

Sorted Random Projections for Robust Texture Classification

Li Liu¹, Paul Fieguth², Gangyao Kuang¹ and Hongbin Zha³

¹School of Electronic Science and Engineering, National University of Defense Technology, China ²Department of System Design Engineering, University of Waterloo, Canada ³Machine Intelligence Department, Peking University, China

Email: dreamliu2010@gmail.com, pfieguth@engmail.uwaterloo.ca, kuangyeats@vip.sina.com and zha@cis.pku.edu.cn

Abstract

Goal: Developing a simple, robust, yet highly effective Texture Classification (TC) system

- Simple, local feature extraction
- Universal, data-independent features
- Low-dimensional features
- Good classification performance
- Robustness to environment changes

Main components:

- **Local features:** SRP random features \rightarrow simple, universal, informative, fast, illumination invariant, rotation invariant, robust and
- Global representation: Bag-of-Words model \rightarrow simple, effective, vector feature
- **Classifier:** Kernel Support Vector Machines (SVMs)

Performance:

- CUReT \rightarrow 99.37%
- Brodatz \rightarrow 97.16%
- UMD \rightarrow 99.30%
- KTH-TIPS \rightarrow 99.29%
- FMD \rightarrow 48.2%

Introduction

TC remains a challenge problem:

- The wide range of various natural texture types
- The presence of large intra-class variations \rightarrow brightness, contrast, rotation, affine, scale, skew, occlusion ...
- The demands of algorithms with low computational complexity

Motivations:

- To leverage the sparse nature of texture images
- To Preserve all the advantages of Random Projection (RP) Classifier
- To avoid complex local texture feature extraction
- To increase robustness
- To use a kernel-based learning classifier
- To combine multiple complementary features

Background

Random projection (RP) refers to the technique of projecting a set of points from a high-dimensional space to a randomly chosen low-dimensional subspace. RP, while reducing dimensionality, approximately preserves pairwise distances with high probability:

- Computationally simple and efficient
- Universal, information-preserving, dimensionality reduction
- Plays an important role in both Johnson-Lindenstrauss embedding and compressed sensing

Sorted Random Projections

Problems with existing approaches for including rotation invariance:

- \blacksquare Add randomly rotated local patches \rightarrow much more data points, much greater spread cluster, posing storage and processing challenges, and also creating challenges in clustering
- \blacksquare Estimate the dominant gradient orientation \rightarrow unreliable, computational expensive
- \blacksquare Compute multilevel histograms \rightarrow computational expensive, low efficiency

Our solution: Sorting followed by Random Projection - intuitive (Figure 1), computational simple, rotation invariant and Discriminative

We have proposed two types of SRP features (Figure 2):

- Pixel —intensity based
 - SRP Global → globally sorting raw pixel intensities
 - SRP Square → multiscale sorting raw pixel intensities (Square Neighborhood)
 - SRP Circular → multiscale sorting raw pixel intensities (Circular Neighborhood)

Sorted Random Projectio

- Pixel-difference based
- SRP Radial-Diff → multiscale sorting radial differences
- \blacksquare SRP Angular-Diff \rightarrow multiscale sorting angular differences

Description and Classification Two BoW-based representation schemes:

- **HOGC:** Histogram-Of-Global-Codebook → universal texton codebook learning from all texture classes, histogram + chi square distance
- **SOLC:** Signature-Of-Local-Codebook → local texton codebook learning from each image, signature + EMD distance

Classification:

- Nearest Neighbor Classifier → single feature
- SVMs → single kernel
- **SVMs** → multiple kernel combination

Donadiam				HOCC		1	1					
Paradigm												
Classifier	NNC			SVMs								
Metric	χ^2			RBF χ^2	RBF χ^2	RBF χ^2						
Patch size	5×5	9×9	13×13	5×5	9×9	13×13						
\mathcal{D}^{C}	95.51	96.61	96.52	95.53 97.92	96.83 98.39	97.72 99.05	SOLC					
Patch size	9×9	15×15	19×19	9×9	15×15	19×19	NNC			SVMs		
\mathcal{D}^{CRot}	94.55	94.76	95.01	94.69 96.95	95.76 97.05	96.18 97.45	EMD			EMD		
Patch size	5×5	9×9	13×13	5×5	9×9	13×13	5×5	9×9	13×13	5×5	9×9	13×13
$\mathcal{D}^{ ext{UIUC}}$	91.40	94.28	95.43	95.66 96.35	96.40 97.06	97.18 98.08	78.49	84.58	88.14	88.77	92.40	93.28
Patch size	7×7	9×9	13×13	7×7	9×9	13×13	7×7	9×9	13×13	7×7	9×9	13×13
$\mathcal{D}^{ ext{UMD}}$	98.48	98.60	98.26	98.92 98.86	98.59 98.92	98.53 98.67	90.37	91.37	92.97	94.92	95.16	96.08
Patch size	5×5	9×9	13×13	5×5	9×9	13×13	5×5	9×9	13×13	5×5	9×9	13×13
\mathcal{D}^{B}	93.13	94.74	94.73	93.07 94.44	94.29 95.77	94.24 96.04	84.18	89.30	91.38	87.78	90.72	92.67
Patch size	9×9	13×13	15×15	9×9	13×13	15×15	9×9	13×13	15×15	9×9	13×13	15×15
$\mathcal{D}^{ ext{KT}}$	97.16	97.35	97.71	98.78 98.95	98.72 99.02	98.65 99.11	93.06	95.28	95.27	94.63	95.78	95.20

	\mathcal{D}^{C} (46)	\mathcal{D}^{B} (3)	$\mathcal{D}^{\mathrm{KT}}$ (41)	$\mathcal{D}^{\mathrm{UIUC}}$ (20	\mathcal{D}^{UMD} (20)
1. Our Results	99.37%	97.16%	99.29%	98.56%	99.30%
SRP Radial-Diff		RP Rad-Dif	f		
SRP Circular	\checkmark	RP Ang-Dif	$ff \sqrt{}$	\checkmark	\checkmark
SRP Angular-Diff				$\sqrt{}$	$\sqrt{}$
2. VZ-MR8	97.43%				
3. VZ-Patch	98.03%	92.9%(*)	92.4%(*)97.83%	
4. Caputo et al.	98.46%	95.0%(*)	94.8%(*)92.0%(*))
5. Lazebnik <i>et al</i> .	72.5%(*)88.15%	91.3%(*)96.03%	
6. Mellor et al.	`	89.71%	`	•	
7. Zhang et al.	95.3%	95.9%	96.1%	98.7 %	
8. Varma and Ray et al.				98.76%	
9. Crosier and Griffin et a	al.98.6%		98.5%	98.8 %	
10. Xu-MFS et al.				92.74%	93.93%
11. Xu-OTF et al.				97.40%	98.49%
12. Xu-WMFS et al.				98.60%	98.68%
13. Liu <i>et al</i> .	98.52%	96.34%	97.71%	96.27%	99.13%