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Abstract

The K-means Iterative Fisher (KIF) algorithm is a robust, unsupervised clustering algorithm applied here to the
problem of image texture segmentation. The KIF algorithm involves two steps. First, K-means is applied. Second, the
K-means class assignments are used to estimate parameters required for a Fisher linear discriminant (FLD). The FLD
is applied iteratively to improve the solution. This combined K-means and iterative FLD is referred to as the KIF
algorithm. Two KIF implementations are presented: a mixture resolving approach is extended to an unsupervised binary
hierarchical approach. The same binary hierarchical KIF algorithm is used to properly segment images even though the
number of classes, the class spatial boundaries, and the number of samples per class vary. The binary hierarchical KIF
algorithm is fully unsupervised, requires no a priori knowledge of the number of classes, is a non-parametric solution,
and is computationally efficient compared to other methods used for clustering in image texture segmentation solutions.
This unsupervised methodology is demonstrated to be an improvement over other published texture segmentation results
using a wide variety of test imagery. Gabor filters and co-occurrence probabilities are used as texture features. © 2002
Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Binary hierarchical clustering; Texture segmentation; Computer vision; Image segmentation; K-means; Fisher linear
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1. Introduction methods group all the data using only a single partition.
The K-means algorithm is a popular partitional cluster-
ing method [2]. K-means is an appropriate tool under the
assumption that the clusters are hyperspheroidal since

Euclidean distance measures are employed. However,

Cluster identification is an important pattern recog-
nition tool used in diverse fields such as biology, psy-
chology, computer vision, remote sensing, and stock

market analysis. Many different clustering approaches
have been devised and these can be generally divided
into two types: hierarchical and partitional [1]. Hierarchi-
cal methods group data in a sequential partitional sense,
either in an agglomerative or divisive fashion. Partitional
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real data sets seldom approach this hyperspheroidal
idealization and the number of classes is not always
known.

Clustering methods are defined to be completely un-
supervised, however, in practice, this is a lofty goal.
Many algorithms require some form of user control to
produce satisfactory results. For example, ISODATA
[3] requires the user to set many parameters to deter-
mine maximum and minimum sizes of clusters, to split
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clusters with “high” spreads, and to merge “close” clus-
ters. It is preferable from a user perspective to minimize
the number of parameters that must be set.

Clustering methods are commonly incorporated in tex-
ture analysis algorithms. Texture analysis is used to iden-
tify objects in a scene, to provide depth cues within an
image, to perform motion estimation, and for other com-
puter vision tasks. Many different methods exist for gen-
erating texture features in such circumstances. Popular
methods include co-occurrence probabilities [4], model
based approaches such as Markov modelling [5—7], and
multi-channel filtering techniques [8—10].

The identification of scene texture is challenging for
a number of reasons. These include the ability to sep-
arate similar textures, identify poorly defined textures,
and indicate the exact number of texture classes within
the scene. One of the more difficult aspects of texture
recognition is providing an all-purpose texture defini-
tion that could assist texture categorization. Wright [11]
provides a generic definition: “Texture is the spatial dis-
tribution of intensities in image regions perceived by nor-
mal human observers to be homogeneous throughout the
region”. The meaningful provision of a definition for ho-
mogeneity in computer texture implementations is chal-
lenging since textural homogeneity tends to be a learned
characteristic.

This paper will demonstrate the design and imple-
mentation of a novel technique (the binary hierarchical
KIF clustering algorithm) that is able to generate suc-
cessful clustering of texture feature data based on a
wide variety of test imagery. As a first step, existing
clustering strategies for image texture segmentation us-
ing Gabor filters are presented (Section 2). Then, the
design and implementation of the binary hierarchical
KIF algorithm is described (Section 3). The technique
is applied to seven diverse images to demonstrate the
robustness of the technique (Sections 4 and 5). Dis-
cussions and conclusions complete the final section
(Section 6).

2. Background

To perform image texture segmentation, texture fea-
tures can be collected on a pixel by pixel basis. Pattern
recognition methods are then used to group these fea-
tures into appropriate classes to achieve the segmentation.
Multi-channel filters have been used quite successfully to
generate features from digital imagery for texture analy-
sis [8,9,12,13]. These methods generally involve apply-
ing a particular filter bank to an image. Since each pixel
has a different response to each of the N filters, then an
N-dimensional feature vector that can be classified using
pattern recognition techniques can represent each pixel.
In this section, examples using Gabor filters for the pur-
pose of performing texture segmentation are provided.

Then, based on this information, the contributions of this
paper are described.

Dunn et al. [14,15] perform image segmentation in a
restricted manner using Gabor filtered outputs. Here, only
two distinct textures are found in the image, each texture
takes up one-half the image, the textures are separated by
a single straight boundary, training samples are required
(fully supervised), and only one filter is used to distin-
guish the two textures (although textures often have more
than one dominant frequency/orientation pair). Dunn’s
concept that only a limited number of filters is required
to segment an image is quite important from a computa-
tional and human visual system perspective.

Jain and Farrokhnia have published a well-referenced
texture segmentation algorithm [8]. This algorithm has a
few restrictions.

e The methodology (use of the modified Hubert index)
for determining the number of classes does not work
effectively for most of the provided examples [16].

e The methodology for determining the number of
classes involves an incremental strategy that requires
the entire system be solved at least as many times
as the number of classes, which is computationally
expensive.

e The spatial coordinates of the pixels are used as fea-
tures for the displayed segmentation results. Their ex-
ample images have individual textures placed in a
block-like fashion and/or have textures located in only
one region of the image. Using spatial coordinates as
features for such images provides a tremendous ad-
vantage for segmentation. If the same textures are lo-
cated in more than one region of the image, the spatial
coordinates will only confuse the classification. Thus,
inclusion of the spatial coordinates in the feature set is
not appropriate for solving the generic texture segmen-
tation problem. Note that the spatial coordinates were
not used by one of the same authors in a subsequent
publication [17].

Mao and Jain [17] implemented a self-organizing
neural network for hyperellipsoidal clustering algorithm.
They demonstrate the algorithm by segmenting tex-
tured images based on Gabor features. There results are
promising, however, they only display the best result
of ten trials based on training a random selection of
1000 feature vectors (without class labels). The reduced
number of feature vectors was required to minimize the
computational time (noted to be approximately 1 h on a
Sun Sparc 10).

Randen and Husoy [18] include Gabor filtered image
texture segmentation in their comparison study. They
comment that, although Gabor filters are commonly
employed for image texture segmentation, their results
provide no evidence that the Gabor filter should be
preferred. Their segmentation experiments involve the
use of training data in contrast to the emphasis here on
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unsupervised segmentation. Panda and Chatterji [19]
perform texture segmentation using tuned Gabor filters.
They use the K-means algorithm to perform the seg-
mentation. This is not an appropriate tool for the generic
texture segmentation clustering problem since fully sep-
arable and/or hyperspheroidal clusters are not expected
for all such problems and the number of classes may not
be known beforehand.

This paper describes the K-means Iterative Fisher
(KIF) binary hierarchical clustering algorithm. This al-
gorithm is appropriate for situations where each class is
represented by many features. Image texture segmenta-
tion is such a situation and is used for evaluating this
algorithm. The algorithm properly groups image texture
features, which lead to accurate image segmentation.
This algorithm is an improvement on existing techniques
for clustering texture features. No other algorithm is
known that is capable of robustly performing the same
task. Meritorious characteristics of the KIF binary hier-
archical clustering algorithm include the following.

e It is a wholly unsupervised algorithm. The unsuper-
vised solution is much more difficult to achieve than
the supervised case. A single parameter, 7, is used to
gauge the level of texture separability. This parameter
seems to be constant for similarly derived imagery.

e No a priori knowledge of the number of classes is re-
quired. This is recognized as being one of the most dif-
ficult aspects when developing a clustering algorithm,
yet the KIF algorithm consistently determines the cor-
rect number of classes. Also, no assumption about the
a priori class probabilities is required.

e The algorithm is tested using a wide variety of im-
agery. For the provided test set, the number of textures
per image ranges from two to seven, many of the tex-
tural boundaries are not straight, the number of pixels
per class varies, disjoint regions of the same texture
exist, and textures are sometimes visually similar. All
of these aspects make the texture segmentation prob-
lem far more challenging, and the KIF algorithm works
successfully in all cases.

e The algorithm is an improvement over published tex-
ture segmentations. Most of the images used have been
included in previous publications. The binary hierar-
chical KIF algorithm is consistently an improvement
over these published images in terms of percent accu-
racy and computational performance.

o The identical algorithm is used for all test cases. Ab-
solutely no tweaking of the algorithm is performed on
an image to image basis.

e It is relatively computationally efficient. The KIF
method, implemented in a binary hierarchical frame-
work, is able to subdivide the feature set into appro-
priate classes. It is an improvement on using a Hubert
modified index since it does not have to operate on
the full set of feature vectors for as many classes in

the image. It is an improvement on neural network
methods that cluster a feature vector subset to meet
appropriate computational requirements.

e [t provides a non-parametric solution. The KIF algo-
rithm assumes no a priori assumptions about the prob-
abilistic nature of the clusters. This is an advantage
over algorithms (e.g. Autoclass) that require such a
priori assumptions.

3. Design of binary hierarchical KIF algorithm

Here, the design of the binary hierarchical KIF algo-
rithm will be described. To motivate the basis of the de-
sign, the KIF algorithm will first be described (Section
3.1). KIF alone provides a mixture resolving [1] solu-
tion for the clustering problem i.e. number of classes are
known. Then, KIF is expanded into a binary hierarchi-
cal framework to define a wholly unsupervised clustering
solution (Section 3.2). Three constraints will be imposed
on the clustering algorithm. Simultaneously achieving all
of these constraints in the context of image texture seg-
mentation is quite difficult. However, to address generic
texture segmentation, achievement of these constraints is
important. These constraints are:

(i) No a priori knowledge of the class cluster distribu-
tion is known. In fact, each cluster may be repre-
sented by a different distribution.

(ii) No apriori assumptions can be made about the num-
ber of samples that belong to each class.

(iii) No a priori knowledge of the number of classes is
available.

3.1. Mixture resolving KIF implementation

The following three steps are used to perform the mix-
ture resolving KIF algorithm.

Step 1: The K-means algorithm is used to find the cen-
troids of each of the classes (number of classes known).
If the clusters are fairly well represented then the cen-
troids should be found and a general description of the
segmentation generated.

Step 2: The estimates of the class parameters (mean,
covariance) derived from the K-means class assignment
estimates are used to produce a Fisher linear discrimi-
nant solution (FLD) [2]. The FLD will correct the class
variance estimates, and produce an improved class rep-
resentation.

Step 3: Since it is not certain that the covariances have
been fully corrected following only one pass of the FLD,
the clusters are improved incrementally by applying the
FLD iteratively (iterative FLD or iFLD).

This approach of applying K-means first followed by
iFLD will be referred to as the KIF (K-means Iterative
Fisher) algorithm. The advantage of KIF is illustrated in
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Fig. 1. Unsupervised classification of classes with different
covariance matrices. Iterative FLD is able to improve on the
classification generated by the K-means algorithm.

Fig. 1. Here, the K-means algorithm finds the means of
the two class clusters, but the minimum Euclidean dis-
tance classifier erroneously assigns samples. The itera-
tive Fisher linear discriminant (iFLD) generates a more
appropriate separation of the classes using the estimated
class covariances.

The FLD is determined by optimizing the Fisher cri-
terion:

@ Sgw
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(1)
where Sg and Sw are the between-class and within-class
scatter matrices. The greater the Fisher criterion, the
larger the weighted distance between the class cluster
pair. To project onto a one-dimensional space, Sg and
Sw are defined as

Sg = (my, — my)(m; —my)"

and

Sw =381+ 85,

where

S,fﬁz:(x m;)(x —m;)".

xeCy

The numerical subscripts represent one of the two
classes under analysis. Unlike Duda and Hart, here the
within-class scatter matrices (S;) are weighted by the
number of class samples to correct for unequal class sizes.
The optimal  is

w:S\;l(ml —m).

The FLD is an appealing separability index since it is
non-parametric in nature i.e. it does not assume a cer-
tain distribution, unlike other common measures which
assume a normal class distribution.

The FLD can be implemented to generate a pro-
jection of a pair of n-dimensional clusters onto a
one-dimensional vector. The projection provides an op-
timal separation of the two clusters. Then, a maximum
likelihood classifier can be used where, in this case, there
are sufficient samples to describe each one-dimensional
Gaussian distribution. Only two classes can be compared
at a time using the one-dimensional projection, so, to
determine whether a sample belongs to one of C classes,

(g) comparisons are made. Using all comparisons, a

sample assigned to a particular class the greatest number
of times is the class to which the sample is assigned.
Sometimes, two (or more) classes are assigned an equal
number of times. Unresolved pixels are typically found
on the boundaries separating textures. These pixels are
appropriately assigned to the class according to the
assignment of its spatially nearest pixel.

When do the iterations (Step 3) of the iFLD cease?
As in any clustering problem, ascertaining when the op-
timal separation occurs is difficult. Here, the average of
all class-pairwise Fisher distances is used as an indicator.
The iterations stop when the average decreases. How-
ever, experience indicates that only a few iterations are
required to correct for the class variances, so the maxi-
mum number of iterations is set to five.

Two methods were considered for generating the seeds
for the K-means algorithm. Given no other information
about the image, a suitable starting point is the first sam-
ples found in the image (beginning at the top left hand
corner). Due to the assumed image periodicity created
with discrete time forward and inverse FFTs used to gen-
erate the Gabor features, these seeds have the potential
to lie near a boundary between numerous distinct tex-
tures (from each corner of the image). Another suitable
starting point is to evenly space the seeds throughout the
feature set. Given that textures are locally based, spread-
ing out the seed points can provide appropriate starting
points for identifying clusters. Since the second method
tended to produce better results, it is used for all testing
presented here.

3.2. Unsupervised clustering using a divisive
hierarchical tree

Determining the total number of classes in any given
feature set is a difficult problem [20]. In this section, the
mixture resolving KIF algorithm will be extended into a
fully unsupervised algorithm, the binary hierarchical KIF
algorithm. When performing unsupervised clustering, an
inter-cluster distance measure is required to determine
whether a cluster is an independent class or is a subset
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Fig. 2. Demonstration of binary hierarchical clustering. (a) Initial state of unclustered system. (b) Splitting of clusters into two distinct
classes. (c¢) Class A cannot be split. Cluster BC is split into two distinct classes. (d) Classes B and C cannot be further subdivided.

of another class. The Fisher criterion provides such a
measure (Eq. (1)).

A means to determine when the correct number of
classes has been reached is required. A first attempt to de-
termine the correct number of classes was performed by
incrementing the number of classes from two and solv-
ing the entire set of feature vectors for each increment.
Some measure then indicates when the correct number
of classes has been reached. For example, Jain and Far-
rokhnia [8] implemented the modified Hubert index for
this task. The average class pairwise inter-cluster Fisher
criterion could also be used to perform the same task.
With each increment of the number of classes, one of
the following should occur: (a) a distinct class is iden-
tified from a larger grouping of clusters (desirable), (b)
a cluster of classes is split into a pair of subclusters
(desirable), or (c) a single class is split (undesirable).
This method proved awkward because the most separa-
ble classes are not always the first classes identified by
the K-means algorithm, so to determine when the algo-
rithm should stop is difficult. In addition, single complex
textures might be split before two distinct yet similar
classes are separated and a method to determine when
this would happen is not known. When multiple classes
are considered, the average inter-class Fisher distance is

not an appropriate method to indicate when the itera-
tions should stop since, although the average inter-class
distance may drop, the best segmentation may not have
been achieved. Another problem with this approach is
that the entire system must be solved as many times as the
number of determined classes, which is computationally
intensive.

A more appropriate framework to determine the num-
ber of classes using KIF is a binary divisive hierarchical
approach. Consider the case of three distinct classes in a
two-dimensional feature space (Fig. 2). At the top node
of the binary hierarchical tree, two classes are assumed.
Applying KIF to the entire feature set generates clusters
A and BC. The Fisher discriminant combines clusters B
and C so that their joint projection resembles a single
class on the A-BC discriminant. This projection gener-
ates a large Fisher criterion, which will allow the algo-
rithm to proceed by assuming that A and BC are distinct.
Then, KIF is applied in order to each of the two clusters,
A and BC, to attempt to split them up. The splitting of
the single cluster A generates a low Fisher criterion so
cluster A is left as an individual class. The BC cluster is
easily separated due to a large Fisher criterion. Here, the
tree can proceed to the next level and try to separate
the two clusters B and C. As when A was considered,
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the splitting of B and C generates low Fisher distances
and they are left as individual classes. The final cluster-
ing identifies A, B, and C as individual classes. Interest-
ingly, this method is also able to determine if there is
only one texture class in the image.

If the clusters are well separated in the feature space,
there will exist a range of acceptable Fisher distances
that can be used to generate an accurate unsupervised
segmentation. Let 7 denote the threshold value. If 7 is
set below the minimum of the range, then classes that
should not be split will be split. If 7 is set above the
maximum of the range, then clusters that should be split
into classes or subclusters will not be split. By setting 7
to any value in the correct range, the segmentation will
proceed properly. If all textures in the image are highly
separable and well clustered then 7 has a large range.
Setting 7 is a function of the quality of the feature vectors
and the type of imagery being analyzed.

Fig. 3 summarizes the steps involved with performing
the binary hierarchical KIF clustering algorithm. A stack
data structure is used to store clusters. First, the feature
extraction is performed. Then, the first cluster (repre-
sented by all the feature vectors) is placed on the stack.
This item is popped and the KIF algorithm is used to try
to split all the clusters into two. If the resulting Fisher
criterion is larger than 7, then the cluster is split into two
clusters as defined by the FLD. These clusters are placed
on the stack. If T < 7, then the current cluster is deemed
to be a single class. This process is continued until there
are no longer any clusters on the stack.

The binary hierarchical KIF satisfies all three con-
straints proposed at the start of this section. Since
K-means and FLD are both non-parametric in nature,
no a priori assumptions of the class cluster distributions
are made. The algorithm is able to perform without con-
sidering the expected number of samples per class. The
binary hierarchical component of the algorithm is able
to determine the number of distinct classes.

Recall the definition for texture indicated in the intro-
duction. The term “homogeneous” is based on the rel-
ative nature of the textures as perceived by the viewer.
This aspect is something that is learned by humans. How-
ever, we must indicate to the computer some parameter
or threshold that provides an indication to the computer
about what identifies unique textures. This homogeneity
parameter is indicated by 7. This is the only parameter
that must be set by the user to implement the binary hi-
erarchical KIF algorithm.

4. Testing methodology

To solve the general texture segmentation problem,
discriminating texture features are required. Gabor fil-
ters are used here to produce such features. Many pa-
pers demonstrate the usefulness of Gabor filters for the

START

v

Perform feature extraction.

v

Assume all feature vectors
belong to the same cluster,
asafirst guess. Place
cluster on stack.

v

Pop next cluster on stack.
Attempt to split this cluster
into two clusters.

v

Perform KIF.
Step 1: run k-means (no.
of clusters equal to 2)
Step 2: run iterative Fisher
linear discriminant until
Fisher criterion begins
decreasing or no. of
iterations exceeds five

A\ 4

Split cluster into ¢
two clusters. ¢
Place each cluster
on the stack.

N
Ist>T7?
YE!

v NO

Current cluster isasingle
class.

v

Any remaining clusters on
the stack?

*NO

END

Fig. 3. Binary hierarchical KIF clustering algorithm. See text
for details.

YES

purpose of texture segmentation (see Section 2). Here,
an appropriate Gabor feature set is determined by fol-
lowing an experimentally determined preferred filter set
[21]. A preferred set of features is generated by using a
filter bank with 30 degree filter spacing and bandwidth
and octave spacing and bandwidth. Magnitude outputs
are generated and Gaussian smoothing of the texture fea-
ture maps is performed. For a 256 X256 image, only four
higher octave bands are used (8v2, 16v2, 32+/2, and
64v/2 cycles per image). The DC gain is set to zero to
prevent contribution of the average grey level to the tex-
ture discrimination [8].

Seven test images are used to demonstrate the robust-
ness of the KIF algorithm. Five of the images are pulled
from the existing literature and the other two are created
to demonstrate certain aspects of texture segmentation.
The first six images are dimensioned to 256x256 pixels



D.A. Clausil Pattern Recognition 35 (2002) 1959-1972 1965

Table 1

Completion times (minutes and seconds) and classification accuracies for using the mixture resolving KIF and binary hierarchical
KIF algorithms for each image. Acceptable ranges of 7 are included for the KIF case. Completion times and classification accuracies
are provided from the original publication for each image. This information was not always provided in the original paper

Mixture resolving

Binary hierarchical KIF Published results

KIF

Total  Accuracy Total  Accuracy Range of ¢ Total Accuracy

time (%) time (%) time (%)
Image class (sinusoidal boundary) 3:59 964 7:48  96.4 7.46-13.1 New image
Image class (straight boundaries) 3:46 953 9:19 9438 9.51-12.3 New image
Image #3—Bigun & du Buf [23] 5:57 947 11:39 939 9.80-14.9 N.P. N.p.2
Image #4—Mao & Jain [17] 3:08 95.1 9:37 973 10.5-16.3 >1h 94.2b
Image #5—Jain & Farrokhnia [8,17,24] 11:27 947 12:08 94.8 11.4-13.9  54:24 [24] °
Image #6—Krishnamachari & Chellappa [25]  3:41 90.6 9:12 933 9.41-9.91 N.P. 85.5
Image #7—Unser [9] 0:18 942 0:53 957 6.49-12.8  N.P. N.P.

aN.P. indicates “not provided”.

bIndicates best result of ten based on training 1000 randomly selected feature vectors.
“Results for this example are not comparable since the published results identified only five classes instead of six. See text for

details.

and the final image is 128 x 128 pixels. Both the mixture
resolving KIF and binary hierarchical KIF segmentations
are presented for each image. Mixture resolving is per-
formed by giving the correct number of classes to the
KIF algorithm. Wholly unsupervised segmentation uses
the binary hierarchical KIF algorithm by setting the 7
parameter to an appropriate value.

5. Segmentation of test images and results

A summary of the results for each test case is pre-
sented in Table 1. This table provides an indication of
the computational duration for each test, its segmenta-
tion accuracy, the appropriate range of 7 necessary to
produce an unsupervised segmentation (for the binary
hierarchical KIF), and a comparison to the results in
the paper where the image was originally published.
Such information was not always provided in the orig-
inal publication (denoted by N.P. in Table 1). The
algorithm duration is dependent on the number of it-
erations required to achieve a stable solution (for both
K-means and iFLD) and the number of feature vectors
processed. Tests were performed on a Sun Sparc Ultra
1 200E (200 MHz, 128 Mbytes RAM, 322 SPECint,
462 SPECAp). Total times provide a relative assessment
of the mixture analysis and binary hierarchical KIF
algorithms.

5.1. Image 1—bipartite image with sinusoidal
boundary

The first test image (Fig. 4a) is a bipartite Brodatz
[22] image containing the textures cork (D4) and cotton

(D77) separated by a sinusoidal boundary. Fig. 4b repre-
sents the segmentation obtained using only K-means and
Fig. 4c illustrates the unsupervised segmentation using
KIF. Since only two textures are considered, the mixture
resolving KIF and binary hierarchical KIF approaches
produce the same segmentation (both represented by Fig.
4c). Classification accuracies and completion times (in
brackets) are 96.4% (3:59) and 96.4% (7:48) for the mix-
ture analysis KIF and binary hierarchical KIF, respec-
tively.

Comparing Fig. 4b and c illustrates the ability of the
iFLD to improve the segmentation obtained by K-means
alone. The tips of sinusoids are not accurately identified
(Fig. 4b) when only K-means is used. The erroneously
assigned pixels are found close to the boundary separat-
ing the two clusters in the feature space. K-means, using
Euclidean distances alone, is unable to properly identify
such pixels, however, the iterative FLD is able to account
for the hyperellipsoidal shapes and produce an accurate
cluster separation. The methodology readily segments the
image accurately. For the unsupervised approach, the al-
lowable range of 7 is [7.46—13.1]. Any value of 7 in this
range is able to perform wholly unsupervised and accu-
rate image segmentation.

5.2. Image 2—four class image

Here, the complexity of the texture segmentation is
increased compared to the first image by using an im-
age with an increased number of textures, a pair of sim-
ilar textures, a pair of vague textures, and textures with
varying textural resolutions. The test image (Fig. 5a)
contains four Brodatz textures (corK-D4, cotton-D77,
paper-D57, and raffia-D84) each with different textural
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(b)

(c)

Fig. 4. (a) Image 1—two class Brodatz image with textures separated by a sinusoidal boundary. (b) K-means generates a result
with an imperfect boundary. (c¢) KIF clearly improves this result.

(b)

(©)

Fig. 5. (a) Image 2—four class Brodatz image. (b) Mixture resolving. (c¢) Binary hierarchical KIF methods are both successful.

resolutions. The cork and paper (on the left hand side)
are poorly defined and quite similar in nature, especially
compared to the cotton and raffia. Recall that the DC
component of the Gabor filter is set to zero so that the av-
erage grey level does not play a role in the segmentation
process.

Whether mixture resolving KIF (Fig. 5b) or the hier-
archical KIF clustering (Fig. 5¢) approach is used, the
textures are clearly discriminated. Some error exists be-
tween the paper and cork textures, however, upon inspec-
tion of the image, the boundary between the textures is
noticed to be poorly defined in these erroneous areas. If
the observer did not know beforehand that the boundary
between these two classes was a horizontal line, it would
be difficult to identify. The range of acceptable 7 to per-
form an unsupervised segmentation is [9.7-12.3]. The
classification accuracy for each of mixture resolving KIF
and hierarchical KIF are approximately the same: 95.3%
and 94.8%, respectively. Completion times are 3:46 and
9:19.

Table 2 indicates the ability of 7 to parallel human
distinction of the textures. This table is a matrix rep-
resenting all class pairwise t values produced from the
clusters derived by the mixture resolving KIF analysis.

Table 2

Matrix of t values for mixture resolving KIF segmentation of
Image 2 (Fig. 5). The smallest t represents the two textures that
are the most similar (paper and cork). Cotton, a very distinct
texture, has large 7’s with respect to the other three textures

Cotton Paper Raffia Cork
(top-right) (bottom- (bottom- (top-left)
left) right)
Cotton — 32.8 28.4 28.8
(top-right)
Paper — — 18.9 11.9
(bottom-left)
Raffia — — — 42.7
(bottom-right)
Cork — — — —
(top-left)

Small 7’s should indicate that the textures are similar and
large 7’s should indicate that the textures are distinct.
Cork and paper are the most visually similar pair of tex-
tures and their 7 value (11.9) is the lowest in the ma-
trix. Cotton is the most distinct texture and has larger t
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(©)

Fig. 6. (a) Image 3—seven class Brodatz image. (b) Mixture resolving has a successful segmentation. (c) Binary hierarchical KIF

improves the class distinctions at textural boundaries.

(9]

Fig. 7. (a) Image 4—four class Brodatz image. (b) Mixture resolving generates a successful segmentation. (c¢) Binary hierarchical

KIF improves the class distinctions at the textural boundaries.

values with respect to each of the other classes. Similar
results were noted for the rest of the test images, indicat-
ing that T does provide a measure of the distinctiveness of
textures.

5.3. Image 3—Bigun and du Buf seven class image

Adding more textures to the scene and placing the
same texture in different locations provides additional
complexity for texture segmentation. Bigun and Du Buf
originally published the image represented in Fig. 6a
[23]. Seven Brodatz textures are combined in a 16-patch
mosaic so that each texture’s boundary touches each of
the others at least once. One texture is noticeably complex
and the rest have regular patterns. Different textural res-
olutions are apparent. Horizontal boundaries are straight
and vertical boundaries are generated by a random
walk.

Visually, the binary hierarchical KIF approach
(Fig. 6c) generates a segmentation that is marginally
better than the mixture resolving KIF approach (Fig.
6b). For the unsupervised approach, 7 has a range of
[9.9-14.9]. This segmentation compares quite well with

the segmentation produced by Bigun and du Buf (both
are successful). Unfortunately, Bigun and Du Buf do
not provide classification accuracies in the paper so that
quantitative comparisons are not possible. Classification
accuracies and completion times (in brackets) for the
mixture resolving KIF and binary hierarchical KIF algo-
rithms are 95.1% (5:57) and 93.9 (11:39), respectively.

5.4. Image 4—Mao and Jain four class image

This image (Fig. 7a) appeared in Ref. [17]. The follow-
ing Brodatz textures are found in the image: wood (D68),
straw matting (D55), raffia (D84 ), and cotton (D77). The
segmented image in Fig. 7b (mixture resolving KIF) has
appropriate segmentation except that the boundary be-
tween the cotton and the straw matting is classified as
raffia. The same type of error occurs in the segmentation
performed by Mao and Jain. However, the binary hier-
archical KIF segmentation (Fig. 7c) is an improvement
over the mixture analysis KIF (Fig. 7b) and Mao and
Jain’s solution (their Fig. 10e) since this boundary error
is corrected. The acceptable range for 7 to perform the
binary hierarchical KIF is [10.5-16.3]. The classification
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Fig. 8. (a) Image 5—five class Brodatz image. (b) Mixture resolving result if five classes are assumed. (¢) Mixture resolving result
if six classes are assumed. Herringbone texture will be segmented into two classes because Gabor filtered features are directionally
sensitive. (d) Binary hierarchical KIF identifies six classes (unsupervised segmentation). Segmentation in (d) is an improvement

over that in (c).

accuracy of the mixture analysis KIF and binary hierar-
chical KIF algorithms are 95.1% and 97.3%, respectively
(with completion times of 3:08 and 9:37). Mao and Jain
report classification accuracy of 94.2% for the identical
image using the best result of ten trials that require se-
lection of 1000 random feature vectors for training the
neural network. Their solution takes approximately 1 h
on a Sun Sparc 10 workstation (no clock speed provided)
using their neural network designed for hyperellipsoidal
clustering.

The binary hierarchical KIF algorithm generally
breaks down the image by determining the most dis-
tinct texture first, the second most distinct texture next,
etc. Here, for example, the scheme identifies cotton and
groups the other three classes in the first step in the
hierarchical process. Then, wood is identified from the

remaining two textures. This is appropriate since cotton
and wood are more distinct relative to the other two
textures.

5.5. Image 5—Jain and Farrokhnia image

The fifth image tested (Fig. 8a) was originally pub-
lished by Jain and Farrokhnia [8] and subsequently pub-
lished in the texture segmentation realm by Mao and Jain
[17] and Chang et al. [24] also using Gabor filters to gen-
erate the texture features and an unsupervised clustering
scheme. This image contains five Brodatz textures: cot-
ton (D77), straw matting (D55), raffia (D84), herring-
bone (D17), and calf leather (D24).

Relative to the segmentations generated by the other
researchers, an interesting result is obtained. The binary
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(c)

Fig. 9. (a) Image 6—four class Brodatz image with variety of boundary types and a variety of textures. (b) Mixture resolving KIF
performs fairly accurate segmentation, however, the lower boundary of the grass texture is confused. (c) Binary hierarchical KIF is
an improvement over (b) with reduced confusion of the lower grass boundary.

hierarchical KIF (Fig. 8d) automatically splits the her-
ringbone texture (located in the bottom right hand corner)
into two segmented regions: one region for the 45-degree
grating and a separate region for the 135-degree grating.
Due to symmetry and our higher understanding, we view
the herringbone texture as one uniform texture. How-
ever, if using Gabor filters that are sensitive to orienta-
tion, one should expect a wholly unsupervised algorithm
to split the herringbone texture into two separate tex-
tures. A 45-degree Gabor filter at the proper frequency
responds strongly to the grating in the 45-degree direc-
tion. Similarly, a 135-degree Gabor filter set at the proper
frequency is tuned to the 135-degree grating. As a result
of filters having orientation sensitivity, separate clusters
appear in the feature space for these two regions within
the herringbone texture. In the unsupervised clustering
algorithm presented here, the expected segmentation is
obtained (Fig. 8d). Texture segmentations in Jain and
Farrokhnia [8], Mao and Jain [17] and Chang et al. [24]
do not subdivide the herringbone texture, as would be
expected from an unsupervised algorithm and orientation
sensitive features.

When five classes are assumed in the mixture re-
solving KIF case, then Fig. 8b results. Here, one strip
of the herringbone texture is identified and the other is
grouped with the raffia texture. Indicating six classes
(Fig. 8c) properly segments the image, according to
the characteristics identified by the Gaborian features.
The binary hierarchical KIF approach produces vi-
sually better results than the mixture resolving KIF
approach.

The classification rates for the six-class segmentations
of the mixture resolving KIF and binary hierarchical KIF
are 94.7% and 94.8%. The classification accuracies ob-
tained here cannot be directly compared to classification
accuracies obtained by the papers that perform segmenta-
tion on the same image since their solution does not sub-
divide the herringbone texture. For the record, here is a
summary of their results for a five-class segmentation of

this image. Jain and Farrokhnia obtained a classification
rate of 95.13% (when pixel coordinates were not used as
features). Chang et al. report accuracies of 85.04% and
an average run time of 54.4 min on Sun Ultra Sparc (no
clock speed indicated). Mao and Jain reported a classifi-
cation accuracy of 97.1% for their best result of ten tests
using 1000 randomly selected training patterns. Their so-
lution took about an hour on a Sun Sparc 10 worksta-
tion (no clock speed indicated) using the neural network
clustering algorithm. In comparison, the solutions by the
mixture analysis KIF and binary hierarchical KIF take
about 12 min each.

5.6. Image 6—Krishnamachari and Chellappa four
class image

This image (Fig. 9a), originally published by Krish-
namachari and Chellappa [25,26], provides a variety of
textures and boundary shapes. Textures used are grass
(D9), calf leather (D24), wool (D19), and wood (D68).
Note that the wool texture appears in three separate
regions. Their segmentation technique uses a multireso-
lution Gauss-Markov random field (GMRF). The seg-
mented images for mixture analysis KIF and the binary
hierarchical KIF are represented in Figs. 9b and c, re-
spectively. Both segmentations perform a fairly accurate
segmentation, however, both confuse the lower bound-
ary of the grass texture with the calf leather texture.
However, these two segmentations are quite strong rel-
ative to the segmentations produced by Krishnamachari
and Chellappa. In their work, the lower grass boundary
is accurately identified, but the regional approximations
within the grass, wool, and calf have local regions that
are assigned to the wrong class. The visual segmentation
differences between the two methods are probably a re-
sult of using different feature extraction methods (Gabor
filtering versus GMRF). They report a classification rate
of 84.54%. Here, the classification rates and total time
required (in brackets) for each of mixture resolving KIF
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Fig. 10. (a) Image 7—four class MRF image. (b) Mixture resolving KIF and (c) binary hierarchical KIF segmentations.

and binary hierarchical KIF are 90.6% (3:41) and 93.3%
(9:12).

5.7. Image 7—Unser four class image

Unser used this image (Fig. 10a) to demonstrate a
wavelet-based texture segmentation method [9]. Four
Markov random field (MRF) textures are represented.
To demonstrate that the binary hierarchical KIF algo-
rithm is able to work with other feature sets, this image
is segmented using co-occurrence texture features [4].
Briefly, the co-occurrence method involves determining
the probabilities of grey level pairs at certain relative
distances and relative orientations within a fixed size
image window. Features are determined by applying
statistics to the probabilities. Here, the nearest neighbor
pixels at orientations 0°, 45°, 90°, and 135° are used to
create the probability sets. Then, the statistics contrast,
correlation, and entropy are used to generate the texture
features, as defined in Ref. [27]. The window size is
16x16. A linked list technique is used to rapidly extract
co-occurrence texture features on a pixel-by-pixel basis
for the entire image [27].

The clustering algorithms are easily able to work
with the co-occurrence feature set. Mixture analysis KIF
(Fig. 10b) and the binary hierarchical KIF (Fig. 10c)
are both able to accurately segment the image, except
for the boundary separating the lower two textures.
This same type of error is noticeable in Unser’s results
as well, however, the mixture analysis KIF and binary
hierarchical KIF techniques are better able to classify
other regions in the image. The classification rates are
94.2% and 95.7% for each of mixture analysis KIF and
binary hierarchical KIF with completion times of 0:18
and 0:53. Unser does not provide a classification rate.

5.8. Results summary

Table 1 indicates that, for each segmentation, the mix-
ture resolving KIF technique is completed in less time
than the binary hierarchical KIF. The trade-off is that the
mixture resolving technique requires a priori knowledge

of the number of classes, while the binary hierarchical
method does not. Classification accuracies are all strong
(in the mid-90s). In four of seven images with segmenta-
tion accuracies, the binary hierarchical KIF had a higher
classification rate than the mixture resolving KIF method.

The value of 7 required to perform wholly unsuper-
vised image segmentation is consistent from image to
image. In fact, a 7 value of 12 will segment six of seven
images (all but Image 6). If a 7 value of 12 is used for
Image 6, then the grass and calf leather images are con-
sidered to be a uniform texture i.e. only three classes are
determined for the image. This is not an unusual result
since the grass and calf leather are quite similar in ap-
pearance. It is expected that, for similar sets of imagery,
consistent values of 7 can be used to segment the images
accurately.

6. Discussion and conclusions

A successful method for segmenting textured im-
ages has been developed and demonstrated. This KIF
(K-means Iterative Fisher linear discriminant) algorithm
is a two step process. K-means is used to estimate the
class prototypes indicated by the dense groupings. Class
assignments based on the K-means result are used as
an estimate for the class covariance. This information is
used in an iterative class-pairwise Fisher linear discrim-
inant to improve the classification. This technique can
be utilized in two ways. A mixture analysis approach
requires knowledge of the number of classes to solve
the whole system at once. Also, when the KIF method-
ology is incorporated in a binary hierarchical clustering
algorithm, a robust unsupervised segmentation is per-
formed that does not require knowledge of the number
of classes. A Gabor filter bank is used to generate the
texture features for the first six images. To demonstrate
the versatility of the clustering algorithms, co-occurrence
probability texture features are used for the final image.

The mixture resolving KIF and binary hierarchical KIF
are advantageous since they are non-parametric, require
only a single parameter, and do not require any a priori
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assumptions about the number of samples per class. The
7 value (i.e. the Fisher criterion) represents the weighted
distance between two clusters in the feature space. This,
in turn, has a direct relationship on the visual distinc-
tiveness of the textures representing each cluster. Large
7 values generally indicate that the textures are visually
distinct and small 7 values indicate that textures are vi-
sually similar.

Seven test images that contain a variety of boundary
shapes and texture characteristics are used. Accurate seg-
mentations are generated using both the mixture resolv-
ing KIF and binary hierarchical KIF algorithm. Note that
identical unsupervised algorithms are used for the texture
segmentation in every case. No tweaking of the algorithm
is performed to achieve the successful segmentations—
exactly the same feature extraction and segmentation al-
gorithms are used in each case. For wholly unsupervised
segmentation, a common value of 7=12 can be used
for each case to produce proper segmentations. The seg-
mentations performed using this algorithm are at least
as strong and often better than the previously published
segmentations.

The KIF algorithms are useful when compared to other
algorithms used to cluster texture features for the purpose
of image segmentation. KIF is a demonstrated improve-
ment in the clustering over K-means. ISODATA requires
the setting of many different parameters whereas the mix-
ture resolving KIF requires setting only the number of
classes and the binary hierarchical KIF requires only set-
ting of 7. Computationally, neural networks generally re-
quire considerable computational overhead compared to
the KIF algorithms.

Future work will be performed in the following areas.

e Since K-means is sensitive to the choice of the initial
seeds, it may generate inappropriate solutions. A more
robust method of determining the true dense regions
in the feature space is desirable. The Equitz algorithm
will be investigated for this purpose [28].

e The iterative FLD requires the most computational ef-
fort within the KIF algorithm. For each iteration, the
within-class scatter matrix must be determined and its
inverse calculated (Sy,'). However, when each scatter
matrix is recalculated, only a small percentage of the
class feature vectors are added to or removed from the
class. To accommodate this, it is possible to create a
closed form solution for updating Sy ', to reduce the
computational demands.

e To improve the computational requirements, it is pos-
sible to use features obtained from every fourth pixel
(every other pixel in the x and y directions) for the
analysis. Once the Fisher discriminants are obtained,
they can be used to classify all pixels in the image. For
some applications, it may be appropriate to spatially
subsample the feature vectors and obtain accurate re-
sults to reduce computations.

e Given that texture boundaries are smoothed out when
Gaussian smoothing is applied to the feature images,
adaptive smoothing techniques might be better able to
smooth the image without affecting the high contrast
regions. This is appealing to increase the segmentation
accuracy, however using adaptive filters would have a
significant computational overhead when compared to
the current linear smoothing.
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