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Abstract

Melanoma is the deadliest form of skin cancer if left untreated. Incidence rates of
melanoma have been increasing, especially among young adults, but survival rates are high
if detected early. Unfortunately, the time and costs required for dermatologists to screen
all patients for melanoma are prohibitively expensive. There is a need for an automated
system to assess a patient’s risk of melanoma using photographs of their skin lesions.
Dermatologists could use the system to aid their diagnosis without the need for special or
expensive equipment.

One challenge in implementing such a system is locating the skin lesion in the digital
image. Most existing skin lesion segmentation algorithms are designed for images taken
using a special instrument called the dermatoscope. The presence of illumination variation
in digital images such as shadows complicates the task of finding the lesion. The goal of
this research is to develop a framework to automatically correct and segment the skin lesion
from an input photograph. The first part of the research is to model illumination variation
using a proposed multi-stage illumination modeling algorithm and then using that model
to correct the original photograph. Second, a set of representative texture distributions are
learned from the corrected photograph and a texture distinctiveness metric is calculated
for each distribution. Finally, a texture-based segmentation algorithm classifies regions in
the photograph as normal skin or lesion based on the occurrence of representative texture
distributions. The resulting segmentation can be used as an input to separate feature
extraction and melanoma classification algorithms.

The proposed segmentation framework is tested by comparing lesion segmentation re-
sults and melanoma classification results to results using other state-of-the-art algorithms.
The proposed framework has better segmentation accuracy compared to all other tested
algorithms. The segmentation results produced by the tested algorithms are used to train
an existing classification algorithm to identify lesions as melanoma or non-melanoma. Us-
ing the proposed framework produces the highest classification accuracy and is tied for the
highest sensitivity and specificity.
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Chapter 1

Introduction

Melanoma is a cancer of the melanocytes, the cell found in the skin’s epidermis that
produces melanin [1]. Melanoma most commonly occurs on the trunk or lower extremities
[1]. While malignant melanoma is less common than non-melanoma skin cancer [2], it is
considered the most deadly form of skin cancer [1]. This is because melanoma accounts for
approximately 75% of deaths associated with skin cancer [3]. In 2013, it is estimated that
76,690 people will be diagnosed with melanoma and 9,480 people will die of melanoma in
the United States [4]. In Canada, 1 in 74 men and 1 in 90 women will develop melanoma
in their lifetime [1].

The recent trends in melanoma incidence rates are more alarming. A study of the
melanoma trends from 1992-2006 found that incidence rates for non-Hispanic white males
and females were increasing at an annual rate of approximately 3% [5]. For young adults
ages 15-30, melanoma is one of the most commonly diagnosed forms of cancer [6]. If
melanoma is detected early, while it is classified at Stage I (less than 0.76mm thick), the
5-year survival rate is 96% [7]. However, the 5-year survival rate decreases to 5% if the
melanoma is in Stage IV [7]. The cost of treatment of Stage IV melanoma is also 30 times
the cost of treatment for Stage I melanoma [8]. With the rising incidence rates in certain
subsets of the general population, early melanoma screening is beneficial.

1.1 Melanoma Screening

Skin lesions are typically visually screened for melanoma. Visual algorithms that doctors
use as a guide to assess skin lesions include the ABCD [10] scale, the ABCDE scale [11] or
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(a) (b)

Figure 1.1: Examples of digital images of malignant melanoma acquired using a digital
camera, from the Dermquest database [9]. In both images, the illumination variation
changes horizontally.

the Glasgow 7-point checklist [12]. For example, the ABCD scale is an acronym for asym-
metry, border irregularity, colour variegation, and diameter [10], and has been proposed
to be expanded to include evolving [11]. Using this scale, the lesion is examined to see
if it is asymmetrical, has an irregularly-shaped border, consists of multiple colours, and
has a diameter greater than 6 mm. The skin lesion is also observed at multiple instances
in time to see if it has changed, or evolved. After analyzing each feature, a total score
is calculated to assess the risk that the lesion is malignant melanoma. Two examples of
malignant melanoma are shown in Fig. 1.1. Fig. 1.1a has an irregular border and Fig. 1.1b
has high colour variegation. Other visual scales consist of similar features.

Expert dermatologists may have access to a tool known as the dermatoscope to aid
with diagnosis. A dermatoscope is a handheld device that optically magnifies, illuminates
and enhances skin lesions, allowing the dermatologist to better view the lesion features.
Use of the dermatoscope has been found to improve diagnosis, compared to the naked
eye [13]. With a dermatoscope and following the ABCD scale, diagnosis of skin lesions
as malignant melanoma has a reported sensitivity of 76.0-87.7% and specificity of 61.0-
77.8% [14]. However, only 48% of dermatologists in the United States reported using a
dermatoscope [15]. The main reasons against using the dermatoscope include a lack of
training or interest [15].
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1.2 Visual melanoma screening limitations

There are some limitations with relying on visual screening for melanoma. Analysis of
inter-observer agreement by Argenziano et al. found that experienced dermatologists diag-
nosing melanoma using a dermatoscope had moderate agreement [14]. When inter-observer
agreement of dermatologists on the assessment of individual ABCD features were analyzed,
it was found that they only had fair agreement [14]. In terms of cost-effectiveness, despite
increasing incidence rates, screening the general population for melanoma is not feasible.
Losina et al. looked at the cost-effectiveness of one-time, annual and biennial screening of
the general population with melanoma, compared to the treatment costs of early and late
stage melanoma. They found that it is cost-effective to perform visual screenings of high-
risk patients, such as a one-time screening of the general population over 50 and bi-annual
screenings of siblings of patients with melanoma [16]. However, screenings of the general
population are not cost-effective.

The limitations with visual melanoma screening can be overcome through the use of
computer-aided diagnosis of melanoma. These computer algorithms take an image of the
skin lesion as an input and extract a set of useful features. The features are used to
identify the skin lesion as malignant melanoma. Initial feasibility studies of computer-
aided diagnosis of melanoma concluded that such a system could be a low-cost diagnostic
tool [17]. A study by Burroni et al. found that even using a simple computer vision analysis
algorithm produced reliable diagnostic results [18].

Computer-aided melanoma diagnosis algorithms allow the general population to be
screened for melanoma, especially in developing countries where it would not be possible
otherwise. This new emerging field is called teledermatology [19]. Teledermatology involves
the patient acquiring an image of the skin lesion using a cellular phone or personal digital
assistants. The images are sent to a database where they are analyzed and diagnosed
and the results are sent back to the patient. Initial teledermatology systems used remote
teleconsultants to analyze the images of various skin diseases in order to assess feasibil-
ity of using such systems [20]. Recent research involves developing automated computer
algorithms to analyze the image of the skin lesion and assess the risk of melanoma.

1.3 Automated melanoma screening systems

Early work on automated systems to assess the risk of melanoma used images acquired
via a digital dermatoscope [21, 22, 23, 24]. These types of images are called dermoscopy
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Figure 1.2: Algorithm flow chart for automated skin lesion diagnosis

images. Because a dermatoscope is used as a filter when acquiring an image of the lesion,
the images have relatively low levels of noise and consistent background illumination and a
pre-processing step is optional. Pre-processing for dermoscopy images includes enhancing
image colours to allow the algorithm to more easily segment, or identify, the lesion from
the background. However, the requirement of a dermatoscope does not allow these systems
to be easily implemented as less than half of practicing dermatologists use dermatoscopes
[15]. Furthermore, these automated systems require the purchase of a dermatoscope that
can be attached to a mobile device to be used for teledermatology [19].

Recent automated melanoma screening algorithms allow images taken by a standard
digital camera, such as those in Fig. 1.1, to be used [25, 26]. Since most of the population
has access to a digital camera, these algorithms can be used by most dermatologists and the
general population. A typical algorithm pipeline, as illustrated in Fig. 1.2, is to segment
the lesion area, extract features from the lesion and classify the lesion in terms of the risk
of melanoma.

Using a standard digital camera to acquire the image introduces some challenges. One
problem is that illumination variation from skin surface reflectance can affect the algorithm.
For example, healthy skin areas that are covered by shadows appear similar in colour as
the lesion and as a result, might be identified as part of the lesion. This can be seen in
Fig. 1.1, where both images illustrate horizontal illumination variation.

Another challenge is in the segmentation step, which is the step where the border of the
lesion is identified. While images acquired using the dermatoscope have been magnified and
enhanced to better identify the lesion, standard digital images taken by a digital camera
do not have those advantages. Illumination variation, textural patterns of skin, and noise
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can make separating normal skin and lesion difficult in digital images.

Based on these two challenges, there is a need for a robust segmentation algorithm
that is designed specifically for images of lesions taken with a standard digital camera.
This algorithm should incorporate correcting for illumination variation as a pre-processing
step. This thesis proposes a novel skin lesion segmentation algorithm to solve these two
challenges.

1.4 Thesis outline and contributions

The purpose of this thesis is to propose a novel skin lesion segmentation algorithm, which
is part of an automated melanoma screening system. In this thesis, there are three main
contributions:

1. A multi-stage illumination modeling algorithm to correct for illumination variation
in a digital image of a skin lesion is designed, implemented and tested in Chapter 3,

2. An unsupervised texture learning algorithm which learns unique skin and lesion tex-
ture distributions from the digital image is presented in Chapter 4, and

3. A textural segmentation algorithm using the learned texture models to identify the
lesion area is formulated and tested in Chapter 5.

The multi-stage illumination modeling algorithm uses two stages to better correct skin
lesion images. The first stage is a non-parametric Monte Carlo estimate, which is followed
by the fitting of a quadratic surface model. An unsupervised texture learning algorithm
is proposed to learn representative texture distributions using a probabilistic framework
and measuring the distinctiveness of each texture distribution. Finally, a novel textural
segmentation algorithm specific to skin lesion image is proposed that uses the learned tex-
ture models to classify regions as normal skin or lesion. In addition, a review of relevant
existing illumination correction and segmentation algorithms related to skin lesions is pre-
sented in Chapter 2. In Chapter 6, conclusions and future avenues to continue improving
the proposed algorithm are presented.
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Chapter 2

Background

In this chapter, existing literature relevant to solving the contributions identified in Sec. 1.4
are reviewed. These are divided into two parts. Illumination correction algorithms are
discussed in Sec. 2.1 and skin lesion image segmentation algorithms are discussed in Sec. 2.2.

2.1 Existing illumination correction algorithms

Illumination correction algorithms adjust pixel intensities in an image based on an esti-
mated illumination map. The goal of these algorithms is to remove any external illumi-
nation, so that the resulting image is independent of any illumination effects. Some of
these effects that should be removed include shadows and bright areas caused by illumina-
tion variation. The motivation of this preprocessing step is to improve the performance of
subsequent steps, including lesion segmentation and classification.

In Sec. 2.1.1, general illumination correction algorithms, which can be applied to any
type of image, are discussed. In Sec. 2.1.2, correction algorithms that are designed specif-
ically for skin lesion images are discussed.

2.1.1 General illumination correction algorithms

Existing general illumination correction algorithms focus on correcting for illumination
variation in standard digital images. These algorithms are general and can be applied
to any image. The bright and dark pixels caused by illumination can be minimized by
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adjusting the contrast of an image, using algorithms such as histogram equalization [27].
However, contrast adjustment is typically performed on a global scale, without taking into
account local illumination variation. For example, histogram equalization adjusts the gray
level distribution of pixels in an image without taking into account spatial location of the
pixels.

The illumination-reflectance model assumes that the measured intensity of each pixel in
an image is written as a multiplicative relationship between the underlying illumination and
object reflectance [28, 29]. In general, illumination varies smoothly and does not change
in intensity suddenly. Therefore, when assuming this model, algorithms first estimate the
low-frequency illumination component and then find the reflectance component.

The first step, illumination estimation, has been widely researched. One of the earli-
est algorithms that use this model is called the Retinex algorithm [28]. It applies a set
of Gaussian filters to the image to estimate the illumination component[28, 30]. Other
algorithms estimate illumination using morphological operators [31], bilateral filters [32],
Monte Carlo sampling [33] or total variation [34].

2.1.2 Illumination correction algorithms for digital images of skin
lesions

Unfortunately, existing general illumination correction algorithms have shortcomings when
applied to digital images of skin lesions. This is caused by the dark appearance of skin
lesions, which is mistaken for areas covered by shadows. General algorithms will over-
brighten those areas [35]. In addition, most recent correction algorithms proposed specifi-
cally for skin lesion images can only be applied to dermoscopy images, which already have
some filtering due to the dermatoscope. Rather than correcting illumination variation, the
goals of these algorithms include colour calibration [36] and normalization [37] for improved
lesion classification or contrast enhancement [38, 39] for improved lesion segmentation.

Recent work by Cavalcanti et al. [25, 35] proposes a correction algorithm specific for skin
lesion images. The algorithm fits pixel intensities from the four corners of the photograph to
a parametric surface. The disadvantage with this algorithm is that only a very small subset
of pixels are used to fit the parametric surface. This results in the estimated illumination
map being over- or underestimated.
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2.2 Existing segmentation algorithms

The purpose of image segmentation algorithms is to find and outline distinct objects of
importance in an image. For example, for images of skin lesions, the border of the skin
lesion should be identified. Segmentation in general is a very well-researched area and many
different algorithms have been proposed. Two types of segmentation algorithms relevant
to this thesis are discussed in this section. First, texture segmentation algorithms can be
applied to any image to find areas of importance based on their textural characteristics.
Second, lesion segmentation algorithms have been designed specifically to be applied to
images of skin lesions.

2.2.1 Texture-based segmentation algorithms

Textures include smoothness, roughness, or the presence of ridges, bumps or other defor-
mations and are visible by variation in pixel intensities in an area [40]. Texture analysis
extracts features and measurements of a texture, allowing textures from different regions
to be compared. Texture analysis is useful for image segmentation because different parts
of the same object will usually match in texture.

Types of texture segmentation algorithms include statistical, structural, and model-
based [41]. An in-depth review of the popular texture segmentation algorithms in general
has been compiled by Zhang and Tan [41]. Statistical texture segmentation algorithms
describe a texture in a region as a set of statistics. Algorithms include using first level
statistics, gray-level co-occurrence matrix or Haralick statistics. Model-based algorithms
use probability models, such as the autoregressive model or Markov random field model,
to characterize textures. Structural algorithms deconstruct and characterize the texture
as a number of texture elements.

2.2.2 Lesion segmentation algorithms

Many algorithms have been proposed to automatically segment skin lesion images. How-
ever, like state-of-art illumination correction algorithms described in Sec. 2.1.2, the major-
ity of proposed segmentation algorithms are only applicable to dermascopy images, where
there is better contrast between certain types of lesions and surrounding skin area [42]. A
recent summary of the popular existing segmentation algorithms for dermascopy images
is compiled by Celebi et al. [42]. Algorithms compared in the summary [42] include using

8



simple thresholding, active contours [43], and region merging [44]. The majority of algo-
rithms in [42] only use features derived from pixel colour to drive the segmentation. This
includes the blue channel from the RGB colour space, the luminance channel from the CIE
1976 L*u*v* (CIELUV) or CIE 1976 L*a*b* (CIELAB) colour spaces, or an orthogonal
transform applied to the colour channels. However, it is difficult to accurately segment
lesions with fuzzy edges when relying solely on colour features. These algorithms are also
have not been designed to work for digital images of skin lesions.

Some texture-based segmentation algorithms described in Sec. 2.2.1 have been applied
to dermascopy images. Stoecker et al. [45] analyzed texture in skin images using basic
statistical approaches, such as the gray-level co-occurrence matrix. They found that texture
analysis could accurately find regions with a smooth texture and that texture analysis is
applicable to segmentation and classification of dermoscopy images. Proposed textural
lesion segmentation algorithms include using gray-level co-occurrence matrix [40, 46], first-
order region statistics [47], and Markov random field models [48]. Xu et al. [49] learns a
model of the normal skin texture using pixels in the four corners of the image, which is
later used to find the lesion.

Segmenting skin lesion images is more difficult because of the presence of shadows and
bright areas caused by illumination variation. Hance et al. [50] explored a few different
algorithms, including thresholding, active contours and split-and-merge, and modified them
to be specific to lesion images. For example, the thresholding algorithm has to be modified
to account for bright areas where there is reflection of the camera’s flash. Four separate
algorithms by Cavalcanti et al. include a preprocessing step which corrects for illumination
variation before applying a thresholding [25, 35, 51] or level-set segmentation algorithm
[52]. Thresholding is performed on single colour channels [51], multiple colour channels
[35] and a set of channels derived using principal component analysis and other processing
steps [25]. Including the pre-processing step allowed the lesion segmentation algorithms
proposed by Cavalcanti et al. to perform well. Therefore, the algorithm proposed in this
thesis adopts the approach of applying a pre-processing step followed by the segmentation
algorithm.
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Chapter 3

Illumination Correction of Skin
Lesion Images

In this chapter, the illumination correction algorithm which functions as a pre-processing
step is outlined. A multi-stage illumination modeling (MSIM) algorithm is proposed to
normalize illumination variation in an image of a skin lesion [53, 54, 55]. The proposed
algorithm introduces multiple stages to correct illumination variation allowing it to be
robust towards complicated illumination patterns and image artifacts, such as hair. A
flow chart showing the stages of the MSIM algorithm is shown in Fig. 3.1. The proposed
algorithm is applied to digital images of skin lesion, that is images of lesions that have
been taken with a digital camera.

Figure 3.1: Algorithm flow chart highlighting steps in the MSIM algorithm
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3.1 Problem formulation

In this section, the underlying illumination model for digital images of a skin lesion is
first derived. The following assumptions are made about the digital images in order to
derive the model. The image is assumed to be taken in a controlled environment, such
as a doctor’s office, with a standard digital camera. The region being photographed is
assumed to be illuminated with a single source of white light. Finally, the skin lesion of
interest is assumed to be in the centre of the image. Based on these assumptions, only
the V (value) channel from the HSV (hue-saturation-value) colour space [56] is modified in
the preprocessing step. The hue and saturation channels are not affected by illumination
variation because those channels are responsible for color in an image and it is assumed that
the light source is white light. These are similar assumptions as those made by Cavalcanti
et al. [35].

To correct illumination variation in an image, the multiplicative illumination-reflectance
model is commonly assumed [28]. Using this model, the measured V channel pixel intensity
is the entrywise multiplication of the illumination component and reflectance component.
This is shown in Eqn. 3.1, where s is a pixel location (x, y), v(s) is the V channel pixel
intensity at s, i(s) is the illumination component and r(s) is the reflectance component. The
goal of the illumination correction algorithm is to first estimate the underlying illumination
component and then calculate the reflectance component.

v(s) = i(s) · r(s) (3.1)

The logarithm transform of both sides in Eqn. 3.2 is taken so that the multiplicative
model becomes additive (3.2). For brevity, vlog, ilog, and rlog are still associated with a
pixel of interest located at s.

log(v(s)) = log(i(s)) + log(r(s))

vlog = ilog + rlog (3.2)

Estimating ilog can be seen as an inverse problem. It is formulated as Bayesian least
squares, where P (ilog|vlog) is the posterior (Eqn. 3.3) [57].
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îlog = arg min
ilog

{E((ilog − îlog)2)|vlog}

= arg min
ilog

( ∫
(ilog − îlog)2 P (ilog|vlog)dilog

)
(3.3)

To minimize the estimate of ilog, take the derivative of the arg min argument from
Eqn. 3.3,

∂

∂ ˆilog

∫
(ilog − îlog)2 P (ilog|vlog)dilog

=

∫
2(ilog − îlog)P (ilog|vlog)dilog, (3.4)

Set to zero, ∫
ilog P (ilog|vlog)dilog =

∫
îlog P (ilog|vlog)dilog (3.5)

and simplify the right hand side,

∫
îlog P (ilog|vlog)dilog = îlog

∫
P (ilog|vlog)dilog

= îlog, (3.6)

leading to,

îlog =

∫
ilog P (ilog|vlog)dilog

îlog = E(ilog|vlog). (3.7)

From Eqn. 3.7, the optimal estimate of the illumination component of an image is the
conditional mean of ilog given vlog. Since estimating a conditional mean is complex and
intensive, a Monte Carlo posterior estimation algorithm is used to estimate P (ilog|vlog).
Furthermore, Monte Carlo sampling is a non-parametric approach and a parametric model
for the posterior distribution P (ilog|vlog) is not assumed.
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3.2 Initial non-parametric illumination modeling

In this section, the approach taken for the importance-weighted Monte Carlo sampling
[58] for illumination estimation is outlined. At the end of this stage, a grayscale map is
generated, where each pixel in the map gives the initial estimate of illumination at that
location. Consistent with the previous section, let s be a pixel location in the digital
image. The goal of this implementation of Monte Carlo sampling is to determine a set of
representative samples Ω and their associated importance weights from the pixels sk for a
search space surrounding the pixel of interest s0.

A subset of pixels sk in the search space is selected randomly using a uniform instru-
mental distribution Q(sk|s0) . A uniform distribution is used to let all pixels in the search
space have an equal probability of being selected. An acceptance probability α(sk|s0) is cal-
culated for each selected pixel by comparing the neighbourhoods around the selected pixel
sk and pixel of interest s0, respectively. The local neighbourhoods around sk and s0 are
represented by the vectors hk and h0 respectively . The acceptance probability determines
if sk is a realization of P (ilog|vlog). A Gaussian error statistic is used in this implementa-
tion, as shown in Eqn. 3.8 where hk[j] and h0[j] are the jth sites in the neighbourhoods
around sk and s0, respectively.

α(sk|s0) =
∏
j

1
2πσ

exp
[
− (hk[j]−h0[j])2

2σ2

]
λ

(3.8)

A normalization term λ is included in the denominator, such that α(sk|s0) is 1 if the
neighbourhoods around sk and s0 are identical. The acceptance probability is the product
of the probabilities from each site j because all elements in the neighbourhoods are assumed
to be independent. The parameter σ is based on local variance of the differences of the
Value channel intensities and controls the shape and extent of the Gaussian function. The
value of α(sk|s0) gives the probability that the pixel sk is accepted into the set Ω and is
used to estimate the posterior distribution P (ilog|vlog). Furthermore, α(sk|s0) is also the
associated importance weight for the accepted pixel. A random value u is drawn from a
uniform distribution U(0, 1) to determine whether to accept pixel sk. If u ≤ α(sk|s0), then
sk is accepted into Ω. Otherwise, sk is discarded.

The selection and acceptance process is repeated until the desired number of samples
has been selected from the search space. Then, the posterior distribution is calculated as
a weighted histogram. An example of the posterior distribution as a weighted histogram
is shown in Fig. 3.3, where each element of the stacked bar chart corresponds to a pixel
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Methodology to calculate illumination map: (a) original digital image of a
skin lesion with illumination variation; (b) segmentation map; (c) regions included in the
subset of skin pixels, where pixels black in colour are not classified as normal skin; (d) initial
illumination map estimated via non-parametric modeling using Monte Carlo sampling; (e)
final illumination map determined by using (d) as a prior to the parametric surface model;
(f) image corrected for illumination variation using the MSIM algorithm.
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Figure 3.3: Sample posterior distribution p̂ (ilog|vlog), built from pixels accepted in the set
Ω. Each stacked element corresponds to a pixel sk in Ω, where the height is α(sk|s0) and
bin location is sk. The histogram is normalized so that

∑
k p̂ (ilogk |vlogk) = 1.

sk from the set Ω. The height of the element is equal to the importance weight α(sk|s0)
and each element is added to the histogram bin that corresponds to the value of the pixel
intensity sk. In the example histogram in Fig. 3.3, the set Ω contains eight pixels (s1 to
s8) and the range of the pixel intensities depends on the dynamic range of the input image.
The histogram is normalized, so that

∑
k p̂ (ilogk |vlogk) = 1. Using the estimated posterior

distribution, the conditional mean from Eqn. 3.7 can be calculated to find the estimate of
the illumination component in log-space at pixel s0. The initial illumination estimate î is
found by taking the exponential of îlog. During testing, a 21 × 21 search space and 7 × 7
neighbourhood was used.

3.2.1 Final parametric modeling of illumination

The initial non-parametric modeling stage results in an illumination map î where the lesion
appears as shading. This is because the lesion is darker than its surroundings, which leads
to an inaccurate estimate of illumination within the lesion area. If the initial illumination
map is used to correct for illumination variation, the lesion would be greatly brightened
and the contrast between the lesion and surrounding skin would be reduced. Instead,
parametric modeling of illumination via a quadratic surface model is performed using the
initial non-parametric illumination estimate as a prior to obtain the final illumination
map. This parametric model uses assumptions made about the lighting conditions to learn
a surface model based on the initial illumination estimates corresponding to the healthy
skin pixels and find the correct illumination map for the lesion area.
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Only normal skin pixels are used to learn the parametric illumination model. Therefore,
the first step is to obtain a rough estimate of the normal skin pixels and lesion pixels. A
segmentation algorithm is applied to the original digital image, which divides the image
into a large number of regions. The segmentation algorithm used in the implementation is
Statistical Region Merging and is described in Section 3.3.2. Because the lesion is assumed
to be located in the center of the image , any regions that touch the border are classified as
normal skin. This heuristic provides an estimate of which pixels are skin. Fig. 3.2b shows
an example of the segmentation results. Fig. 3.2c shows the areas classified as skin using
the heuristic. As seen in Fig. 3.2c, the segmentation algorithm does not accurately identify
all the normal skin regions. However, it is not necessary to have a perfect segmentation
algorithm because these pixels are only used to fit the surface model.

The second step is to learn a quadratic surface model, expressed in Eqn. 3.9, which is
fit based on the initial non-parametric estimates corresponding to healthy skin pixels [35].
A surface model is used because the final illumination is assumed to be smooth. Fitting
a smooth surface model enforces that assumption. Another assumption is that the region
is illuminated by an overhead white light source when being photographed. This means
that the illumination variation is caused by the curvature of the skin surface in the image.
For example, illumination variation in an image of a lesion on the arm is caused by the
curvature of the arm. Therefore, we expect a quadratic surface to best fit the illumination
variation without being too complex because a quadratic surface can approximate most
skin surfaces.

i′(x, y) = P1x
2 + P2xy + P3y

2 + P4x+ P5y + P6 (3.9)

Using this model, the parameters of the final illumination map can be estimated using
a maximum likelihood estimation based on the initial estimate î and the set of skin pixels
S . Outliers may exist in the illumination map because of noise or the reflection of light
directly into the camera. To minimize their effects, a robust fitting algorithm using the
Tukey biweight is implemented, shown in Eqn. 3.10 where c is the tuning constant [59].

î′ = arg min
î′

∑
s∈S

ρ(̂i(s)− î′(s)) (3.10)

where ρ(z) =


c2

6
(1− [1− (z/c)2]3), for |z| ≤ c

c2

6
, for |z| > c
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The value for c was set to 4.6851, which is the standard Tukey biweight tuning constant
[59]. Fig. 3.2d shows the pixel intensities from the initial illumination map that are used
to fit the surface and and Fig. 3.2e shows the resulting surface after being fit.

3.2.2 Reflectance map estimation

The illumination-reflectance model assumes that the V channel is the entrywise multi-
plication of the illumination and reflectance components. Therefore, the reflectance map
can be estimated by dividing the original V channel pixel intensity v(s) by the final esti-
mated illumination map î′(s). The reflectance channel is combined with the original hue
and saturation channels to correct the digital image for illumination variation. Fig. 3.2f
shows an example of a corrected image. In Fig. 3.2f, the illumination variation seen in the
uncorrected image (Fig. 3.2a) has been corrected.

3.3 Implementation

In this section, the implementation details of the MSIM algorithm are described, including
additional steps added for optimization and the algorithm used to estimate normal skin
regions.

3.3.1 Optimization

The Monte Carlo algorithm is computationally complex and intensive, so additional steps
are included to increase the computation speed of the MSIM algorithm. The MSIM algo-
rithm is implemented in MATLAB and run on a computer with an Intel Core i5-2400S CPU
(2.5 GHz, 6 GB RAM). Without any optimization, the MSIM algorithm takes on average
118.61s to correct illumination variation of a 1640 × 1043 image. After the modifications
outlined in this section, it takes, on average, 59.57s to correct the same image. Because
the illumination is assumed to be fairly smooth, the increase in computation speed does
not result in a loss of accuracy.

Two steps are added prior to the first stage of illumination estimation. First, the digital
image is downscaled by a factor of two in both the horizontal and vertical directions, and
the Monte Carlo illumination estimation is applied to the smaller image. Since the image is
acquired in a controlled environment with overhead lighting, the illumination is assumed to

17



be low frequency. This means that the loss of details due to downscaling does not impact the
final illumination estimation. The initial nonparametric illumination estimation is rescaled
to the original image’s size before obtaining the parametric illumination estimation.

The second optimization step is to estimate the pixels that belong to healthy skin and
only apply the Monte Carlo sampling algorithm to those pixels. In the final parametric
illumination map, only the initial illumination estimates associated with healthy skin pixels
are considered in the robust fitting algorithm. Therefore, there is no need to calculate the
initial estimate for lesion pixels. The method to find the healthy skin pixels is described in
the next section. A morphological closing operator with a small disc structuring element
is applied to the skin pixel map to remove the majority of gaps and holes.

3.3.2 Statistical region merging

To find an estimate of regions classified as normal skin, a segmentation algorithm is ap-
plied to the original colour digital image. The segmentation algorithm implemented is
the statistical region merging (SRM), which tends to over-segment an image [60]. SRM
groups nearby pixels that are similar in colour together into segments. Any segments that
touch the border are classified as normal skin and are added to the set S of normal skin
pixels. Since the lesion is assumed to be found in the centre of the image, only segments
corresponding to normal skin are found near the borders of the image.

SRM uses two important steps to segment a colour image. First, the image is set up as
a 4-connected graph. This motivates the sorting step, where pairs of pixels are organized
based on the maximum difference in the RGB values. Pixels that are closer in colour are
merged first. As pixels are merged, they are treated as regions. Second, a merging predicate
is introduced, which will merge two regions based on similarity between the average RGB
intensities of the two regions of interest. The SRM algorithm contains a single tunable
parameter, Q, which was set to 256 based on testing.

3.4 Summary of the MSIM algorithm

1. Apply Statistical Region Merging to the original RGB digital image (Section 3.3.2)
to classify normal skin pixels.

2. Downscale V channel of the original HSV image by factor 2 (Section 3.3.1).
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3. Iterating through each pixel of interest s0 that is part of the set of normal skin pixels
S in the downscaled image, randomly draw a sample sk from a search space around
s0 using a uniform instrumental distribution.

4. Compute acceptance probability α(sk|s0) using Eqn. 3.8.

5. Generate a random value u from a uniform distribution U(0, 1). If u ≤ α(mk|m0),
include sk in the set of accepted samples Ω with an importance weight equal to
α(sk|s0). Otherwise, sk is discarded.

6. Repeat steps 3-5 until the desired number of samples N are selected from the search
space.

7. Estimate the posterior distribution p̂ (ilog|vlog) based on the samples in Ω and their
importance weights.

8. Compute the initial illumination map estimate in log-space îlog for pixel s0 as the
conditional mean in Eqn. 3.6. Rescale the initial illumination map to the dimensions
of the original image.

9. Using the initial illumination map corresponding to healthy skin pixels, calculate
the parametric surface using a robust fitting algorithm to obtain the final estimated
illumination map.

10. Estimate the reflectance map (Sec. 3.2.2) and replace the original V channel with the
reflectance map to obtain the corrected image.

3.5 Illumination correction results

In this section, the experimental setup to compare the MSIM algorithm to other illu-
mination correction algorithms is described. The algorithms are compared visually and
quantitatively using the coefficient of variation, segmentation accuracy and classification
accuracy.

3.5.1 Experimental setup and results

Three state-of-art illumination correction algorithms are used for comparison. The algo-
rithms are the Frankle-McCann Retinex algorithm (as implemented by Funt et al. [61]),

19



morphological illumination estimation [31], and the Cavalcanti et al. algorithm [35]. The
Cavalcanti et al. algorithm is the only compared algorithm that is designed specifically for
digital images of skin lesions. It uses the V channel values from pixels in 20× 20 patches
in the four corners of the image to fit a parametric surface.

To allow for a fair comparison, the corrected images are normalized by adjusting the
average V channel values of the healthy skin class to be equal. This normalization process
is done by computing the average V channel intensity for healthy skin pixels in the uncor-
rected image and corrected image. Then, all pixels in the corrected image are multiplied by
the ratio of the average healthy skin V channel intensity in the uncorrected and corrected
image. Normalization allows a fair comparison as the images are adjusted to have a similar
dynamic range of skin pixel intensities. A manual ground truth segmentation is used to
obtain the true classification of the pixels.

A set of 190 digital images from the Dermatology Information System (DermIS) database
[62] and the DermQuest database [9] are used for testing. Sixty-four images tested are from
the DermIS database and 126 are from the DermQuest database. 108 images tested had
melanomas, while 82 images had other types of skin lesions. Some examples of the images
tested are shown in the first column in Fig. 3.4. The DermQuest images are also used
to test the impact of the illumination correction algorithm on classification of melanoma
and non-melanoma. The entire set of DermQuest images used to test the illumination
correction and segmentation algorithms is provided in Appendices A and B.

3.5.2 Visual comparison results

Images in Fig. 3.4 show the uncorrected and corrected images after applying each algo-
rithm. The Retinex and morphological algorithms can noticeably alter the lesion colour.
For example, in Fig. 3.4a, 3.4b, 3.4d and 3.4f, areas of the lesion are visibly brighter in
the morphological corrected image than in the original image. This is because the Retinex
and morphological algorithms do not include a parametric modeling step. The lesion is
mistaken as a shadow and the illumination correction algorithm brightens that area. This
reduces the contrast between normal skin and lesion, which can affect the results of the
segmentation step. Furthermore, the colour of the lesion is affected, which can diminish
the ability to classify the images as benign melanoma. In Fig. 3.4c, 3.4g, and 3.4i, the
Retinex algorithm is unable to correct illumination variation on the left side of the image.

In cases where there is complex skin texture, such as Fig. 3.4d and 3.4h, the Cavalcanti
et al. algorithm has difficulties removing the illumination variation, while it is removed by
the MSIM algorithm. In Fig. 3.4d, the top left corner is not corrected by the Cavalcanti
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Original Retinex Morphological Cavalcanti et al. MSIM

Figure 3.5: Example of the limitations of the tested illumination correction algorithms.
None of the tested illumination correction algorithms are able to model and correct the
light reflected off of the center of skin lesion which oversaturates the image in that area.
Note that the proposed MSIM algorithm is able to correct some of the illumination variation
excluding the aforementioned oversaturated region.

et al. algorithm but is corrected by the MSIM algorithm. Similarly, this occurs in the left
side of Fig. 3.4h. This is because the MSIM algorithm uses a greater number of pixels
to fit the parametric model, compared to Cavalcanti et al. Using more pixels results in a
more accurate illumination model.

Fig. 3.5 shows a digital image with complicated, highly oversaturated illumination
variation that is not corrected satisfactorily by all of the tested methods. This is caused
by the reflection of light off the center of the lesion, which saturates the image in that
area and makes it challenging for all tested methods to model illumination in that region.
The proposed MSIM algorithm is able to correct some of the illumination variation in the
image, excluding the oversaturated region.

3.5.3 Coefficient of variation results

Coefficient of variation is used to measure the variance of background pixel intensities before
and after correcting for illumination variance. The set of background pixels is assumed
to be all healthy skin pixels. This metric has been used to quantify the performance of
other illumination correction algorithms [63]. It compares the mean skin pixel intensity
to the variance of the skin pixel intensities and is given in Eqn. 3.12 [63]. Coefficient of
variation is useful to compare a image before and after correcting for illumination. A lower
coefficient of variation after correction is desirable, as the only variation in pixel intensities
should be from texture characteristics. The pixel intensities of healthy skin in the images
were normalized so that the dominant cause of a change in coefficient of variation is due
to a change in variance.
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Table 3.1: Coefficient of Variation [63] of Normal Skin Pixels for Uncorrected and Corrected
Lesion Images

Type Uncorrected Retinex Morphological Cavalcanti et al. MSIM
Average

0.1473 0.0900 0.0888 0.1032 0.0851
cv

Average
0.1474 0.0902 0.0842 0.1016 0.0849

melanoma cv
Average

0.1472 0.0896 0.0951 0.1053 0.0853
non-melanoma cv

cv =
σ

µ
(3.12)

Table 3.1 shows the average coefficient of variation using the entire dataset and after
partitioning the dataset into ‘Melanoma’ and ‘Non-melanoma’ categories. Using the entire
dataset or only the ‘Non-melanoma’ images, the average coefficient of variation for images
corrected using the MSIM algorithm is the lowest. Looking at the ‘Melanoma’ images, the
morphological algorithm produces images with the lowest average coefficient of variation,
but the MSIM algorithm has a close average coefficient of variation.

3.5.4 Segmentation results

The uncorrected and corrected images were compared based on the ability to segment
lesion and normal skin pixels. While a segmentation algorithm for skin lesion images is
proposed and tested in this thesis, we were interested in analyzing the affects of illumination
correction using an existing segmentation algorithm. A segmentation algorithm described
by Cavalcanti et al. was used [35]. Separate thresholds are found for the R, G, and B
colour channels to separate normal skin and lesion pixel intensities. If a pixel’s intensity
is below those thresholds in at least two channels, then that pixel is classified as lesion.
Finding the optimal thresholds for each image greatly depends on the dynamic range and
contrast of the images. While Cavalcanti et al. [35] proposes finding Otsu’s threshold [64]
for each channel, we perform a more comprehensive test by using a subset of all possible
values for the thresholds and plotting the receiver operator characteristic (ROC) curves.

ROC curves plot the true positive rate (TPR) versus false positive rate (FPR) found
using different thresholds [65]. The TPR is the number of true positives divided by the
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Table 3.2: Area Under ROC Curves (AUC) for Uncorrected and Corrected Skin Lesion
Images

Type Uncorrected Retinex Morphological Cavalcanti et al. MSIM
Average

0.9225 0.9435 0.9114 0.9788 0.9830
AUC

Average
0.9368 0.9581 0.9278 0.9850 0.9871melanoma

AUC
Average

0.9058 0.9239 0.8934 0.9655 0.9750non-melanoma
AUC

number of true and false positives and the FPR is the number of false positives divided
by the sum of false positives and true negatives. An ideal ROC curve passes through the
point where TPR = 1 and FPR = 0, meaning that there is perfect segmentation for some
threshold value. Otherwise, curves that are closer to the top left of the graph correspond
to a more accurate segmentation. The ROC curves are shown in Fig. 3.6.

The area under the curve (AUC) is calculated as a metric for the ROC curve [66]. A
higher AUC corresponds to more accurate segmentation results. The AUCs for the full
dataset and ‘Melanoma’ and ‘Non-Melanoma’ subsets are shown in Table 3.2.

From Fig. 3.6 and Table 3.2, the MSIM algorithm performs the best for image segmenta-
tion, followed by the Cavalcanti et al. algorithm. This is because the MSIM algorithm uses
a larger set of normal skin pixels to fit the parametric surface compared to the Cavalcanti
et al. algorithm. The other two algorithms do not fit any surface for illumination correc-
tion. Therefore, the lesion in the images is more difficult to separate using segmentation
algorithms.

3.5.5 Classification results

Using images corrected by each illumination correction algorithm, a separate classifier was
trained to segment the image, extract features based on the ABCD scale of dermatoscopy
[10], and assess the lesion for risk of melanoma. The algorithm and features used are
implemented by Cavalcanti et al. [25]. Of the set of 52 features, 11 characterize asymmetry,
12 characterize border irregularity, 25 characterize colour and 4 characterize differential
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(a) All

(b) Melanoma (c) Non-melanoma

Figure 3.6: Receiver operator characteristic (ROC) curves corresponding to segmentation
results using a set of different thresholds for melanoma and non-melanoma skin lesion
images. Graph (a) uses the result from the entire dataset, while graphs (b) and (c) use
only the melanoma or non-melanoma images, respectively.
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Table 3.3: Classification Results using Uncorrected and Corrected Lesion Images

Correction Algorithm Sensitivity Specificity Accuracy
Uncorrected 64.3% 65.7% 65.1%

Retinex 69.7% 75.0% 72.2%
Morphological 74.5% 70.7% 72.2%

Cavalcanti et al. 74.2% 77.9% 76.0%
MSIM 82.8% 82.4% 82.5%

structure.

A support vector machine (SVM) classifier was used for training and testing. The SVM
algorithm was implemented using LIBSVM [67], with a linear kernel. The optimal soft-
margin cost and benign class weight parameters were found using a grid-search algorithm
to maximize the harmonic mean of the precision and recall metrics. The feature scores
were normalized to have 0-mean and unit variance. To compare results from the different
correction methods, sensitivity, specificity, and accuracy are used as metrics using a leave-
one-out cross-validation scheme. Only the 126 images from the DermQuest database were
used for classification, because they had appropriate image quality and resolution.

Table 3.3 shows the classification sensitivity, specificity and accuracy. The MSIM al-
gorithm has the highest sensitivity, while MSIM has the highest specificity and accuracy.
This is partly due to the illumination correction algorithm increasing the separability of
the lesion and normal skin, allowing for more accurate segmentation. Eleven of the features
used depend on the morphology of the segmentation border. Furthermore, the illumination
correction algorithm can increase class separability of features based on pixel intensities.

3.5.6 Comparison of multi-stage versus parametric illumination
modeling

An investigation was conducted to determine the effect that the non-parametric modeling
stage has in the proposed MSIM algorithm. The investigation involves comparing the
results obtained: a) using solely the parametric modeling stage, and b) using both the
non-parametric and parametric modeling stages. It is found that a key benefit to using
an initial non-parametric modeling stage is that this type of modeling strategy is more
robust to the presence of outlier detail in the image compared to a purely parametric
modeling strategy. This robustness to outlier detail is particularly important in images

28



(a) (b) (c)

(d) (e) (f)

Figure 3.7: The subset of digital images with significant artefacts. These images were
used to compare the results of using both stages of the MSIM algorithm to correct for
illumination variation compared to using solely the parametric modeling stage.

Table 3.4: CV and AUC Results comparing Parametric and Multi-stage Modeling

Metric
Parametric Modeling

Multi-stage Modeling
Only

Average cv† 0.1501 0.1442

Average AUC† 0.8966 0.9085
† A lower cv and higher AUC indicates better illumination correction.
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with significant amounts of hair, which can lead to very poor illumination estimates if
a purely parametric modeling approach is employed. The use of an initial outlier-robust
non-parametric estimate as a prior to a parametric modeling stage allows for significantly
improved illumination estimates.

A subset of six digital images with significant artefacts were corrected using both stages
of the MSIM algorithm and using solely the parametric modeling stage. The subset in-
cluded images from both the Dermatology Information System and Dermquest databases
and images with melanoma and with non-melanoma lesions. These six images are chosen
to demonstrate the need for the non-parametric modeling step when correcting images
with artefacts. The images in this subset are shown in Fig. 3.7. Fig. 3.7a has a significant
amount of hair. Fig. 3.7b and 3.7d have complicated illumination variation patterns and
large watermarks. Fig. 3.7c and 3.7e have texture patterns in the healthy skin areas and
Fig. 3.7f has a difficult illumination component to model. Coefficient of variation, as de-
scribed in Sec. 3.5.3 is used to quantify the performance of using only one or both stages
of the MSIM algorithm. ROC curve analysis is also performed on the subset, as described
in Sec. 3.5.4.

The results from comparing parametric and multi-stage illumination modeling using
the subset of six images are presented in Table 3.4. The average coefficient of variation
of the set of images corrected using both stages was 0.1442 and the average coefficient of
variation of the images corrected using only the parametric modeling stage was 0.1501.
Therefore, using both stages resulted in a lower coefficient of variation than if only the
parametric modeling stage is performed. The area under the ROC curve (AUC) for the
images corrected using both stages was 0.9085, while the AUC for the images corrected
using only the parametric modeling stage was 0.8966. Since the ROC AUC is higher
for the subset of images corrected using both stages, it indicates that the skin pixels and
lesion pixels are more separable in those corrected images. From the coefficient of variation
and ROC results, the combination of a non-parametric modeling stage with a parametric
modeling stage results in a final image that is noticeably better corrected for illumination
variation.

3.6 Chapter summary

A multi-stage illumination modeling (MSIM) algorithm is proposed to remove illumination
variation in digital images of skin lesions. Illumination variation is a prominent artifact in
digital images and because of the similar appearance of the lesion and areas in shadow, it
can affect segmentation results. The proposed algorithm is tested on a set of 190 digital
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images from the DermIS [62] and DermQuest [9] databases. The corrected images are
compared to images correcting using three existing illumination correction algorithms.
Performance of the algorithms is quantified using the coefficient of variation, segmentation
accuracy and classification accuracy. Coefficient of variation is a measure of the ratio of
variance and mean intensities of background pixels, where a lower coefficient of variance
indicates less illumination variation. Results find that the proposed algorithm had the
lowest average coefficient of variation across the entire dataset. An existing segmentation
algorithm is applied to the corrected images and ROC curves were plotted. The proposed
algorithm has the highest area under the receiver operator characteristic (ROC) curve,
indicating better segmentation performance. Finally, an existing melanoma classification
algorithm is trained using the corrected images to identify lesions as malignant melanoma
based on a set of features. The proposed algorithm has the highest classification accuracy
using the classifier. With the skin lesion image corrected for illumination variation, a set
of representative texture distributions is learned from the corrected image in Chapter 4.
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Chapter 4

Normal Skin and Lesion Sparse
Texture Model

In this section, the sparse texture modeling approach used to learn skin and lesion texture
distributions and measure their distinctiveness is outlined. The representative texture
distributions used to identify pixels that belong to the lesion and skin classes and to find
the border of the skin lesion. This sparse texture modeling algorithm is refered to as the
Joint Probability Texture Distinctiveness (JPTD) algorithm. Sec. 4.1 describes existing
sparse texture models. In Sec. 4.2, sparse texture distributions are introduced, derived from
the local texture patches. In Sec. 4.3, a metric is introduced to measure distinctiveness of
the texture distributions from each other. Implementation details are given in Sec. 4.4. A
flow chart highlighting steps in the JPTD algorithm is shown in Fig. 4.1.

Figure 4.1: Algorithm flow chart highlighting steps in the JPTD algorithm
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4.1 Sparse texture model

Sparse texture models find a small number of texture representations, such as texture
patches, to characterize an entire image [68]. Sparse texture models learn important local
texture details present in an image. Using a sparse texture model allows the image to be
stored efficiently and allows for efficient computation of algorithms that involve textures
from the image. There are many ways to learn the model, including clustering or by
formulating the problem as an optimization problem [69]. A common method to learn a
sparse texture model is by employing a dictionary learning algorithm [68], where a set of
texture patches that can best match details in the original image is learned.

4.2 Representative texture distributions

In the JPTD algorithm, a sparse texture model algorithm [70] is modified to find rep-
resentative sparse texture distributions from an input image, which has been corrected
for illumination variation. Then, in Chapter 5, the texture distributions are classified as
representing normal skin or lesion textures.

To learn the sparse texture distributions, a local texture vector is obtained for each
pixel in the image. The corrected input image contains N ×M pixels and each pixel has
a channels. The texture vector contains pixels in the neighbourhood of size n centered on
the pixel of interest. Each row in the neighbourhood is concatenated sequentially. Let s
be a pixel location in the image. Then, the vector ts represents the n×n×a texture patch
centered at pixel s. The process of extracting the texture vector for a pixel in a single
channel is illustrated in Fig. 4.2. In the case of d multiple channels, the texture vectors for
each single channel are concatenated sequentially into a single vector. A texture vector is
extracted for each pixel in the image to obtain T , which is a set of N ×M texture vectors,
each of size n× n× a.

T = {tsj |1 ≤ j ≤ N ×M} (4.1)

Using the set of all texture vectors extracted from an image, we find a set of K repre-
sentative texture distributions, defined as T r. By characterizing the sparse model as a set
of distributions, we can capture both local and global characteristics in the image. The
representative texture distributions are defined as T r and are able to capture the commonly
occuring texture patterns found in lesion and normal skin regions. By using a small set

33



Figure 4.2: Extracting a texture vector. For images with multiple channels, a separate
vector is obtained for each channel and concatenated sequentially. In this example, s is
the center pixel with an intensity of 3.

of representative texture distributions instead of using all the local texture vectors, the
computational complexity and memory requirements are reduced.

T r = {T rj |1 ≤ j ≤ K} (4.2)

Each texture vector belongs to a single representative texture distribution, which best
corresponds with that texture vector. All parameters needed to characterize the jth texture
distribution are contained in θj. Each distribution has its own distinct set of parameters.

A mixture model is used to represent the set of texture distributions associated with
the input image. The parameters that characterize the texture distributions are chosen to
maximize the log-likelihood of the mixture model [71]:

T̂ r = arg max
T r

K∑
j=1

∑
tsk∈Cj

log
(
P (tsk |T rj )

)
(4.3)

To find the representative texture distributions and the sets of texture vectors corre-
sponding to each representative distribution, an unsupervised clustering algorithm is used.
The set Cj is comprised of the texture vectors corresponding to texture distribution T rj . The
algorithm used in this implementation is described in Sec. 4.4.2. A Gaussian distribution
is assumed, and θj contains the two required parameters to define a multivariate Gaussian
distribution. The mean and covariance of the jth texture distribution are represented by
trj and Σj, respectively.

34



(a) (b)

(c) (d)

Figure 4.3: Map of representative texture distributions. In (a) and (c), the original images
are shown. In (b) and (d), five representative texture distributions have been learned and
each pixel in the image is replaced by one of five colours, depending on which texture
distribution that pixel is associated with.

Examples of maps illustrating the results of finding the representative texture distribu-
tions are shown in Fig. 4.3. In the two examples, five representative texture distributions
have been learned. As described above, each pixel in the image have also been associated
with one of the five representative texture distributions. In Fig. 4.3a and 4.3c, the original
image is shown. In Fig. 4.3b and 4.3d, each pixel from the original image has been re-
placed with one of five colours to represent which representative texture distribution they
are associated with. This example shows that different textures are learned for healthy
skin pixels and lesion pixels.
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4.3 Texture distinctiveness metric

Using the learned sparse texture model, the last step of the JPTD algorithm is to find
a texture distinctiveness metric. Since we are only interested in two classes, normal skin
and lesion, but have learned many texture distributions, multiple texture distributions
must represent the same class. To measure similarity of two texture distributions lj,k, we
measure the probability that the mean of one texture distribution is a realization of the
mean of the other texture distribution, as defined in Eqn. 4.4. Because we assume that the
texture distributions are Gaussian, trj and Σj are the mean and covariance of distribution
T rj .

lj,k =
1√

(2π)n∗n∗a|Σk|
exp

(
−1

2
(trj − t

r
k)TΣ−1

k (trj − t
r
k)

)
(4.4)

However, we are interested in finding distinct texture distributions. For example, lesion
texture distributions are both dissimilar from the normal skin texture atoms and also
from other texture distributions, due to colour variegation and textural patterns found in
skin lesions. The probability that a texture distribution is distinct from another texture
distribution is given by dj,k:

dj,k = 1− lj,k (4.5)

Using the texture distributions and probabilities of distinctiveness, a weighted graphical
model can be constructed to characterize all pair-wise relationships. The graphical model
is defined as G = {V,E}. V represents the set of vertices for the graphical model, which
are the texture distributions associated with each pixel in the image. E represents the set
of edges between every pair of texture distributions, which are given a weight based on the
probability of distinctiveness, dj,k.

A textural distinctiveness metric Dj is used to capture the dissimilarity of texture
distribution T rj from other texture distributions. The metric is defined in 4.6 and measures
the expected distinctiveness of T rj given the image I, where P (T rk |I) is the probability of
occurrence of a pixel being associated with a texture distribution T rk .

Dj =
K∑
k=1

dj,kP (T rk |I) (4.6)
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(a) (b)

(c) (d)

Figure 4.4: Map of the texture distinctive metric. In (a) and (c), the original images
are shown. In (b) and (d), maps of the texture distinctive metric are constructed. Five
representative texture distributions are learned and the texture distinctiveness metric is
calculated for each distribution. The pixel intensities in (b) and (d) depend on the texture
distinctiveness of the texture distribution associated with each pixel.

In the case of normal skin texture distributions, the dissimilarity of one skin texture
distribution from other skin texture distributions is very small. The textural distinctiveness
metric is small overall, despite being dissimilar from lesion texture distributions. Lesion
texture distributions are dissimilar from other skin and lesion texture distributions, so the
textural distinctiveness metric is large. Fig. 4.4b and 4.4d illustrate this effect by displaying
the textural distinctiveness metric for each pixel in the image. In both figures, the lesion
is predominately white, which corresponds to a highest textural distinctiveness metric.
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4.4 Implementation details

4.4.1 Colour space

In our implementation of the JPTD algorithm, the image is in the RGB domain and has
three channels (a=3). However, the algorithm can be expanded to take into account multi-
or hyper-spectral images of a skin lesion, where a is much greater. Furthermore, the image
is converted to the XYZ colour space. Work by Terrillon et al. found that the XYZ colour
space proved to be an efficient colour space in which to segment the skin region of human
faces [72]. This colour space is designed to better model colour perception and reduce
correlation between the XYZ channels, compared to the standard RGB colour space.

4.4.2 Learning representative texture distributions

In our implementation, a two-step clustering algorithm is used to learn a set of represen-
tative texture distributions that satisfies Eqn. 4.3. First, a k-means clustering algorithm
is run, which is followed by learning a finite mixture model. K-means clustering is used
as an the initial step to increase the robustness and to speed up the number of iterations
required for the finite mixture model to converge. K-means clustering finds K clusters of
texture data points that minimizes the sum of squared error between cluster members and
the cluster mean. The optimization function for k-means clustering is shown in Eqn. 4.7,
where Ck is the kth set of texture vectors, and µk is defined as the mean vector for the
kth set. Implementation details for k-means clustering is described by Jain et al. [73]. The
initial cluster means are randomly assigned.

Ĉ = arg min
C

K∑
k=1

∑
tsj∈Ck

||tsj − µk||2 (4.7)

One limitation with k-means clustering is that it does not take into account any proba-
bilistic information. Therefore, the second step is to apply finite mixture model clustering.
To fit the finite mixture model, the model parameters in the set Θ are found to maximize the
log-likelihood function shown in Eqn. 4.8. In this implementation, a Gaussian distribution
is assumed for all clusters and the model parameters are the distribution mean µ and distri-
bution covariance Σ. Θ also contains the parameter α, which is the mixing proportion. No
closed form solution exists for Eqn. 4.8 in general, so an expectation-maximization iterative
algorithm is used, as described by Figueiredo et al. [71]. The expectation-maximization
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algorithm is initialized using cluster means, covariances and mixing proportions based on
the results of the k-means clustering.

Θ̂ = arg max
Θ

n∑
j=1

K∑
k=1

log
(
αkP (tsj |µk,Σk)

)
(4.8)

where
K∑
k=1

αk = 1 and

Θ = {µ1, µ2, ..., µK ,Σ1,Σ2, ...,ΣK , α1, α2, ..., αK}

Expectation-maximization is an iterative algorithm. The initial parameters for the
Gaussian mixture model are obtained from the results of the k-means clustering. That is,
the initial Gaussian means are equal to the k-means cluster means:

µk = µCk
(4.9)

and the distribution covariances and mixing proportions are also dependent on the
cluster results:

Σk = ΣCk
(4.10)

αk = P (tsj ∈ Ck). (4.11)

The parameters defining the K representative texture distributions are taken to be the
mean and covariances for the K estimated Gaussian distributions (t̂rk = µk). Furthermore,
each texture vector is assigned to belong to the distribution which maximizes the weighted
probability αkP (tsj |µk,Σk).

4.5 Summary of the JPTD texture distinctiveness al-

gorithm

1. Convert the corrected image to the XYZ colour space.

39



2. For each pixel s in image I, extract the texture vector ts to obtain the set of texture
vectors T (Eqn. 4.1).

3. Cluster the texture vectors in T , as described in Sec. 4.4.2, to obtain the representa-
tive texture distributions.

4. Calculate probability that two texture distributions are distinct dj,k using Eqn. 4.5
for all possible pairs of texture distributions.

5. Calculate the textural distinctiveness metric Dj (Eqn. 4.6) for each texture distribu-
tion.

4.6 Texture distinctiveness map results

This thesis introduces the use of probabilistic information to determine representative
texture distributions and to measure texture distinctiveness. To determine if incorporat-
ing this information is useful, the resulting texture distinctiveness maps produced using
the JPTD algorithm were compared to distinctiveness maps produced using an algorithm
adapted from the Texture Distinctiveness (TD) algorithm [70], which only uses the k-
means clustering algorithm to find the representative texture distributions. Furthermore,
the TD algorithm does not take into account the covariance corresponding to each cluster
when calculating the distinctiveness metric (Eqn. 4.5). Finally, because the TD algorithm
is designed to compute saliency maps, the distinctiveness metric includes an additional
term based on the distance between a pixel and the center of the image. Since we are
interested in understanding the effect of the additional probabilistic information, this term
was omitted in the comparisons.

Fig. 4.5 shows examples of the corrected lesion image and their corresponding distinc-
tiveness map, produced by the TD and JPTD algorithms. Examples shown are those where
there are significant differences when using the two algorithms. Also, the dynamic range
of pixels is scaled to the maximum pixel intensity and minimum pixel intensity, resulting
in a different dynamic range for each texture distinctiveness map.

Some interesting observations can be made from the examples. First, lesions in Fig. 4.5a,
4.5c and 4.5f are comprised of two distinct textures. For example, in Fig. 4.5a, there are
pronounced dark areas and lighter red areas. However, when using the TD algorithm,
only the first texture is highlighted in the texture distinctiveness map. Using the JPTD
algorithm, both textures are highlighted. This is also seen in Fig. 4.5c and 4.5f.
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Corrected Image TD JPTD

(a)

(b)

(c)

Figure 4.5: Corrected skin lesion images and their corresponding textural distinctiveness
maps. The textural distinctiveness maps are produced using the TD algorithm [70] and
the JPTD algorithm. The pixel intensity corresponds to the texture distinctiveness of the
pixel’s associated texture distribution. The JPTD algorithm is able to better highlight the
lesion area, compared to the TD algorithm. However, in (a), (c) and (f), non-lesion areas
are also highlighted by the JPTD algorithm.
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Corrected Image TD JPTD

(d)

(e)

(f)

Figure 4.5: Corrected skin lesion images and their corresponding textural distinctiveness
maps, cont.
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As a trade-off, non-lesion areas that occur due to natural pigmentation and texture
characteristics of the skin are also highlighted when using the JPTD algorithm. For exam-
ple, in Fig. 4.5a, the presence of shading on the left side of the image is highlighted when
using the JPTD algorithm, but not when using the TD algorithm. This motivates use of
the texture-based segmentation algorithm proposed in Sec. 5 to find the lesion, rather than
using the textural distinctiveness maps directly.

4.7 Chapter summary

In this section, we propose a novel sparse texture modeling approach called the Joint
Probability Texture Distinctiveness (JPTD) algorithm to learn skin and lesion texture
distributions. A texture distinctiveness metric is introduced to measure the dissimilarity
of a learned texture distribution from the other texture distributions. The JPTD algorithm
is compared to a similar sparse texture modeling algorithm. Visually, the introduction of
probability information allows the JPTD algorithm to better highlight multiple texture
distributions that belong to the same lesion. As a consequence, the JPTD algorithm can
also highlight non-lesion areas. To avoid misclassifying pixels, the texture distinctiveness
metric is used in conjunction with a region classification algorithm in Chapter 5 to classify
regions as being in the normal skin or lesion class.
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Chapter 5

Texture-based Skin Lesion
Segmentation

In this chapter, a texture-based skin lesion segmentation algorithm is proposed. This novel
skin lesion segmentation algorithm is designed to be used for images taken by a digital
camera, after being corrected for illumination variation. The segmentation algorithm uses
a set of learned texture distributions and their texture distinctiveness metric, as defined
in Chapter 4, to find pixels that belong to the skin lesion. The proposed segmentation
algorithm is refered to as the Texture Distinctiveness Lesion Segmentation (TDLS). First,
the input image, which has been corrected for illumination variation, is over-segmented.
This results in the image being divided into a large number of regions. Next, each region is
independently classified as representing normal skin or lesion based on the textural contents
of that region. Finally, post-processing steps refine the lesion segmentation. A flow chart
show the major steps in the TDLS algorithm is shown in Fig. 5.1.

The TDLS algorithm assumes that there is a single lesion in the digital image and that
the lesion is roughly in the center of the image. Since the algorithm uses learned textures
that represent the skin and lesion classes, it is assumed that the input image has been
corrected for illumination variation. Otherwise, textures learned from areas of the skin in
shadows may be misclassified as part of the lesion class.

5.1 Initial regions

The first step in the TDLS algorithm is to over-segment the corrected lesion image, dividing
the image into a number of regions. This initial over-segmentation step is incorporated to
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Figure 5.1: Algorithm flow chart highlighting steps in the TDLS algorithm

increase the TDLS algorithm’s robustness to noise. Furthermore, it allows for the use of an
efficient and fast classification algorithm, described in Sec. 5.2, to find the areas belonging
to the skin lesion. The initial over-segmentation algorithm, adapted from the statistical
region merging (SRM) [60] algorithm, is described below. The main difference is that
the SRM algorithm uses the image in the RGB colour space, while the TDLS algorithm
converts the image to the XYZ colour space, as mentioned in Sec. 4.4.1. The advantages
of using the SRM algorithm as the initial over-segmentation algorithm is that it directly
takes into account pixel location, is simple and computationally efficient.

SRM contains two main steps: a sorting step and a merging step. SRM sorts pixels in
an image to determine the order in which pixels are compared, and then merges pairs of
pixels into regions based on their similarity. A 4-connected graph is constructed so that
each pixel in the image is connected with its neighbours. The pixels are sorted based on
the similarity function defined in Eqn. 5.1, where s is defined as a pixel location (x, y), s′

is a neighbouring pixel and ρ(s) and ρ(s′) are the XYZ pixel intensities at those locations.
Both horizontal and vertical neighbouring pixels are considered when sorting the pixels.

f(s, s′) = ||ρ(s)− ρ(s′)||∞ (5.1)

Sorting pixels determines the order in which pixels are merged into regions. The merging
predicate determines whether two regions are merged together, based on pixel intensities.
The predicate depends on the difference between average pixel intensity for each channel
for the two regions. Furthermore, it depends on the number of pixels in the regions. The
predicate used by SRM is defined in Eqn. 5.2 where R̄ is the average pixel intensity across a
region and |R| is the number of elements in the set [60] . The parameter g is the maximum
pixel intensity, R|R| is the set of regions with the same number of pixels as the region R
and Q is a tunable parameter to change the likelihood that two regions are merged.
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P(R,R′) =

{
true if ||R̄′d − R̄d|| ≤

√
b2(R) + b2(R′) ∀ channel d

false otherwise
(5.2)

where b(R) = g

√
1

2Q|R|
ln
(
6|I|2|R|R||

)
Here, the parameter Q is set to 128 following experimental testing. Additional imple-

mentation details can be found in the paper by Nock and Nielsen [60]. The result of the
initial over-segmentation step is a map of several regions which correspond to the normal
skin or lesion classes. To reduce the number of regions, all segments that touch the edges
of the image are merged into a single region. This is because we assume that the lesion
is in the center of the image, so regions touching the edges are all likely to be part of the
normal skin class.

5.2 Distinctiveness-based segment classification

Following the initial oversegmentation step, each region must be classified as belonging
to the normal skin class or lesion class based on a criterion. The classification step is
illustrated in Eqn. 5.3, where y is the resulting segmentation map. Each element in y is
either 1 (lesion) or 0 (normal skin), depending on the classification results for that element’s
corresonding region. The threshold is denoted by τ and it represents the decision boundary
between the normal skin and lesion class. The feature used to discriminate between the
two classes is the regional textural distinctiveness metric DR. This metric is based on the
texture distinctiveness across a region.

y(R) =

{
1 if DR ≥ τ (lesion)

0 otherwise (normal skin)
(5.3)

From Chapter 4, each pixel in the input image is associated with a texture distribution.
A texture distinctiveness metric D is calculated for each texture distribution based on the
probability of it being similar to other texture distributions, as described in Chapter 4.
This information is combined with the contents of each region to determine a regional tex-
ture distinctiveness metric, DR. This metric represents the average texture distinctiveness
across a region (Eqn. 5.4), where P (T rj |R) is the probability of a pixel being associated
with the jth texture distribution in the region R.
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DR =
K∑
j=1

DjP (T rj |R) (5.4)

Finally, a threshold τ is defined to divide the set of representative texture distributions
into two classes, normal skin and lesion, and is also based on the texture distinctiveness met-
rics derived in Chapter 4. There are many ways to find two classes from a one-dimensional
set of features. In the TDLS algorithm, the threshold is found that divides the set of
texture distributions into two classes such that the total intra-class variance of the texture
distinctiveness metric for each class is minimized, as shown in Eqn. 5.5.

τ = arg min
τ

(
σ2
C1(τ)P (T r|C1(τ)) + σ2

C2(τ)P (T r|C2(τ))
)

(5.5)

The threshold τ is used to divide the set of texture distributions into two classes C1(τ)
and C2(τ). The classes depend directly on τ because if the distinctiveness metric of the
associated texture distribution is above τ , that texture distribution is in class C1(τ). Like-
wise, if it is below τ , it is in class C2(τ). The probability that a texture distribution is
in the class C for a given τ is P (T r|C(τ)) and the variance of the texture distinctiveness
based on the elements in the class is σC(τ). This threshold is also known as the Otsu’s
threshold [64].

5.3 Segmentation refinement

After the regions are classified as being normal skin or lesion, the following post-processing
steps are applied to refine the lesion border: morphological dilation and region selection.
First, the morphological dilation operator is applied to fill holes and smooth the border.
Morphological dilation is a process that expands binary masks to fill small holes [74]. The
shape and amount that the binary mask is expanded is controlled by a structuring element,
which is a disc with a radius of 5 pixels in the TDLS algorithm.

Next, since multiple non-contiguous regions may have been identified as part of the
lesion class, the number of regions is reduced to one. To eliminate the small regions, the
number of pixels in each contiguous region is counted. The contiguous region with the
largest number of pixels is assumed to correspond to the lesion class and any other regions
are converted to the normal skin class. In practice, there could be multiple lesions in a
single image, but the classification algorithms used for testing the segmentation results can
only accept a single lesion. This gives the final lesion segmentation.
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5.4 Summary of the TDLS segmentation algorithm

1. Apply Statistical Region Merging to the original XYZ image (Sec. 5.1) to oversegment
the image.

2. Calculate the region distinctiveness metric for each region found in step 1 using
Eqn. 5.4.

3. Using the texture distinctiveness metrics found in the previous chapter, calculate the
threshold τ between the normal skin and lesion classes (Eqn. 5.5).

4. Classify each region as normal skin or lesion based on the results of steps 2 and 3
(Eqn. 5.3).

5. Apply a morphological dilation operator to the initial lesion classification.

6. For each contiguous region in the initial segmentation, count the number of pixels in
the region.

7. As the final lesion segmentation, return the contiguous region consisting of the most
pixels.

5.5 Experimental results

The TDLS algorithm is compared to four state-of-art lesion segmentation algorithms. The
first algorithm (L-SRM) is designed for dermoscopy images, but can be applied to lesion
images as well. It applies the SRM algorithm outlined in Sec. 5.1 and uses the normal
skin colour to find the regions corresponding to the lesion. The three other algorithms are
proposed by Cavalcanti et al. and are designed specifically for lesion images. One algorithm
(Otsu-R) finds the Otsu threshold using the red colour channel [51]. The second (Otsu-
RGB) uses all three RGB colour channels and finds Otsu thresholds for each channel [35].
The final algorithm (Otsu-PCA) processes the RGB colour channels to find three more
efficient channels to threshold. A texture channel is obtained using Gaussian filtering, a
colour channel is obtained using the inverse of the red colour channel and the third channel
is found using principal component analysis (PCA) [25]. For simplicity, this algorithm is
referred to as Otsu-PCA. All algorithms have additional post-processing steps to clean up
the contour, and these steps have been implemented as described in their publication.
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The set of 126 images from the Dermquest database are used to test the segmentation
algorithms. There are 66 digital images with lesions diagnosed as melanoma and 60 digital
images with lesions diagnosed as non-melanoma. All tested images were first corrected
using the illumination correction algorithm outlined in Sec. 3. The segmentation algo-
rithms are compared to the ground truth, found by manual segmentation, and by using a
melanoma classification algorithm. The entire set of DermQuest images with segmentation
results using the TDLS algorithm is provided in Appendices A and B.

The JPTD and TDLS algorithms are implemented in MATLAB on a computer with an
Intel Core i5-2400S CPU (2.5 GHz, 6 GB RAM). To segment a skin lesion in a 1640×1043
image, the two algorithms have a combined runtime of 62.45s.

5.5.1 Segmentation results

Each segmentation algorithm is applied to the corrected images and the resulting segmen-
tation is compared to the ground truth. This can be seen as a classification problem, with
each pixel being classified as lesion or normal skin. To quantify the performance of each
algorithm at classifying pixel correctly, sensitivity, specificity and accuracy are calculated.
Their formulas are given in Eqn. 5.6, 5.7 and 5.8, where TP is the number of true positive
pixels, FP is the number of false positive pixels, TF is the number of true negative pixels
and FN is the number of false negative pixels.

Sensitivity =
TP

TP + FN
(5.6)

Specificity =
TN

TN + FP
(5.7)

Accuracy =
TP + TN

TP + FN + TN + FP
(5.8)

Tables 5.1, 5.2 and 5.3 show the average sensitivity, specificity and accuracy across
the entire set of images or for just the melanoma or non-melanoma images. Interesting
examples of segmentation results are shown in Fig. 5.2, along with the ground truth.

Table 5.1 shows that the TDLS algorithm has the highest accuracy across all tested
images. The TDLS algorithm also has the second highest sensitivity and specificity. This
trend also follows when looking at subsets of melanoma or non-melanoma images, as seen in
Tables 5.2 and 5.3. The Otsu-PCA algorithm has similar specificity and accuracy results,
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Table 5.1: Classification Results of Lesion and Normal Skin Pixels for All Images

Segmentation Algorithm Sensitivity Specificity Accuracy
L-SRM [44] 89.4% 92.7% 92.3%
Otsu-R [35] 87.3% 85.4% 84.9%

Otsu-RGB [25] 93.6% 80.3% 80.2%
Otsu-PCA [51] 79.6% 99.6% 98.1%

TDLS 91.6% 98.9% 98.3%

Table 5.2: Classification Results of Lesion and Normal Skin Pixels for Melanoma Images

Segmentation Algorithm Sensitivity Specificity Accuracy
L-SRM [44] 90.0% 92.5% 92.1%
Otsu-R [35] 87.4% 91.5% 90.3%

Otsu-RGB [25] 92.2% 85.5% 85.0%
Otsu-PCA [51] 81.2% 99.5% 97.6%

TDLS 92.7% 98.6% 97.9%

Table 5.3: Classification Results of Lesion and Normal Skin Pixels for Non-melanoma
Images

Segmentation Algorithm Sensitivity Specificity Accuracy
L-SRM [44] 88.7% 93.0% 92.6%
Otsu-R [35] 87.3% 78.7% 78.9%

Otsu-RGB [25] 95.2% 74.6% 75.0%
Otsu-PCA [51] 77.8% 99.7% 98.6%

TDLS 90.47% 99.3% 98.8%
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Table 5.4: Classification Results of Melanoma and Non-melanoma using Low-level Features
for Corrected Images comparing Segmentation Algorithms

Segmentation Algorithm Sensitivity Specificity Accuracy
L-SRM [44] 76.9% 83.6% 80.2%
Otsu-R [35] 73.1% 81.4% 77.0%

Otsu-RGB [25] 65.2% 65.0% 65.1%
Otsu-PCA [51] 77.4% 81.3% 79.4%

TDLS 83.1% 83.6% 83.3%

while the Otsu-RGB algorithm has better sensitivity. However, the TDLS algorithm is
able to perform well in all three metrics.

Fig. 5.2 shows examples where the TDLS algorithm is able to find the lesion and other
algorithms are unable to. Fig. 5.2a-f are images of melanoma lesions and Fig. 5.2g and
5.2h are non-melanoma lesions. In the compared algorithms, areas where illumination
variation has not been fully corrected are often misclassified as part of the lesion, as seen
in Fig. 5.2a and 5.2g. Complicated texture patterns, as seen in Fig. 5.2e, and hair, as seen
in Fig. 5.2d, are also misclassified as part of the lesion. However, the TDLS algorithm is
able to reasonably segment the lesion in those images.

Lesions may also be comprised of different colours and textures, such as in Fig. 5.2b
and 5.2f. In fact, colour variegation across a lesion is a feature that is used to classify
lesions as melanoma. It is critical that segmentation algorithms can account for the colour
and texture variation when locating the skin lesion. The compared algorithms only find
the most prominent colour or texture and fail to include the subtler regions as part of the
lesion. However, because the TDLS algorithm learns the lesion textures and normal skin
textures, it is able to locate the entire lesion.

5.5.2 Melanoma classification results using low level features

To quantify the effects that each algorithm has on the performance of classification of the
lesion as melanoma or non-melanoma, a set of features proposed by Cavalcanti et al. [25]
are extracted and used to train an SVM classifier. This is the same approach used in
Sec. 3.5.5. A set of 52 features are obtained from 126 corrected DermQuest images and
are based on the segmentation results produced by the compared algorithms. There are 11
that characterize asymmetry, 12 that characterize border irregularity, 25 that characterize
colour and 4 that characterize differential structure. The same normalization process and
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Table 5.5: Classification Results of Melanoma and Non-melanoma using High- and Low-
level Features for Corrected Images comparing Segmentation Algorithms

Segmentation Algorithm Sensitivity Specificity Accuracy
L-SRM [44] 79.0% 82.4% 81.0%

Otsu-PCA [51] 82.5% 87.3% 84.9%
TDLS 85.7% 82.9% 84.1%

parameter optimization are used as described in Sec. 3.5.5. Sensitivity, specificity, and
accuracy are used as metrics using a leave-one-out cross-validation scheme.

An additional post-processing step is added to the compared algorithms to ensure that
only a single contiguous region is identified as the lesion area. This is required because
the 52 features assume that there is only a single lesion area. If an algorithm produces
multiple possible lesion regions, the region with its centroid closest to the center of the
image is taken as the final lesion segmentation.

Table 5.4 show the classification results using low-level features for each segmentation
algorithm. The TDLS algorithm has the highest sensitivity and is tied with L-SRM for
the highest specificity. The TDLS algorithm has the highest accuracy. The improvements
in the classification results are due to improved segmentation, since eleven of the features
used are based on the morphology of the lesion border.

5.5.3 Melanoma classification results using high-level intuitive
features

The TDLS segmentation algorithm is also used with a set of high-level intuitive features
(HLIFs) for melanoma classification. HLIFs more closely model the human-observable
phenomenon and can be interpreted more intuitively [75, 76]. The HLIFs have been tested
using images corrected by the MSIM algorithm, but in that test, manual segmentation was
performed to find the lesion. In this test, the three segmentation algorithms with high
accuracy, L-SRM, Otsu-PCA and the TDLS algorithm, are used with the HLIFs for lesion
classification. Only three algorithms are tested because there are difficulties extracting
HLIFs from the other algorithms which produced inaccurate segmentation results.

Nine HLIFs have been proposed, including six features that measure lesion asymmetry
and three features that measure border irregularity . To get a complete set of features, the
low-level features used in Sec. 5.5.2 are combined with the HLIFs. An SVM classifier is also
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used with this set of features. The same normalization process, parameter optimization
and leave-one-out cross validation scheme are used as described in Sec. 5.5.2.

Table 5.5 show the classification results using both HLIFS and low-level features for
each segmentation algorithm. HLIFs improves the classification accuracy for all three
algorithms that are compared. Otsu-PCA improves the most and has the highest accuracy
and specificity. The TDLS algorithm has the second highest accuracy and specificity. Its
accuracy is close to the performance of the Otsu-PCA algorithm.

Another important observation is that the TDLS algorithm has the highest sensitiv-
ity. This is of interest because a low sensitivity would correspond to many malignant
melanoma cases being misclassified as benign, which could lead to patient deaths. There-
fore, improving sensitivity using the HLIFs and the TDLS algorithm is crucial for the
melanoma detection framework.

5.6 Chapter summary

In this chapter, we propose a novel texture-based skin lesion segmentation algorithm to
find the skin lesion in digital images, referred to as the Texture Distinctiveness Lesion
Segmentation (TDLS) algorithm. The segmentation algorithm incorporates learned repre-
sentative texture distributions and the texture distinctiveness metric to classify regions as
belonging to the skin class or lesion class. The segmentation algorithm is compared to four
other state-of-the-art algorithms in terms of segmentation and classification accuracy. The
proposed algorithm is found to have the highest segmentation accuracy. For classification
accuracy, an existing melanoma classification algorithm is used to extract features based
on the segmentation results and identify if a lesion is melanoma. When using a set of ex-
isting low-level features for melanoma classification, the TDLS algorithm has the highest
accuracy.
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Chapter 6

Conclusions

6.1 Summary and conclusions

In summary, the objective of this thesis is to develop a framework to segment images of
skin lesions taken using a standard digital camera. To do this, a novel automatic lesion seg-
mentation framework is proposed which includes a multi-stage illumination modeling algo-
rithm as a pre-processing step and a proposed texture-based segmentation algorithm. The
framework is to be incorporated to a larger framework to classify and detect of melanoma
lesions.

In Chapter 3, the multi-stage illumination modeling algorithm is introduced. The
MSIM algorithm uses Monte Carlo sampling to determine an initial estimate of illumination
variation, followed by a parametric illumination model. The algorithm is compared to other
state-of-art correction algorithms, including an algorithm designed specifically for digital
images of skin lesions [35]. The MSIM algorithm produces images with a low coefficient-
of-variation (Table 3.1), high segmentation accuracy (Table 3.2) and lesion classification
accuracy (Table 3.3). Due to the multiple stages used to model illumination, MSIM is able
to correct images with complex texture patterns or hair without drastically altering the
colour of the lesion itself.

In Chapter 4, a probabilistic texture distinctiveness metric is introduced based on a
learned model of normal skin and lesion textures. Representative texture distributions are
learned from the image itself and the texture distinctiveness metric captures the dissimi-
larity between pairs of texture distributions. The proposed algorithm is visually compared
to the results after using an existing texture distinctiveness algorithm [70] that does not
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take into account the probabilistic information for representative textures. Incorporating
probabilistic information in the proposed algorithm allows skin lesions made up of multiple
colours or textures to be fully highlighted in the distinctiveness map (Fig. 4.5). However,
this causes some areas that do not correspond to the lesion to also be highlighted. This mo-
tivates a proposed texture-based segmentation algorithm which uses the resulting texture
distinctiveness map.

Chapter 5 proposes a texture-based segmentation algorithm which divides the image
into numerous smaller regions and classifies those regions as lesion or skin based on the
texture distinctiveness map. The entire proposed framework is tested by using the il-
lumination corrected images as the input to the texture-based segmentation algorithm.
It is compared to state-of-art lesion segmentation algorithms, including three algorithms
designed for lesion images [25, 35, 51]. The proposed framework produces the highest
segmentation accuracy (Table 5.1), using manually segmented images as ground truth.
A lesion classifier is also trained using a set of low-level features obtained from images
segmented using the existing algorithms. The proposed algorithm also has the highest
classification accuracy and is tied for the highest sensitivity and specificity, when using
that feature set. Overall, the TDLS segmentation framework is able to locate the skin
lesion in digital images accurately, compared to other state-of-the-art algorithms.

6.2 Future work

There are a few avenues to extend the work proposed in this thesis. Future research topics
include the following:

• Incorporate additional high-level intuitive lesion features (HLIFs) to im-
prove lesion classification. The framework was tested in Sec. 5.5.3 using HLIFs
combined with the low-level features to give a comprehensive set of features to cap-
ture criteria from the ABCD scale. In the future, HLIFs can replace the 52 low-level
features used by Cavalcanti et al. [25] with a smaller number of features, greatly
reducing the dimensionality of the feature space.

• Investigate if the probabilistic texture distinctiveness model introduced
in Chapter 4 can improve saliency detection in general images. The proba-
bilistic model can be used with the saliency detection framework proposed by Schar-
fenberger et al. [70] to formulate a novel saliency detection strategy.
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• Adapt the lesion segmentation framework for use with multispectral cam-
eras. Multispectral cameras are sensitive to light frequencies outside of the visible
wavelengths. Furthermore, while traditional cameras capture red, green and blue
channels, multispectral cameras can capture more channels comprised of different
frequencies of light. Studies have found that multispectral images could be processed
to find biological structures beneath the outermost layer of skin [77], which can be
used to improve the detection of melanoma. The lesion segmentation framework has
been formulated in such a way that it is possible to incorporate information from the
additional channels from multispectral images.
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Appendix A

Illumination Correction and
Segmentation Results for Melanoma
Images

This appendix contains the 66 digital images of melanoma lesions from the DermQuest
database [9] that are used to test both the proposed illumination correction algorithm and
segmentation algorihtm.

Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure A.1: Uncorrected, illumination-corrected and segmented images of melanoma skin
lesions using the proposed algorithm, cont.
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Appendix B

Illumination Correction and
Segmentation Results for
Non-Melanoma Images

This appendix contains the 60 digital images of non-melanoma lesions from the DermQuest
database [9] that are used to test both the proposed illumination correction algorithm and
segmentation algorihtm.

Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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Uncorrected Corrected Segmented

Figure B.1: Uncorrected, illumination-corrected and segmented images of non-melanoma
skin lesions using the proposed algorithm, cont.
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