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Abstract

Synthetic aperture radar (SAR) images are degraded by
a form of multiplicative noise known as speckle. Current
methods for despeckling are limited in that they either do
not perform enough noise attenuation, or do not adequately
preserve or enhance image detail. We propose a novel
adaptive stochastic method for joint enhancement and de-
specking of images (JEDI) for SAR. The proposed method
utilizes an adaptive importance sampling scheme based on
local statistics to generate random samples while reducing
estimation variance. A Monte Carlo estimate is computed
based on the generated samples, wherein the samples are
aggregated to form a despeckled and detail-enhanced re-
sult. The advantage of JEDI is the ability to efficiently take
advantage of information redundancy in speckled images
to reduce the effects of speckle while simultaneously en-
hancing detail visualization. Testing with both simulated
and real speckled images shows that JEDI typically out-
performs popular despeckling algorithms such as Frost fil-
tering, anisotropic diffusion, median filtering, Γ-MAP and
GenLik in terms of quantitative and qualitative visual qual-
ity. On average, JEDI provides a 2-15% improvement in
PSNR and a 5-14% improvement in image quality index
measures over the tested methods.

1 Introduction

Synthetic aperture radar (SAR) is a widely-used tech-
nology in remote sensing applications. SAR images are
generated by measuring the backscattered signal from a ra-
dio pulse. Because of phase coherence effects caused by
multiple scatterers in a resolution cell, the resulting images
are characterized by a grainy pattern known as speckle [1].
Popular speckle reduction methods include linear least-

squares estimators (LLSE) based on local statistics, such as
the Lee [2], Frost [3], and Kuan [4] filters. Other despeck-
ling methods include Γ-MAP [5], anisotropic diffusion [6],
adaptive weighted median filtering [7], and wavelet-domain
filtering (GenLik) [8].

A limitation of current despeckling methods is insuffi-
cient noise attenuation in homogeneous regions, especially
with correlated speckle. Moreover, while current despeck-
ling methods are designed to preserve edges, they do not
enhance them for better visibility, and often do not provide
speckle reduction in edge regions. These problems can limit
the visual quality of the despeckled image, as well as create
difficulties for automatic segmentation techniques, to such
an extent that SAR smoothing is not performed in these ap-
proaches [9].

The current methods all depend, to varying extents, on
local information redundancy. Recently, Wong et al. [10]
proposed a Monte Carlo estimation framework for denois-
ing that allows efficient use of global information redun-
dancy. Based on this, we propose a novel method for joint
enhancement and despeckling of images (JEDI) that em-
ploys an adaptive stochastic approach to overcome limita-
tions inherent in local methods. The proposed JEDI method
is able to attain greater levels of speckle attenuation while
increasing the visibility of image structures.

2 Adaptive Stochastic Estimation

2.1 Speckle Model

Let S be the discrete lattice on which the images f , g,
and random field n are defined, and let x be an index into
the lattice. Speckle, which arises from the constructive and
destructive interference of the backscattered signal, can be
modeled as multiplicative noise [1] according to

g(x) = f(x) · n(x), (1)
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where g(x) is the observed signal intensity at lattice loca-
tion x = [x y]T , f(x) is the “noise-free” signal, and n(x)
is the fading variable. The fading variable can be modeled
as a stationary random process with E[n(x)] = 1 that is as-
sumed to be independent of the noise-free signal f(x). For
fully developed speckle, it can be shown that the measured
backscatter amplitude follows a Rayleigh distribution [1],
and has a probability density function (pdf) given by

p(g|σg) =
g

σ2
g

exp
(
− g2

2σ2
g

)
(2)

g ∈ [0,∞),

where σg is the shape parameter which depends on the re-
flectance of the scatters in the resolution cell.

2.2 Estimation Framework

Since the noise-free signal f(x) and the fading variable
n(x) are assumed to be independent, the expected value of
the observed image signal g(x) becomes

E [g(x)] = E [f(x) · n(x)]
= E [f(x)] · E [n(x)]
= E [f(x)] . (3)

This implies that an estimate of the noise-free image sig-
nal f(x) can be obtained by taking the average of repeated
measurements. However, it is not practical to image a re-
gion repeatedly over a small time-frame using SAR plat-
forms. An alternative approach is to use a spatial domain
estimation approach to make use of the information redun-
dancy contained in the image itself. This type of estimate
can be written in the form of a weighted sum

f̂(x) =
1

W (x)

∑
ξ∈Ωx

w(x, ξ)g(ξ), (4)

where W (x) is the normalizing factor given by

W (x) =
∑
ξ∈Ωx

w(x, ξ), (5)

and Ωx is a set of indices into S. Methods that fall under
this framework include the aforementioned Lee, Frost, and
Kuan filters, where the weights are adaptively determined
based on the local image statistics. If the weights w(x, ξ)
are identical and spatially-invariant, then we have a simple
spatial average filter, which is the basis for multi-look de-
speckling. In the existing despeckling methods, the range
of the summation is restricted such that Ωx is a rectangu-
lar neighborhood centered at x. One limitation to this re-
striction in summation range is that local information redun-
dancy is often inadequate for reducing speckle in observed

image signals characterized by low signal-to-noise ratios.
One effective approach to improving despeckling perfor-
mance is to extend the summation such that Ωx = S, thus
fully exploiting information redundancy within the image.
However, to estimate f(x) deterministically when Ωx = S
is not computationally feasible.

2.3 Joint Despeckling and Enhancement

Wong et al [10] showed that an efficient and effective
way to improve the filtering given in Eq. 4 when Ωx = S is
to use a stochastic estimation approach. The goal is to take
better advantage of the information redundancy contained
in the image, while still being computationally efficient to
compute.

Let p be a pdf on S, and xc be the pixel being estimated.
Instead of using all image samples ξ ∈ S, we draw m ran-
dom samples, ξ1, . . . , ξm, using a pdf p(ξ|xc). Hence, we
have the Monte Carlo estimate of the pixel given by

f̃(xc) =
1

W (xc)

m∑
i=1

w(xc, ξi)g(ξi) (6)

W (xc) =
m∑
i=1

w(xc, ξi). (7)

Given a large enough sample size, the Monte Carlo estimate
f̃(x) approaches the deterministic estimate f̂(x). The main
advantage of the proposed Monte Carlo filtering method is
that it is significantly more computationally efficient than
the deterministic spatial domain filtering approach when
Ωx = S, since a relatively small number of samples is nec-
essary to achieve high despeckling performance.

We calculate the weights based on the similarity of the
neighborhoods around xc and ξi according to

w(xc, ξi) = e−
Φ(xc,ξi)

h2 (8)

where h is a decay factor and Φ(xc, ξi) represents the
summed difference of the pixel neighbourhood intensities
weighted by a Gaussian kernel G(·)

Φ(xc, ξi) =
∑
δ

G(δ) · (g(xc − δ)− g(ξi − δ))2. (9)

To reduce estimation variance, the biasing density p used
to compute the Monte Carlo estimate is adaptively chosen
based on the proximity and perceptual similarity between
the target pixel and the rest of the pixels within the image,
such that

p(ξ|xc) =
1

C(ξ,xc)
e−α|xc−ξ|

2(σ2(ξ)−σ2(xc))2

, (10)

where σ2(·) is the local image variance and | · | denotes the
Euclidean distance between two pixel coordinates. C(ξ,xc)
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is a normalizing factor given by

C(ξ,xc) =
∑
ξ

e−α|xc−ξ|
2(σ2(ξ)−σ2(xc))2

. (11)

The constant α controls the decay rate of the density func-
tion.

One of the underlying goals of JEDI is to improve im-
age detail while reducing speckle for easier visual detec-
tion of features within an ultrasound image. To achieve
joint despeckling and detail enhancement, we incorporate
a stochastic detail emphasis term into the adaptive Monte
Carlo estimation framework, according to

f̂enh(xc) =
θ

W1(xc)

m∑
i=1

e−
Φ(xc,ξi)

h2 g(ξi)

− θ − 1
W2(xc)

m∑
i=1

e
−Φ(xc,ξi)

β2h2 g(ξi), (12)

where the second term corresponds to a Monte Carlo esti-
mate obtained by using a decay factor of βh. What this ef-
fectively does is adaptively amplify stochastically estimated
image detail based on the difference of Monte Carlo esti-
mates, with the level of enhancement controlled by the ra-
tio factor θ. In this case, the integration of detail enhance-
ment into the adaptive Monte Carlo estimation framework
comes at little extra cost since it is computed as part of
same stochastic estimation procedure. The JEDI algorithm
is summarized in Fig. 1.

3 Experimental Results

3.1 Simulated Speckle

The first set of experiments utilize simulated speckle to
perform controlled evaluations of despeckling performance.
The speckle images are simulated according to Eq. 1, where
a noise-free reference image f(x) is multiplied with a unit-
mean Rayleigh-distributed random field n(x). Correlated
noise values are generated by low-pass filtering a complex
Gaussian field with a 3 × 3 averaging filter and taking the
magnitude [8]. Different noise levels are generated by using
various values for the standard deviation of the underlying
complex Gaussian field, given by σn. The speckle is applied
to a synthetic ice floe pattern.

The performance of proposed JEDI algorithm is com-
pared with the Frost filter [3], Γ-MAP [5], GenLik [8],
speckle-reducing anisotropic diffusion (SRAD) [6], and the
adaptive weighted median filter [7]. Of the popular LLSE
methods, we choose the Frost filter as a representative al-
gorithm since it has been shown that the Lee, Frost, and
Kuan filters have similar performance [11]. The window
size used for all methods is 3× 3. In the implementation of

JEDI, α = 30, β = 4, θ = 2, and h = median(σ(x)) are
used as those were found to be effective during testing.

To evaluate the performance of the despeckling algo-
rithms we use the PSNR measure as well as the univer-
sal image quality index proposed by Wang and Bovik [12].
The index is based on three factors: image correlation, lu-
minance distortion, and contrast distortion. Because JEDI
performs contrast manipulation, only the first two factors of
the quality index are used for meaningful evaluation. The
PSNR and image quality measures are plotted in in Fig. 3.
In Fig. 2, we show the filtering results for σn = 0.6.

The performance measures show that JEDI performs fa-
vorably in comparison to the popular despeckling methods,
outperforming the other methods in both PSNR and the uni-
versal image quality index at all but the highest noise level,
where it performed on par with the other methods. On aver-
age, JEDI provides a 2-15% improvement in PSNR and a 5-
14% improvement in image quality index measures. These
quantitative measures agree with the subjective visual re-
sults. One can observe that while both the Γ-MAP and
median filters do a good job of preserving edge detail, a
significant amount of speckle still remains. The Frost and
SRAD filtered output suffers noticeable degradation of edge
detail. GenLik offers good noise suppression while preserv-
ing edges. Finally, the speckle is the least pronounced in the
JEDI result, while the edge details are enhanced when com-
pared to the other methods.

3.2 SAR Images

The algorithms are applied to portions of two real SAR
images collected by RADARSAT-2, using the same param-
eters as the synethetic image tests. The results are given in
Fig. 4 and Fig. 5. For both images, a subjective visual com-
parison reveals similar characteristics. The Γ-MAP filter,
while providing good edge preservation, provides limited
noise suppression. The Frost and SRAD methods, while
providing good noise suppression, oversmooth the image,
resulting in a lack of detail. GenLik is able to provide lo-
cal detail enhancement as well as good noise suppression.
The median filter performs slightly worse than the Γ-MAP
filter in terms of noise removal. Finally, JEDI is able to pro-
vide the best speckle reduction, while also producing well-
defined structure details. JEDI’s ability to preserve and en-
hance structural details can also be seen in Fig. 6, which
shows the full image of which Fig. 5 is a portion.

4 Conclusion

In this paper, we presented JEDI, a novel method for
joint enhancement and despeckling of SAR images using
an adaptive stochastic estimation framework. JEDI uses an
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Figure 1. The JEDI algorithm. (a) The local variance of the target pixel is used to generate a pdf
from which (b) sample pixels are drawn. (c) The sample pixels are aggregated using an adaptive
weighting scheme with an enhancement term.

adaptive Monte Carlo sampling approach based on the lo-
cal statistics to generate a set of pixels that exhibit poten-
tial information redundancy. These pixels are then aggre-
gated using an adaptive similarity-based weighting scheme
to achieve speckle reduction as well as detail enhancement
at the same time. The experimental results demonstrate
the effectiveness of the proposed method in achieving high
levels of speckle suppression and detail enhancement com-
pared to current popular methods.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Despeckling of the synthetic ice im-
age. (a) Noise-free reference image. (b) Sim-
ulated speckle with σn = 0.6. The noisy image
is processed using (c) Frost filter, (d) Γ-MAP
(e) SRAD, (f) median filter, (g) GenLik, (h) and
JEDI.

Figure 3. PSNR and Image Quality Index per-
formance measures for the synthetic ice im-
age for varying noise levels.
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(g)

Figure 4. (a) First RADARSAT-2 test image.
The image is processed with (b) Frost filter,
(c) Γ-MAP, (d) SRAD, (e) median filter, (f) Gen-
Lik, and (g) JEDI.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. (a) Second RADARSAT-2 test image.
The image is processed with (b) Frost filter,
(c) Γ-MAP, (d) SRAD, (e) median filter, (f) Gen-
Lik, and (g) JEDI.
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(a)

(b)

Figure 6. (a) The full SAR image from Fig. 5
and (b) the image processed with JEDI, where
it is able to preserve much of the structural
details.
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