Enhanced Reconstruction of Compressive Sensing MRI via Cross-Domain Stochastically Fully-Connected Random Field Model

E.Li¹, M. Shafiee¹, A. Chung¹, F. Khalvati², A. Wong¹, and M. A. Haider²

¹University of Waterloo, ²University of Toronto

Motivation/Objectives

- Low MRI acquisition times increase patient comfort and image quality
- Decrease MRI acquisition times through compressive sensing
- High quality reconstruction for diagnosis and screening of different types of cancer

Enhanced reconstruction of compressive sensing MRI via crossdomain stochastically fully-connected random field model Program Number: 3405

Methodology:

• Conditional Random Field Inference:

 $P(Y|X) = \frac{1}{Z(X)} \exp(-\psi(Y|X))$

where Z(X) is a the normalization function and $\psi(.)$ is described below

• Cross domain unary(ψ_u) and pairwise(ψ_p) energies:

$$\psi(Y|X) = \mathcal{F}\{\sum_{i=1}^{n} \psi_u(y_i, X)\} + \sum_{\varphi \in \mathcal{C}} \psi_p(y_{\varphi}, X)$$

Where $y_i \in Y$ is a single state in the set $y = y_{i_{i=1}}^n$, $y_{\varphi} \in Y$ is the subset of clique structure in the set of C. $x = x_{j_{i=1}}^n$ is the set of *k*-space observations.

The Cross-Domain Stochastically fully connected Conditional Random Field (CD-SFCRF) enforces original *k-space* (Frequency Domain) observations combined with spatial domain neighborhood consistencies to perform inference of states given compressive sensed *k-space* observations

Enhanced reconstruction of compressive sensing MRI via crossdomain stochastically fully-connected random field model Program Number : 3405

Existing Methods

- Total Variation (K. Block, et al. (2007)
 - Assumes piecewise smooth denoising/reconstruction approach
- L2 Minimization (M. Lustig, et al. (2007))
 - Direct transformation from k-space into spatial domain

Enhanced reconstruction of compressive sensing MRI via crossdomain stochastically fully-connected random field model Program Number : 3405

Results (32% k-space sampling)

Original Image	L2 Minimization (Compressive Sensed)	Total Variation Reconstruction (TV)	CD-SFCRF Reconstruction
	K		

Enhanced reconstruction of compressive sensing MRI via crossdomain stochastically fully-connected random field model Program Number : 3405

Results with phantom data

Peak-to-Peak Signal to Noise (PSNR)

Medical Imaging UNIVERSITY OF TORONTO

Conclusions

- Better results for the proposed method show better tissue and structure details reconstructed while eliminating noise
- PSNR analysis shows significant improvements at very low sampling rates
- The proposed method fully utilizes available data for high quality reconstruction
- Potential to decrease acquisition time significantly with little compromise in image reconstruction quality

Enhanced reconstruction of compressive sensing MRI via crossdomain stochastically fully-connected random field model Program Number : 3405

RSITY OF TORONTC

UNIVERSITY OF