
Large Scale Dynamic Estimation Of Ocean Surface TemperatureP.W. FIEGUTH F.M. KHELLAH M.J. MURRAY M.R. ALLENUniversity of Waterloo Rutherford Appleton LaboratoryWaterloo, Ont., N2L 3G1, Canada Chilton, Didcot, OX11 OQX, UKp�eguth@uwaterloo.ca Tel: (519) 888-4567 x3599 Fax: (519) 746-4791ABSTRACTThis paper addresses the dynamic estimation of theocean surface temperature based on data from the Along-Track Scanning Radiometer (ATSR) for large (512�512)�elds. For such huge problems, the conventional dy-namic estimation tool (the Kalman �lter) is not directlyapplicable, instead, we develop a recursive estimationalgorithm that emulates the Kalman �lter. Our ap-proach uses a recently-developed multiscale estimationalgorithm for the update step, and makes simplifying as-sumptions about the surface dynamics leading to a com-putationally e�cient prediction step.INTRODUCTIONDynamic models, long the focus of global circulation andrelated climate models, have been slow to be adoptedfor very large statistical estimation problems. This isprimarily due to the O(n3) computational complexity ofthe Kalman �lter for n pixels, which is totally impracticalfor mega-pixel remotely-sensed �elds.For problems which are very densely measured, it maybe adequate to employ a static optimal interpolation pro-cedure, incorporating purely spatial statistics, which as-sumes that the underlying �eld is constant over time.However a dynamic approach has much to o�er: the �eldis not assumed to be constant, a prior-mean �eld doesnot need to be de�ned, and meaningful estimates can becomputed in the presence of data gaps.In this paper, we discuss a method of dynamic estima-tion for sea surface temperature SST data from the along-track scanning radiometer (ATSR); for which a sample3-day set of measurements is shown in Fig.1. The ATSRdata is well-suited to a dynamic approach: the SST istime-varying but also highly-correlated over time, theSST does not really possess a well-de�ned mean �eld,and there are frequent (and sometimes widespread) datagaps due to clouds.
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40Figure 1: Superposition of ocean surface temperaturemeasurements and the ocean yearly mean.DYNAMIC ESTIMATIONThe dynamic evolution of SST is assumed to obey thelinear discrete dynamic model given by:x(t+ 1) = Ax(t) + Bw(t) (1)where w(t) � N (0; Q) is an uncorrelated Gaussian noiseprocess, with zero mean, diagonal covariance Q.The ATSR measurements are linearly related to SST:y(t) = C(t)x(t) + v(t) (2)where v(t) � N (0; R) is an uncorrelated Gaussian noiseprocess, zero mean, diagonal covariance R.For physical systems governed by models (1), (2), theKalman �lter can be used to obtain �ltered estimates forthe state x(t) at time t based on the data available up totime t.Alternatively, it may be preferable to use a smooth-ing �lter, in which the state x(t) is estimated acausally,
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tTime TTime t+1Time Figure 2: The basic principle of bi-directional �lteringover time, consisting of the Kalman �lter (forwards) anda smoothing �lter (backwards).based on data both preceding and following time t. Asmoothing �lter can lead to substantial reductions in es-timation error, particularly when the measurements aresparse or noisy, and when the physical process is stronglycorrelated over time. Smoothed estimates are computedbased on all the available data 0 � t � T in two passes, asshown in Fig. 2: a forward pass, identical to the Kalman�lter, and a backward pass, initialized by the �ltered es-timates at end time T .Our approach is to emulate the update and predictionsteps of the Kalman �lter without trying to solve themexactly (which is computationally prohibitive). The up-date step is static in nature, and we propose to use anexisting, e�cient technique based on a multiscale (hier-archical) framework [1, 4]. This technique can accommo-date the irregular measurements and nonstationary priormodels encountered in the SST problem; it attains com-putational and storage e�ciency by constructing modelsfor the needed statistics, rather than generating large co-variance matrices. For two-dimensional �elds a quadtree,as depicted in Fig. 3, is used as the basis for multiscalemodeling.The prediction step of the Kalman �lter incorporatesthe process dynamics, carrying the estimation statisticsfrom one time to the next, however the computationalcomplexity and storage requirements become problem-atic for large state dimensions; the size of the SST prob-lem makes it impossible to directly compute predictedestimates and associated error statistics.Given our choice of multiscale models in the updatestep, we can consider directly predicting the modelsthemselves[1], however this approach, although promis-ing, is for the time being similarly computationally in-tensive. Alternatively, in this work, we assume that theocean dynamics are very slow, so that a very simple
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4Figure 3: An example multiscale quad-tree for modeling2D processes.dynamic model (each pixel independently evolves ran-domly) is adopted. This model implies the following sim-ple estimate predictionx̂(tjt� 1) = x̂(t� 1jt� 1) (3)It remains to propagate the estimation error statistics.The prior model is embedded in the selected multiscalemodel, so explicit changes to the prior at every time stepare inconvenient; instead, we exploit the duality betweenpriors measurements, modifying the prior implicitly byintroducing new \measurements." Speci�cally, the mea-surements at time t consist of one or two independentcomponents: the satellite SST measurement (if any) andthe predicted estimates from the previous time step,y0(t) = � y(t)x̂(tjt� 1) � ;R0(t) = � R(t) 00 f( ~P (t� 1jt� 1)) � (4)where R(t) is the covariance of the SST measurementerror, and f(�) represents a simpli�ed prediction step.Since only the diagonal elements of ~P are readily avail-able, we de�ne f asf( ~P (t� 1jt� 1)) = � diag( ~P (t� 1jt� 1)) + Q (5)where Q is the process noise covariance. Because thepredicted covariance is diagonal, (4) treats the errors inthe predicted estimates as independent, which is clearlyincorrect, since the errors are correlated. Instead, a pos-itive constant � is introduced to inate the predictedvariances, such that the impact of the inated variancesof the independent measurements is comparable to thedesired uninated, correlated ones.RESULTSWe applied our recursive �ltering algorithm to onemonth of ATSR night-time data, with a time step of
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Surface Temperature Anomaly Estimates (K)
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Standard Deviations of Estimates (K)Figure 4: Dynamic Estimation of SST based on night-time observations, three days apart. The upper row is theanomaly estimates of SST and the lower row is their corresponding standard deviationsone day. Based on empirical assessments, we adopteda Gaussian-shaped spatial correlation structure for theSST. Three of the dynamic estimation results and theassociated error standard deviations, selected from days1, 4, and 7, are shown in Fig. 4. All results are shownwith respect to a seasonal mean.In terms of the estimates, we observe at day 1 strictlylocal e�ects, based on the limited number of measure-ments; over time the majority of the �eld is a�ected. Wealso observe the �ne detail present in \fresh" estimates(based on recent measurements), o� the California coaston Oct. 4, which appear less detailed and di�used threedays later, after three dynamic prediction steps.The lower three panels plot the standard deviations ofthe estimation errors. The interpretation of the leftmostframe is trivial, since no dynamics have yet taken place.Examining the later frames, we see clear evidence of theincorporation of measurements over time, reected in thedi�erent variances of the di�erent measurement swaths:recently measured areas correspond to a low error vari-ance, with the error variance increasing for increasinglyolder measurements.The artifacts apparent in the results, particularly inthe error statistics, are due to approximations introducedby the multiscale models. We have investigated several
ways of overcoming such artifacts, and will shortly applythese to the SST problem.References[1] T. Ho, P. Fieguth and A. Willsky, \Recursive Mul-tiscale Estimation Of Space-Time Random Fields,"ICIP'98, Chicago, 1998.[2] C.T. Mutlow and A.M. Zavody, \Sea surface Tem-perature Measurements by the along-track scanningradiometer on the ERS1 Satellite: Early results,"Journal of Geophysical Research, Vol. 99, No. C11,pp.22575-22588, 1994.[3] P. Fieguth, W. Karl and A. Willsky, "Multiresolu-tion Optimal Interpolation and Statistical Analysisof TOPEX/POSEIDON Satellite Altimetry," IEEETrans. on Geoscience and Remote Sensing, Vol. 33No. 2, pp. 280-292, 1995.[4] D. Menemenlis, P. Fieguth and A. Willsky, \Adap-tion of Fast Optimal Interpolation Algorithm to theMapping of Oceanographic Data," Journal of Geo-physical Research, vol. 102, No. C5, pp. 10573-10583,1997.


