
Abstract 
Goal: Developing a simple, robust, yet highly effective Texture 

Classification (TC) system 

Simple, local feature extraction 

Universal, data-independent features 

Low-dimensional features 

Good classification performance 

Robustness to environment changes 

Main components: 

 Local features: SRP random features → simple, universal, 

informative, fast, illumination invariant, rotation invariant, robust and 

effective 

 Global representation: Bag-of-Words model → simple, effective, 

vector feature 

 Classifier: Kernel Support Vector Machines (SVMs) 

Performance: 

CUReT → 99.37%  

Brodatz  →  97.16%  

UMD → 99.30%  

KTH-TIPS  → 99.29%  

FMD → 48.2%  

 

Introduction 
TC remains a challenge problem: 

The wide range of various natural texture types 

The presence of large intra-class variations → brightness, contrast, 

rotation, affine, scale, skew, occlusion … 

The demands of  algorithms with low computational complexity 

Motivations: 

To leverage the sparse nature of texture images 

To Preserve all the advantages of Random Projection (RP) Classifier 

To avoid complex local texture feature extraction 

To increase robustness 

To use a kernel-based learning classifier 

To combine multiple complementary features 

Background 
Random projection (RP) refers to the technique of projecting a set of points 

from a high-dimensional space to a randomly chosen low-dimensional 

subspace. RP, while reducing dimensionality, approximately preserves 

pairwise distances with high probability : 

 Computationally simple and efficient 

 Universal, information-preserving, dimensionality reduction 

 Plays an important role in both Johnson-Lindenstrauss embedding 

and compressed sensing 
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Figure 2. Extracting SRP features from an example local image patch 
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Sorted Random Projections 
Problems with existing approaches for including rotation invariance: 

Add randomly rotated local patches → much more data points, much 

greater spread cluster, posing storage and processing challenges, and 

also creating challenges in clustering 

Estimate the dominant gradient orientation → unreliable, 

computational expensive 

Compute multilevel histograms → computational expensive, low 

efficiency 

Our solution: Sorting followed by Random Projection → intuitive 

(Figure 1), computational simple, rotation invariant and Discriminative 

 

 

We have proposed two types of SRP features (Figure 2):  

Pixel –intensity based 

SRP Global → globally sorting raw pixel intensities 

SRP Square → multiscale sorting raw pixel intensities (Square Neighborhood) 

SRP Circular → multiscale sorting raw pixel intensities (Circular Neighborhood) 

 

Pixel-difference based 

SRP Radial-Diff → multiscale sorting radial differences 

SRP Angular-Diff → multiscale sorting angular differences 

 

 

Description and Classification 
Two BoW-based representation schemes: 

HOGC: Histogram-Of-Global-Codebook → universal texton codebook 

learning from all texture classes, histogram + chi square distance 

SOLC: Signature-Of-Local-Codebook → local texton codebook learning 

from each image, signature + EMD distance 

 

Classification: 

Nearest Neighbor Classifier →  single feature 

SVMs → single kernel 

SVMs → multiple kernel combination 

 

 

 


