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ABSTRACT

This paper addresses the dynamic estimation of the
ocean surface temperature based on data from the Along-
Track Scanning Radiometer (ATSR) for large (512 x 512)
fields. For such huge problems, the conventional dy-
namic estimation tool (the Kalman filter) is not directly
applicable, instead, we develop a recursive estimation
algorithm that emulates the Kalman filter. Our ap-
proach uses a recently-developed multiscale estimation
algorithm for the update step, and makes simplifying as-
sumptions about the surface dynamics leading to a com-
putationally efficient prediction step.

INTRODUCTION

Dynamic models, long the focus of global circulation and
related climate models, have been slow to be adopted
for very large statistical estimation problems. This is
primarily due to the O(n®) computational complexity of
the Kalman filter for n pixels, which is totally impractical
for mega-pixel remotely-sensed fields.

For problems which are very densely measured, it may
be adequate to employ a static optimal interpolation pro-
cedure, incorporating purely spatial statistics, which as-
sumes that the underlying field is constant over time.
However a dynamic approach has much to offer: the field
is not assumed to be constant, a prior-mean field does
not need to be defined, and meaningful estimates can be
computed in the presence of data gaps.

In this paper, we discuss a method of dynamic estima-
tion for sea surface temperature SST data from the along-
track scanning radiometer (ATSR); for which a sample
3-day set of measurements is shown in Fig.1. The ATSR
data is well-suited to a dynamic approach: the SST is
time-varying but also highly-correlated over time, the
SST does not really possess a well-defined mean field,
and there are frequent (and sometimes widespread) data
gaps due to clouds.
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Figure 1: Superposition of ocean surface temperature
measurements and the ocean yearly mean.

DYNAMIC ESTIMATION

The dynamic evolution of SST is assumed to obey the
linear discrete dynamic model given by:

(t+1) = Az(t) + Buw(t) (1)

where w(t) ~ N (0, Q) is an uncorrelated Gaussian noise
process, with zero mean, diagonal covariance Q.

The ATSR measurements are linearly related to SST:
y(t) = Ct)z(t) + o(t) (2)

where v(t) ~ N (0, R) is an uncorrelated Gaussian noise
process, zero mean, diagonal covariance R.

For physical systems governed by models (1), (2), the
Kalman filter can be used to obtain filtered estimates for
the state z(¢) at time ¢ based on the data available up to
time t.

Alternatively, it may be preferable to use a smooth-
ing filter, in which the state z(¢) is estimated acausally,
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Figure 2: The basic principle of bi-directional filtering
over time, consisting of the Kalman filter (forwards) and
a smoothing filter (backwards).

based on data both preceding and following time ¢. A
smoothing filter can lead to substantial reductions in es-
timation error, particularly when the measurements are
sparse or noisy, and when the physical process is strongly
correlated over time. Smoothed estimates are computed
based on all the available data 0 < ¢ < T in two passes, as
shown in Fig. 2: a forward pass, identical to the Kalman
filter, and a backward pass, initialized by the filtered es-
timates at end time 7'

Our approach is to emulate the update and prediction
steps of the Kalman filter without trying to solve them
exactly (which is computationally prohibitive). The up-
date step is static in nature, and we propose to use an
existing, efficient technique based on a multiscale (hier-
archical) framework [1, 4]. This technique can accommo-
date the irregular measurements and nonstationary prior
models encountered in the SST problem; it attains com-
putational and storage efficiency by constructing models
for the needed statistics, rather than generating large co-
variance matrices. For two-dimensional fields a quadtree,
as depicted in Fig. 3, is used as the basis for multiscale
modeling.

The prediction step of the Kalman filter incorporates
the process dynamics, carrying the estimation statistics
from one time to the next, however the computational
complexity and storage requirements become problem-
atic for large state dimensions; the size of the SST prob-
lem makes it impossible to directly compute predicted
estimates and associated error statistics.

Given our choice of multiscale models in the update
step, we can consider directly predicting the models
themselves[1], however this approach, although promis-
ing, 1s for the time being similarly computationally in-
tensive. Alternatively, in this work, we assume that the
ocean dynamics are very slow, so that a very simple
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Figure 3: An example multiscale quad-tree for modeling
2D processes.

dynamic model (each pixel independently evolves ran-
domly) is adopted. This model implies the following sim-
ple estimate prediction

Bt — 1) = &(t — 1]t — 1) (3)

It remains to propagate the estimation error statistics.
The prior model is embedded in the selected multiscale
model, so explicit changes to the prior at every time step
are inconvenient; instead, we exploit the duality between
priors measurements, modifying the prior implicitly by
introducing new “measurements.” Specifically, the mea-
surements at time ¢ consist of one or two independent
components: the satellite SST measurement (if any) and
the predicted estimates from the previous time step,

v = |ty ]

iy - | B 0
Bt = [ 0 f(ﬁ(t—1|t—1))] 4)

where R(¢) is the covariance of the SST measurement
error, and f(-) represents a simplified prediction step.
Since only the diagonal elements of P are readily avail-
able, we define f as

f(Pt—1t—1)) =adiag(P(t—1t—1)+Q (5

where () is the process noise covariance. Because the
predicted covariance is diagonal, (4) treats the errors in
the predicted estimates as independent, which is clearly
incorrect, since the errors are correlated. Instead, a pos-
itive constant « is introduced to inflate the predicted
variances, such that the impact of the inflated variances
of the independent measurements is comparable to the

desired uninflated, correlated ones.

RESULTS

We applied our recursive filtering algorithm to one
month of ATSR night-time data, with a time step of
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Figure 4: Dynamic Estimation of SST based on night-time observations, three days apart. The upper row is the
anomaly estimates of SST and the lower row is their corresponding standard deviations

one day. Based on empirical assessments, we adopted
a Gaussian-shaped spatial correlation structure for the
SST. Three of the dynamic estimation results and the
associated error standard deviations, selected from days
1, 4, and 7, are shown in Fig. 4. All results are shown
with respect to a seasonal mean.

In terms of the estimates, we observe at day 1 strictly
local effects, based on the limited number of measure-
ments; over time the majority of the field is affected. We
also observe the fine detail present in “fresh” estimates
(based on recent measurements), off the California coast
on Oct. 4, which appear less detailed and diffused three
days later, after three dynamic prediction steps.

The lower three panels plot the standard deviations of
the estimation errors. The interpretation of the leftmost
frame is trivial, since no dynamics have yet taken place.
Examining the later frames, we see clear evidence of the
incorporation of measurements over time, reflected in the
different variances of the different measurement swaths:
recently measured areas correspond to a low error vari-
ance, with the error variance increasing for increasingly
older measurements.

The artifacts apparent in the results, particularly in
the error statistics, are due to approximations introduced
by the multiscale models. We have investigated several

ways of overcoming such artifacts, and will shortly apply
these to the SST problem.
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