: 2, = A=%%z and A, = A"05A,
s = NNLS (2w, Ay)

E

) aK), A*O.o

5) Weighted Nonnegative Least Squares with Spatial
Smoothness Constraint: Although the objective function de-
fined by (15) can provide a sound estimation of abundances
s; by addressing the nonnegative underlying factors and the
noise heterogeneity effect, it does not account for the spatial
correlation effect, due to which spatially-close pixels tend to
have similar abundance patterns. To further improve IR for
addressing the spatial correlation effect, we add to (15) the
following spatial smoothness constraint:

Asi— > As;/M=0
Jev(@)

(16)

where (i) represents the neighborhood centered at site 4 that
involves M neighboring pixels {x;,,z;,, ..., z;,, }. This con-
straint encourages adjacent pixels to have similar abundance
values.

The constraint in (16) is combined with the objective
function defined in (15), leading to a complete representational
framework that considers both noise heterogeneity effect in
spectral domain and the spatial correlation effects in spatial
domain:

§; = argmin HA_O'5a:i - A_0'5AsiH§
Si

s.t. Vs;, > 0 and As; — Z As;/M =0 a7

JeY(d)

The optimization problem defined by (17) can be reformu-
lated as:

8; = argmin ||A_0'5£EZ' — A_0'5AsZ-H;
S;
2
+A[|Q0FAs; — Y Q0P As; /M
JET(3) 9

(18)
s.t. Vsjp =0

where A determines the overall weight of smoothness con-
straint relative to the representational error, and €2 is a diagonal
matrix, assigning different smoothness weights to different
spectral bands.

Note that in (18), {s;|j € ¥(¢)} are also unknown. There-
fore, solving (18) requires simultaneously estimating both s;
and {s;|j € ¥(i)}. Note that the estimated values of {s;}
are not used. It is achieved based on the following objective
function.

§; =arg n}{in} ||A70'5:ci — AfO'SAsiH;

3 (1A% - AT A

jew(i (19)
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which can be reformulated as:

5, =arg min} H_/_X_O'5:Ei - 1_&_0'5A§i)TH§ st.V§ >0

s;,{s;
(20)
0
S
T
_ . _ S
where T, = | T |, 5 = i , (21)
Sj
Lint K(M1)x1
P(M+2)x1
MMNA —-)A —)MA
A
A= A (22)
A
P(M+2)x K (M+1)
QO.S
A70.5
and A=05 = A0S 23)
A70.5
P(M+2)x P(M+2)
w1
w2
with Q = (24)
wp

As we can see, (20) shares a similar form with the objective
function defined in (15), and can therefore be solved by the
WNNLS algorithm in Algorithm 2. Accordingly, we provide
in Algorithm 3 a WNNLS with spatial smoothness constraint
(WNNLS-SSC) algorithm for solving (20) and (17).

Algorithm 3 WNNLS-SSC
Input: X, A, A, Q, )
Qutput: S
Initialization: obtain A wusing (22) and A% using
(23)

1: fori=1:N do

2:  obtain &; using (21)

3 5 =WNNLS(Z;, A, A7)

4: end for




There are two types of weighting parameters, i.e., A and
wp (for p =1,2,..., P), which together determine the final
degree of spatial smoothness constraints. The parameter A
determines the relative weights between representational error
and overall smoothness constraints on all bands in HSI. Big-
ger )\ values promote more homogeneous results, leading to
smoother abundances values S in spatial domain. In contrast,
smaller )\ values favor solutions with smaller representational
error, resulting in noisy appearance of abundances values in
image space. Therefore, the value of \ determines the trade-off
between signal preservation and noise removal.

Although A can determine the overall weight of smoothness
constraint relative to the representational error, it can not deter-
mine the relative weights among different spectral bands. The
band-wise spatial smoothness weights w,, (for p=1,2, ..., P)
are adopted for this purpose. Since different bands tend to
assume different noise levels, we would like to impose larger
w value to bands with higher noise level to better resist the
influence of noise, but give smaller w value to bands with
lower noise levels to more efficiently capture the signal in
HSIL

Therefore, w), should be adjusted based on the noise level of
the pth band, being proportional to noise variance 012) defined
in (8). In this paper, we adopt the following assignment of w,,:

2
Pap

=P (25)
P
Zh:l 0}21

Wp

Another important parameter is M, the size of neighbor-
hood defined in (16), which determines the scale of spatial
correlation effect. Generally speaking, bigger neighborhood
with larger M should be adopted if the noise level is high, or
the scene complexity is low. In practice, we found that small
neighborhood of 3-by-3 or 5-by-5 is sufficient for resisting
the noise influence without compromising significantly the
capability to capture scene signals.

6) Iterative Weighted Nonnegative Least Squares with Spa-
tial Smoothness Constraint: Although the WNNLS-SSC al-
gorithm given in Algorithm 3 can be employed to solve the
objective function with spatial smoothness constraint defined
in (20), it relies on known noise variances of different bands
in A, which however are generally unknown in practice. To
provide a solution to (20) in the scenarios where we have
no prior knowledge concerning the noise characteristics of
different bands, we introduce an iterative weighted NNLS
with spatial smoothness constraint IWNNLS-SSC) as detailed
in Algorithm 4, which can adaptively estimate the band-
dependent noise variances in HSI, and use them for solving
(20).

Based on IWNNLS-SSC, the IR features S can be extracted
by solving a well-defined generative model that captures key
characteristics of HSI, i.e., physical explanatory variables, the
spatial correlation effect, as well as the noise heterogeneity
effect. Since IWNNLS-SSC is robust to noise influence, and
is able to estimated noise variances, it may also be appropriate
for HSI denoising that aims to separate signal from noise.

Algorithm 4 TWNNLS-SSC

Input: X, A, Q, A

Qutput: S

Initialization: A = I, obtain A using (22) and A% using
(23)

1: while iter < maxIterl do

22 fori=1:N do

3 obtain &; using (21)

4 5, =WNNLS(z;, A, A=)

S: ri=x; —As; fori=1,2,... N

6: end for

7. update A using {r;}, by assigning A = VAR({r;})
8:  update 2 using A, based on (25)

9: update A~%° using A and €2, based on (23)
10: end while

B. Update A based on S

In section IV-A, A is assumed to be known in advance to
estimate S using IWNNLS-SSC. Once S is obtained, it can
be used to improve A. The key issue is how to efficiently use
the information in S to update A.

Since A corresponds to hyperspectral endmembers, some
hyperspectral endmember extraction approaches, e.g., VCA
[31] and MVC-NMF [32]), may be applicable. However, these
approaches rely on extra criteria for regulating the endmember
estimation.

In our previous publication [33], we estimate aj as the
mean value of the “purified” pixels that are due to the sole
contribution of the kth endmember. This approach utilizes
the information in S, and can be better integrated into the
current iterative optimization framework. Nevertheless, the K-
P-Means algorithm [33] estimates aj using only pixels in the
kth class, and relies on the estimation of hard/discrete class
membership by identifying the dominant endmembers for each
pixel. It therefore could not identify the endmember that does
not admit presence on any pixels in HSIL

Here, we estimate the endmembers using a “soft” version
of the K-P-Means approach, in which aj is estimated as
the weighted means of all pixels in HSI, with the weight
determined by the abundance values. There are two steps in
estimating ay: (1) purify all pixels in HSI by removing the
contribution of other endmembers {a;| ¢t # k}; (2) estimate
ay, as the weighted means of purified pixels.

1) Purify pixels in HSI: The first step is to purify all the
pixels to obtain the sole contribution of aj; in each pixel.
Comparing with mixed pixel x; that involves the linear con-
tribution of multiple endmembers, the purified pixel denoted
by y¥ contains only the contribution of the kth endmember
ay,. According to the LSMM, y* can be achieved by removing
from «; the contribution of all other endmembers {a;| ¢t # k}:

K
k _
Y, =T — QiSit
t£k

(26)

2) Estimate endmember using purified pixels: Given {y*}
associated with ay, the final step is to estimate aj, using these



purified pixels. Since {y*} are only due to the contribution of
a;, subject to different weights and random noise, they can be
used to achieve a weighted mean estimate of ay:

N
Zi:1 yiﬂ Sik
N
D i=1 Sik
where the weight s, is the abundance of a; on the ith pixel.

The update of A is achieved by updating {ax|k = 1,2,..., K}
sequentially according to the above steps.

éy = 27)

C. Summary of Complete Algorithm

Based on the two key optimization steps described respec-
tively in sections IV-A and IV-B, a complete algorithm used
for solving IR can be achieved by iteratively alternating these
two steps. Accordingly, we provide in Algorithm 5 a summary
of the IR optimization steps.

Algorithm 5 IR
Input: X, A, Q, A
Qutput: S
Initialization: A < randomly pick up K pixels from
{a:}
1: while iter < maxIter2 do
2:  update S =IWNNLS-SSC(X, A, 2, )\)
32 fork=1,2,....,K do
4: update ay, using S, X and {a:| t # k}, as described
in section IV-B
5:  end for
6: end while

In Algorithm 5, the update of aj relies on the other
endmembers {a:| ¢ # k}, which might have been updated
before aj. To speed up the convergence, we use the updated
values of {a:| t < k} for updating ay.

V. EXPERIMENTS AND DISCUSSION

In this section, the proposed IR model is tested on both
simulated and real HSI, in comparison with several other data
representation methods for supervised HSI classification. We
start with the introduction to the experiment design, followed
by the discussion of results achieved by different methods
using both simulated and real HSI.

A. Experimental Setup

The overall strategy in this comparative study is to adopt
different data representation methods to extract from HSI
separate sets of features, which will then be used to feed clas-
sifiers for supervised classification of HSI. The classification
performance measured by some numerical statistics can be
used as criteria for evaluating the compared techniques.

1) Methods Compared: Two widely used data represen-
tation techniques, i.e., PCA [5] and ICA [6], are used for
comparison with the proposed method. In addition, two bench-
mark hyperspectral unmixing techniques, i.e., VCA [31] and
MVC-NMF [32], are employed to learn features of physical
meanings. For both methods, we use as features the abundance
of the endmembers. Because MVC-NMF innately produces
abundances, we use the output abundances as features. How-
ever, for VCA that only yields endmembers, we employ the
NNLS algorithm to calculate the abundances based on the
endmembers obtained by VCA.

Three variants of the the proposed IR model, i.e., IR0, IR1
and IR2, are implemented by adopting different algorithms to
estimate A and S.

o IRO is implemented by using the centroids of K-Means
as estimates of A and IWNNLS-SSC to estimate S.

o IR1 is implemented by adopting the purified means
approach in section IV-B to estimate A and the WNNLS
algorithm in Algorithm 2 to estimate S.

o IR2 is implemented by exactly following Algorithm 5,
using purified means approach in section I'V-B to estimate
A and IWNNLS-SSC to estimate S.

As a result, the performance difference between IR2 and
IR1 reveals the role of spatial smoothness constraint, while
that between IR2 and IRO reveals the effectiveness of using
physically meaningful features. To serve as a baseline method,
we also use all the original bands in hyperspectral data for
supervised classification, and the results are referred as the
“original” classification results. The popular nonlinear feature
extraction technique, i.e., Isomap [34] is also tested in the
experiments with real hyperspectral images.

2) Parameter Setting: For PCA, we use the first K PCs
that explains the majority of the data variance as features
for classification. For ICA, we use fastICA algorithm that
estimate K ICs by minimizing the mutual information of
the transformed components. The MVC-NMF method uses
the endmembers estimated by VCA for initialization. The
parameter toll in IR-based methods is set to be a very small
value that is close to zero: toll = 1071, IR0 and IR2 use 4-
nearest neighbors, and set the weight of smoothness constraint
by A = 10 xmean(diag(A))/u, with p being the mean value
of the image. The maxIter2 in IR1 and IR2 is set to be
20, and maxlIterl in IR2 is set to be 1. The maxIter2 in
IRO is set to be 1. In IR1, for the estimation of the noise
variances {032-} in A, we use a software interface to identify
a homogeneous subimage (HS) in the hyperspectral image.
For each band in the HS, the empirical variance is computed
and used as the estimate of the variance in the corresponding
band: 0% = var({x;;| for i in HS}). In IR-based approaches,
to deal with the sensitivity to random initializations, like
the K-means algorithm, in each run, we used 10 replicates
with different random initializations to adopt the output of
the one with the smallest representational error. In IR1 and
IR2, A is initialized by using random samples. Initializing
A using other methods such as VCA may potentially improve
performance. However, to allow for a fair comparison with the
other methods, we decided not to rely on external algorithms



for initialization, but instead use random samples. For Isomap,
we use the 30 nearest neighbors for building the graph.

3) Classification Techniques: Each method described above
will be used to transform HSI into feature space of reduced
dimensionality, where HSI classification is performed using
two classifiers, i.e., K-NN and SVM. The reason we adopt K-
NN is because it is sensitive to the discriminative capability of
features, and thereby can better reveal the difference among
techniques used for feature learning. To further enhance such
sensitivity, we use only one neighbor in K-NN to perform
classification. SVM represents the benchmark classification
technique in both remote sensing and machine learning com-
munities. We use the radial basis kernel and select the two
hyperparameters, i.e., sigma and the regularization constant,
by performing grid search using 10-fold cross-validation based
on the training samples.

4) Numerical Measures: A relatively small percentage of
the labeled samples in HSI will be used for training the
classifiers, while the rest are used for testing. Three numerical
measures, i.e., the overall accuracy (OA), averaged accuracy
(AA) and the Kappa coefficient, are used for evaluating the
classification performance. To reduce the bias caused by ran-
domness in choosing training samples, the numerical measures
are averaged over ten independent runs using different training
samples.

The strategy described above is tested on both simulated and
real HSI. Since the simulated HSI has known data generation
model and relatively small number of classes, the simulated
study provides us a controlled environment for better compar-
ing different methods and testing the parameter sensitivities.

B. Experiment with Simulated Hyperspectral Image

In this experiment, we simulate a 64-by-64 sized HSI
with four classes, with each being dominated by a different
material, whose signature with 224 bands is shown in Fig.
1(a). Each pixel in the simulated HSI is a mix of the four
endmembers. Using the four endmembers, mixed pixels are
created by first dividing the entire image into 8-by-8 sized
homogeneous blocks of one of the 4 endmembers, then
degrading the blocks by applying a spatial low pass filter of 17-
by-17 [32]. To further increase mixing degree, the remaining
relatively pure pixels with 80% or larger single abundance are
forced to take equal abundances over all endmembers.
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Fig. 1. (a) Four endmembers randomly selected from the USGS spectral

library for simulating HSI. (b) The simulated SNR values of different bands
when o = 7 and ¢ = 20. Different bands tend to have different SNR values.

The resulting HSI is further degraded by zero-mean Gaus-
sian noise with different noise variances in different bands. To

simulate this noise heterogeneity effect, we assign different
signal-to-noise ratio (SNR) values to different bands. The
band-dependent SNR values used for simulation are estimated
from the benchmark Indian Pines image introduced in section
V-C1. Suppose that the estimated SNR vector g has been
centralized and normalized, then the simulated SNR 7 can
be obtained according to the following rule:

r=aq+c (28)

where « is the amplitude that determines the magnitude of
fluctuation of band-dependent SNR values, and c is the center
value that defines the overall SNR of all bands. Therefore, by
changing c, images with different overall noise levels can be
simulated. Larger ¢ value produces an image with lower noise
level. The SNR with o = 7 and ¢ = 5 is shown in Fig. 1(b).

To test the sensitivity to noise level variation, we simulate
six HSIs with different overall noise levels by fixing o = 7 but
varying c, i.e., ¢ = 5,10, 15, 20, 25, 30. Each data representa-
tion method is applied to the six HSIs to learn four features for
each HSI, and the resulting features are used to feed the K-NN
classifier using 10 pixels in each class as training set and the
rest pixels as testing set. Fig. 2(a) shows the OA over different
c values. Overall, the performance of all methods increase
with the decrease of noise levels. The proposed approaches,
i.e., IR0, IR1 and IR2, achieve higher OA than the other
methods over all noise levels. IR2 performs better than IR1 and
IR0, indicating the benefits of adopting the spatial smoothness
constraints for estimating S and purified means approach for
estimating A. IR1 performs better than IR0, and approaches
IR2 with the decrease of noise levels. PCA and ICA tend to
perform better than the original image when noise levels are
high. VCA and MVC-NMF fail to achieve higher OA than the
original image.

To test the sensitivity to the number of features, we apply
each method to the HSI with @« = 7 and ¢ = 20 to learn
varying number of features. Fig. 2(b) shows the OA achieved
by K-NN as a function of the number of features. Generally
speaking, IR2 consistently outperforms the other methods, and
achieves the best performance when using four features. IR1
is close to IR2 when using small number of features. IR1 and
IR0 achieve higher OA than all the other referenced methods,
followed by PCA and ICA. The observation that learning
4 features in IR1 and IR2 gives better statistics than more
features is likely due to the fact that in the simulated data there
are actually 4 endmembers, which when captured by the IR
approaches, provide the maximum discriminative capability.
PCA and ICA show the best performance when using 2
feature, and slightly decreased performance when features
increases. It is probably because PCA and ICA explore the
statistical information, rather than the physical information.
So, using more features will not necessarily give PCA and
ICA more information, but endanger them with the pollution
of noise.

Fig. 3 shows the scatter plots of 2 out of 4 features learnt
by different methods from the HSI with o« = 7 and ¢ = 20.
Different symbols represent the true class labels of pixels.
In VCA and MVC-NMF, the four classes are highly mixed,



indicating very low separability among classes. PCA and ICA
demonstrate better separation of material 2 and 3, but highly
dispersion of the other two classes. IR0 indicate fair separation
of material 1, 2 and 4, but highly dispersion of material 3.
IR1 tends to cluster the four classes better than IRO. However,
material 3 is still highly mixed with the other classes. IR2
demonstrates the best class separability over all methods. In
IR2, pixels belonging to the same class tend to cluster together,
and different classes are less mixed.

Fig. 4 shows the classification maps of K-NN using a
number of 4 features learnt by different methods from the
HSI with o = 7 and ¢ = 20. The maps indicate consistent
results with the scatter plots in Fig. 3. Classes in maps of
PCA, ICA, VCA and MVC-NMF are greatly misclassified.
In IRO, material 3 tends to be wrong classified into other
classes. Classes in IR1 are identified very well, but with
some within-class artifacts and fluffy boundaries. IR2 enables
better delineation of the boundaries, and produces a map that
is the most similar to the ground truth. The fact that IR1
produced less within-class artifacts than the standard methods
may be explainable by the fact that IR1 addresses the noise
heterogeneous effect which contributes largely to the class
signatures uncertainty and thereby the label variability in
spatial domain.

C. Experiment with Real Hyperspectral Image

1) Indian Pines Scene: The Indian pines scene was stan-
dard HSI dataset captured by airborne visible/infrared imaging
spectrometer (AVIRIS) over a vegetation area in northwestern
Indiana, USA, with a spatial resolution of 20 m, consisting of
145-by-145 pixels and 220 spectral reflectance bands.

Each data representation method is applied to the Indian
pines scene to learn 20 features, which is then used to feed
SVM and K-NN for classification. There are a total of 16
classes in Indian pines scene. For each class, 10% of the
labelled samples are used for training the classifiers, leaving
the rest samples for testing.

Table I shows the statistics of different methods. IR2 ranks
first in terms of all measures on both classifiers, outperforming
the second best, IR1, by 9.4% according to the OA of 1-NN
and 11.2% according to the OA of SVM. Comparing with the
original image, using IR2 features boosts the OA of 1-NN by
15.7% and the OA of SVM by 13.1%. IR1 achieves higher
statistics than all the other referenced methods, i.e., PCA, ICA,
Isomap and MVC-NMF, on both classifiers. According to the
OA of SVM and 1-NN, only IR1 and IR2 perform better than
the original image.

Fig. 5 shows the classification maps achieved by 1-NN using
different features. Generally speaking, the classification map
associated with IR2 is the most similar one to the ground truth
map. It contains less within-class artifacts than those of the
other methods, demonstrating the effectiveness of using spatial
smoothness constraint for feature learning. Nevertheless, the
intense artifacts in the map of IR0 that also adopts the spatial
smoothness constraint implies the benefit and necessity of
employing simultaneously the purified means approach and the
smoothness constraint for model optimization, as conducted

in IR2. The IR1 features also leads to significantly less
misclassification. However, maps produced by using features
of the other methods, i.e., PCA, ICA, Isomap and MVC-NMF,
do not demonstrate any visual advantage over map produced
using the original image.

Fig. 6 shows the plots of OA and AA achieved by 1-
NN using different number of training samples. All feature
extraction methods improve the performance of 1-NN, with
the increase of training samples. Nevertheless, irrespective of
the number of training samples, IR2 leads to much higher OA
and AA values than the other methods. Comparing with using
the original image, using IR2 features improves the OA by
about 20% and AA by about 15% on average over all numbers
of training samples. Using IR1 also improves the performance
of 1-NN than using the original image, and the improvement
seems to grow with the increase of training samples. PCA
achieves comparable statistics with the original image in most
cases. Features extracted by Isomap, ICA and MVC-NMF fail
to improve the classification performance over the original
image.

Table II shows the statistics of CMTMEF,,,,,,,, reported in
[22]. CMTMF,,,, 5y, represents the state-of-the-art unmixing-
based feature extraction technique. As we can see, IR2
achieves comparable results with CMTMF,;, 5., on the Indian
Pines image.

TABLE II
OVERALL ACCURACY (OA %) AND AVERAGED ACCURACY (AA %)
ACHIEVED BY SVM USING RESPECTIVELY THE CMTMF 1 sup FEATURES
[22] AND THE IR2 FEATURES ON THE INDIAN PINES IMAGE (WITH 15%
TRAINING SAMPLES PER CLASS) AND THE PAVIA UNIVERSITY IMAGE
(WITH 50 TRAINING SAMPLES PER CLASS).

Indian Pines | Pavia University
OA | AA | OA AA
CMTMF psup [22] | 91.6 | 89.6 | 86.8 88.1
IR2 91.5 | 90.7 | 91.8 92.5

2) Pavia University Scene: The Pavia University scene was
acquired by the reflective optics system imaging spectrometer
over the University of Pavia, with a spatial resolution of 1.3
m, consisting of 610-by-340 pixels and 115 spectral bands.

Each method is applied to this image to extract 15 features,
which are then used to feed the 1-NN and SVM classifiers.
There are nine ground-truth classes in this image. In each class,
100 labeled samples are used for training, while the rest are
used for testing.

Table III shows the statistics obtained by 1-NN and SVM
using features extracted by different methods. It indicates
consistent results with Table I. IR2 significantly outperforms
the other methods in terms of all measures achieved by both
classifiers. IR2 produces OA that is 11.7 higher than the
original image according to 1-NN, and 4.3% higher according
to SVM. IR1 also achieves higher statistics values than the
original image. However, IR0, PCA, ICA, Isomap and MVC-
NMF fail to improve the classification performance over the
original image.

Fig. 7 displays the classification maps obtained by 1-NN
using different types of features. Due to the low class separa-
bility of MVC-NMF features, the resulting map tend to have
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IR2 consistently outperforms the other methods, and achieves its best performance when using four features. IR1 is close to IR2 when using a small number
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Fig. 3. Scatter plots of 2 out of 4 features extracted by different methods from the HSI with & = 7 and ¢ = 20. Different symbols represent the true class
labels of pixels. In VCA and MVC-NMF, the four classes are highly mixed, indicating very low separability among classes. PCA and ICA demonstrate better
separation of material 2 and 3, but highly dispersion of the other two classes. IR0 indicate fair separation of material 1, 2 and 4, but highly dispersion of
material 3. IR1 tends to cluster the four classes better than IRO. However, material 3 is still highly mixed with the other classes. IR2 demonstrates the best
class separability over all methods. In IR2, pixels belonging to the same class tend to cluster together, and different classes are less mixed.

TABLE 1
OVERALL ACCURACY (OA), AVERAGED ACCURACY (AA) AND KAPPA COEFFICIENT (KAPPA) ACHIEVED BY DIFFERENT METHODS ON THE INDIAN

PINES IMAGE (BEST RESULTS ARE HIGHLIGHTED IN BOLD)

1-NN SVM
OA (%) | AA (%) | Kappa | OA (%) | AA (%) | Kappa
Original 70.8 67.5 0.667 75.4 69.0 0.712
PCA 70.8 67.7 0.667 73.7 69.2 0.699
ICA 68.3 64.0 0.638 72.3 68.1 0.683
Isomap 65.5 62.0 0.606 68.1 62.8 0.634
MVC-NMF 66.9 63.6 0.622 69.8 62.0 0.654
1RO 66.9 64.7 0.623 68.6 66.6 0.640
IR1 77.1 70.3 0.739 79.7 74.5 0.768
IR2 86.5 84.6 0.846 88.5 88.1 0.869
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Fig. 4. The classification maps achieved K-NN using four features extracted by different methods from the HSI with o = 7 and ¢ = 20. The maps indicate
consistent results with the scatter plots in Fig. 3. Classes in maps of PCA, ICA, VCA and MVC-NMF are greatly misclassified. In IR0, material 3 tends to
be wrongly classified into other classes. Classes in IR1 are identified very well, but with some within-class artifacts and inconsistent boundaries. IR2 enables
better delineation of the boundaries, and produces a map that is the most similar to the ground truth with the highest accuracy.

large misclassification. PCA, ICA, Isomap and IRO features
enable 1-NN to perform better than MVC-NMF. However,
the resulting maps still contain many within-class artifacts.
IR1 produces less misclassification than the aforementioned
methods, especially in the classes of Meadow and Bare soil.
IR2 leads to a map that has the least within-class artifacts and
accurate identification of small classes.

Fig. 8 plots the OA and AA of 1-NN over the number
of samples used for training. Similar to Fig. 6, IR2 greatly
outperforms the other methods regardless of the number of
training samples. IR1 also produced higher OA values but
slightly lower AA values than the original image. Statistics
that are comparable with the original image are achieved by
PCA, and lower statistics are achieved by MVC-NMEF, ICA,
Isomap and IR1.

Table II indicates that IR2 achieves higher OA and AA
values than CMTMF 5., [22] on the Pavia University image.

VI. CONCLUSIONS

In this paper, we presented an IR model for unsuper-
vised feature extraction from HSI. Different to the other
representation-based feature extraction techniques, such as
PCA and ICA, which define the “informativeness” of features
from a statistical perspective based on the domain-independent
knowledge, IR aims to capture the discriminative information
in HSI by explicitly modeling the physical quantities that are
responsible for HSI generation. Moveover, IR accounts for the
other key characteristics of HSI, i.e., the spatial correlation
effect in spatial domain and the noise heterogeneity effect in
spectral domain. IR is solved iteratively by alternating the the
estimation of the IR features given the endmembers and the
update of the endmembers given the IR features. IR is tested
on both real and simulated HSI, in comparison with several
other popular unsupervised features extraction methods. The

results indicate that IR features are more capable of boosting
the classification performance than the referenced methods.
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TABLE III
OVERALL ACCURACY (OA), AVERAGED ACCURACY (AA) AND KAPPA COEFFICIENT (KAPPA) ACHIEVED BY DIFFERENT METHODS ON THE PAVIA
UNIVERSITY IMAGE (BEST RESULTS ARE HIGHLIGHTED IN BOLD)

1-NN SVM
OA (%) | AA (%) | Kappa | OA (%) | AA (%) | Kappa
Original 76.8 83.2 0.704 88.9 90.6 0.854
PCA 76.7 83.1 0.703 87.0 88.6 0.829
ICA 72.5 78.2 0.652 85.9 88.0 0.815
Isomap 75.4 82.6 0.691 79.8 86.8 0.731
MVC-NMF 69.5 78.1 0.619 76.9 84.0 0.706
IR0 73.1 79.9 0.662 78.5 84.3 0.725
IR1 78.2 81.9 0.721 89.2 91.0 0.858
1R2 88.5 90.2 0.851 93.1 94.3 0.909
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