

Combining Sorted Random Features For Texture Classification

Abstract

Goal: How to combine local texture descriptors for texture classification.

- Features: Sorted random features (SRP) \rightarrow fast, robust
- Model: Global Bag-of-Words (BoW) \rightarrow simple, effective orderless histogramming
- Classifier: Multiple kernel SVM \rightarrow combines multiple features with low computational complexity

2 Introduction

Complementary components of the BoW model:

- *local* discriminative and robust texture descriptors
- global statistical histogram characterization

Motivations for combining local descriptors:

- Many possible local descriptors exist
- Past research identifies no clear winner

So why use SRP features?

- Universal, simple and low-dimensional
- Even single SRP features offer state-of-the-art performance

3 Background

Random projection (RP) refers to the technique of projecting a set of points from a high-dimensional space to a randomly chosen low-dimensional subspace:

- Computationally simple and efficient
- Universal, information-preserving, dimensionality reduction
- Plays an important role in both Johnson-Lindenstrauss embedding and compressed sensing

SRP Features

We have used three different SRP features (figure)

- SRP circular \rightarrow sorted raw pixel intensities
- SRP Radial-Diff \rightarrow sorted radial differences
- SRP Angular-Diff \rightarrow sorted angular differences

Li Liu¹, Paul Fieguth² and Gangyao Kuang¹ ¹School of Electronic Science and Engineering, National University of Defense Technology, China ²Department of System Design Engineering, University of Waterloo, Canada Email: dreamliu2010@gmail.com; pfieguth@engmail.uwaterloo.ca and kuangyeats@vip.sina.com

SRP Based Classification

Given a single SRP feature:

1. Universal texton dictionary learning by clustering

2. Histogram of textons by labeling to closest texton

3. Classification by comparing the χ^2 distances between the \underline{h}_{new} of a novel image and the histogram models learned from the training images

We wish to generalize this mechanism to combined features. Since the descriptors in this paper (especially SRP Rad-Diff) are, on their own, already very discriminative, there may be limitations to applying Multiple Kernel Learning (MKL).

Furthermore, simple kernel combination methods are capable of reaching the same classification accuracy as MKL. Therefore, we propose to combine kernels in a pre-defined deterministic way and use the resulting kernel for SVM training.

To incorporate the χ^2 distance into the SVM framework, we use the kernel $\mathbf{K}(\underline{\mathbf{h}}_i, \underline{\mathbf{h}}_j) = \exp(-\gamma \chi^2(\underline{\mathbf{h}}_i, \underline{\mathbf{h}}_j))$.

When multiple descriptor types are used, we represent each texture sample using F Bag-of-Words histograms derived from F feature descriptors. The multiple kernel method combines several kernels by multiplication $\mathbf{K}^*(\underline{h}_i, \underline{h}_i) =$ $\prod_{l=1}^{F} \mathbf{K}_{l}(\underline{\boldsymbol{h}}_{i}, \underline{\boldsymbol{h}}_{i}).$

