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KPAC: A Kernel-Based Parametric Active Contour
Method for Fast Image Segmentation

Akshaya Mishra and Alexander Wong

Abstract—Object boundary detection has been a topic of keen
interest to the signal processing and pattern recognition com-
munity. A popular approach for object boundary detection is
parametric active contours. Existing parametric active contour
approaches often suffer from slower convergence rates, diffi-
culty dealing with complex high curvature boundaries, and are
prone to being trapped in local optima in the presence of noise
and background clutter. To address these problems, this paper
proposes a novel kernel-based active contour (KPAC) approach,
which replaces the conventional internal energy term used in
existing approaches by incorporating an adaptive kernel derived
for the underlying image characteristics. Experimental results
demonstrate that the KPAC approach achieves state-of-the-art
performance when compared to two other state-of-the-art para-
metric active contour approaches.

Index Terms—Boundary extraction, kernel, parametric active
contour.

1. INTRODUCTION

OBUST identification of object boundaries in the pres-
R ence of noise and background clutter has many important
applications in biomedical engineering [1], [2], visual tracking
[3], content based image and video retrieval [4], video seg-
mentation [5], and image composition [6]. A popular approach
to object boundary detection are those based on active con-
tours [7]-[14]. Existing parametric active contour approaches
iteratively evolve a deformable model to minimize the sum
of internal and external energies of the model to obtain an
optimal curve representing the object boundary. The internal
energy enforces a penalty on the slope and curvature of the
object boundary, while the external energy pulls the deformable
model towards the object boundary. Many variations of the tra-
ditional active contour approach [7] proposed have focused on
increasing the capture range [15]-[19] of the traditional active
contour approach. Further, PCA based training [20] has been
attempted to avoid initialization and capture range problem.
There are three major challenges currently faced by para-
metric active contour approaches for object boundary detection.
The first major challenge deals with slow convergence rate, par-
ticularly when faced with complex imagery. The second major
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challenge deals with the presence of image noise contamination
and background clutter, which can lead to poor boundary de-
tection accuracy due to convergence to local optima. Third, ex-
isting approaches have difficulty dealing with complex high cur-
vature boundaries. To address these issues, this paper proposes
anovel kernel-based parametric active contour (KPAC) method,
that shares the same underlying theory of traditional deformable
models. However, instead of employing penalties on slope and
curvature as an internal energy, which are highly sensitive to
noise and handles high curvature boundaries poorly, KPAC in-
troduces an adaptive non-stationary kernel, derived from the un-
derlying image characteristics, as the internal energy of the de-
formable model. This approach allows the faster and more ac-
curate convergence by adapting to the underlying image char-
acteristics, particularly under situations characterized by noise
and complex high curvature boundaries.

II. PARAMETRIC ACTIVE CONTOUR THEORY

The seminal work on parametric active contour [7] defined
the active contour as an energy minimizing deformable model
v(s) = (z(s),y(s)), s € [0,1], with normalized arclength s.
The goal is to evolve the deformable model to minimize the
energy functional
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where v5(s) and vss(s) are the first and second derivatives of
v(s) with respect to arclength s, and the parameters «(s), 3(s)
and (s) are the penalties on slope, curvature and the external
force, respectively.

The internal energy, representing the prior, is a weighted sum
of elastic and membrane energies, whereas the external energy
is computed from the image I in a manner dependant upon the
application. Typically, as the object boundaries coincide with
image edges, the external energy is made a function of the image
gradient (¢) such that the contour could converge to the bound-
aries,

Eewr = ¢*(I) = (6Go + T)* )

where x* is the convolution operator and §G,, is the first-order
Gaussian derivative.

Using the Euler-Lagrange equation, the minimization of (1)
in vector and matrix format can be expressed as

AX+fX<X7Y):0/ Ay‘i‘fy(X/y):O (3)
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where A is a pentadiagonal banded matrix, and f, and f, are
partial first derivatives of F.,; w.r.t. x and y respectively. The
iterative solution to (3) using gradient descent optimization can
thus be expressed as

x¢ = (A+ D)7 (%1 — fu(e1,91-1)) 4)

and

v = (A+~7D) Hyio1 — fy(ze1,9-1)). (5

There are two major issues associated with this formulation: 1)
slower convergence rate, 2) inability to converge towards high
curvature boundaries, and 3) sensitive to local minima under
noise and clutter. While methods have been proposed to deal
mainly with convergence speed [15], [16], it is important to
deal with all three issues concurrently to achieve accurate object
boundary detection under various situations. Therefore, to ad-
dress these issues, KPAC dynamically derives a non-stationary
kernel from the underlying image characteristics to account for
noise, clutter, and complex high curvature boundaries, as well
as better attract the initial contour that is far from the desired
solution to improve convergence speed.

III. KERNEL-BASED PARAMETRIC ACTIVE CONTOUR (KPAC)

The proposed KPAC approach can be described as follows.
Let v € [x,y] be a deformable model. At the equilibrium [7],
when v lies at the boundary of the object,

Bv+ f(v)=0 (6)

where the matrix B defines some internal constraints that de-
fines the properties of the object boundaries, while f = [f., f,]
defines some external constraints that ties the boundary to the
object boundaries. Therefore, in object boundary detection, the
goal is to evolve v such that (6) is satisfied. Rather than defining
an internal constraints matrix B in a stationary, static manner
like previous approaches, which is prone to being trapped in
local optima under noise, clutter, and complex high curvature
boundaries, we instead reformulate the evolution of v to intro-
duce an adaptive non-stationary kernel K; to enforce different
constraints depending on the underlying image characteristics:

vi =K (vie1 = f (vi-1)) - @)
The individual components of v; = [X;, y:] are define by:

xp = Ki (X¢—1 — f (%4-1)) - @)
and

Vi =K (yi—1 — [y (yi-1)) 9

where f, = dg/dy and f, = 90g/dy. Present active contour
evolution literature uses a stationary kernel equivalent to
Ki=(A+~D) " (10)

that is derived from local neighborhood of each snake coordi-
nates. However, we want a kernel that account for both global

feature image features and local spatial features. Therefore, es-
sentially, we need an adaptive kernel K that dynamically ad-
justs the constraints being asserted based on the local neighbor-
hood image characteristics, when the image gradient used by
the external energy is insufficient to define the object bound-
aries. To account for the aforementioned issues associated with
noise, clutter, complex high curvature boundaries, and conver-
gence speed, we introduce an adaptive kernel K for a particular
pixel v; € vy that is a product of three different penalties based
on local image characteristics of its ¢ neighbors: 1) penalty on
gradient deviation (), 2) penalty on spatial deviation (¢), and
3) penalty on intensity deviation (¢):

Yot (9)6 o) @1 (inf)
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where 04, (v,_1)> Ove_y» and o7,_,(v,_,) are regularization
constants for the individual penalties. The effect of these three
penalty terms in handing background clutter, high curvature and
noise are presented in Section IV.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The goal of this section is to investigate the effectiveness of
KPAC at accurately identifying object boundaries. To achieve
this goal, object boundary detection was performed on a set
of four test images without any synthetic noise (¢ = 0), and
with additive Gaussian noise of zero mean (1 = 0) and 40
standard deviation (¢ = 40). This set of test images [21] is
designed to test the capability of KPAC in handling real images
with complex boundary characteristics and background clutter,
while the Gaussian noise test cases are designed to test its
capabilities at handling situations characterized by high noise
levels. For comparison purposes, two popular parametric active
contour techniques (gradient vector flow (GVFS) [15] and
vector field convolution (VFC) [16]) were also evaluated. The
mean square error (MSE) of the detected boundaries from the
provided ground truth [21] and execution time is measured for
each test case for quantitative comparisons between methods.
The tested methods under evaluation were implemented in
MATLAB and tested on an Intel Pentium 4 2.4 GHz machine
with 1 GB of RAM.

The MSE and execution time for the tested methods are
shown in Table I. The proposed KPAC method achieves notice-
ably lower MSE in all of the test cases and all noise levels when
compared to GVFS and VFC, thus demonstrating the ability
of KPAC in handling noise, background clutter, and complex
boundary characteristics in real images. Furthermore, KPAC
has noticeably lower execution time when compared to GVFS
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TABLE I
MEAN SQUARE ERROR (MSE) IN PIXELS AND EXECUTION TIME (ET) IN SECONDS OF KPAC COMPARED TO TWO OTHER METHODS FOR FOUR DIFFERENT IMAGES
AT TWO NOISE LEVELS. BOLD TEXT INDICATES BEST PERFORMANCE ACROSS ALL METHODS FOR A PARTICULAR IMAGE AT A PARTICULAR NOISE LEVEL.

Mean Square Error [pixels]

Execution time (ET) [seconds]

| Without noise

[ With noise 0 = 40,2 = 0 ||

Without noise

| With noise 0 = 40,4 =0 |

KPAC | GVES | VEC | KPAC | GVES VFC |[ KPAC [ GVES | VEC [ KPAC [ GVFS | VFC |
FISH 1.8 2.1 2.4 2.7 6.9 4.1 27 121 61 33 151 76
DUCK 2.69 6.98 6.23 3.28 8.12 9.62 34 134 73 41 159 86
BOAT 2.54 3.22 522 3.60 10.23 8.61 38 143 79 52 183 97
LEAF 5.19 542 5.55 5.94 11.19 8.15 41 153 92 59 203 109

Initial AC KPAC

GVFS [15] VEC [16]

Fig. 1. Examples of detected object boundaries using KPAC, GVFS, and VFC. The first column present four images with initial solutions (FISH, DOCK, BOAT
and LEAF). These four images were collected from [21]. Second, third and fourth column presents the results of KPAC, GVFES [15] and VFC [16], respectively.

KPAC successfully identified the desired boundaries for all test images.

and VFC, due mainly to faster convergence speed. Examples
of detected object boundaries for the tested methods are shown
in Fig. 1. Visually, the boundaries determined using KPAC are
better localized and more accurate than GVFS and VFC.
GVEFS and VFC uses two different diffusion techniques to
spread out the gradient throughout the image to attract the snake
that is initialized far from the desired solution. Furthermore,
both the GVFS and VFC techniques use an iterative gradient de-
scent technique for the minimization of the snake energy. There-
fore, both of these techniques still suffer the problem of being
trapped in local minima. GVFS and VFC works well for images
where the gradient is strong and well defined along the object
boundary with little noise or clutter, such as the FISH image

without added noise (Fig. 1). However, the diffusion operators
of GVES and VFEC start performing poorly for cases where the
gradient is ill-defined along the object boundary with respect to
the rest of the image due to background clutter, noise and high
curvature boundaries. In these cases, both GVFS and VFC starts
becoming trapped in local minima. Therefore, GVFS and VFC
failed to converge to the true object boundary for the DUCK,
BOAT and LEAF images.

In case of the DUCK image, the shadows near the duck cre-
ates issues with the diffusion techniques used by GVFS and
VEC, resulting in convergence towards local minima. However,
in case of KPAC, the penalty on dissimilarity on intensity (14)
drives the active contour towards the desired solution.
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GVFS [15]

VFC [16]

Fig.2. Examples of detected object boundaries using KPAC, GVFS, and VFC for the DUCK image in the presence of additive Gaussian noise of standard deviation
o = 40. KPAC successfully identified the desired boundaries for noisy DUCK image, while GVFS and VFC failed to identify the boundaries correctly.

The penalty terms of KPAC are derived from image character-
istics, and therefore adaptively tightens or loosens penalties to
account for the high curvature boundary characteristics, noise,
and background clutter. This is particularly noticeable in the
LEAF image, where KPAC noticeably handles complex, high
curvature boundaries and background clutter better than GVFS
and VFC, both of which were trapped in local optima and thus
resulted in poorly localized object boundaries. Similar difficul-
ties handling high curvature boundaries can be seen in the fish’s
fin in the FISH image and the duck’s bill in the DUCK image.

Finally, the visual qualitative results of KPAC compared to
GVEFS and VFC for the DUCK image contaminated with ad-
ditive Gaussian noise of zero mean and 40 standard deviation
is shown in Fig. 2. It can be observed that KPAC is able to suc-
cessfully identify the desired boundaries, while GVFS and VFC
both exhibit noticeable errors in the identified boundaries.

V. CONCLUSIONS

In this letter, a novel kernel-based active contour (KPAC) ap-
proach to object boundary detection was introduced. By intro-
ducing an adaptive kernel derived from underlying image char-
acteristics into the parametric active contour approach, KPAC is
able to better handle complex high curvature boundaries, noise,
background clutter, as well as improve convergence speed. Fu-
ture work involves extending KPAC for 3-D volume boundary
detection and investigating additional local image characteris-
tics to achieve better boundary detection performance.
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