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Abstract. This paper presents a simple, novel, yet very powerful ap-
proach for texture classification based on compressed sensing. At the
feature extraction stage, a small set of random features is extracted
from local image patches. The random features are embedded into a
bag-of-words model to perform texture classification, thus learning and
classification are carried out in the compressed domain. The proposed
unconventional random feature extraction is simple, yet by leveraging
the sparse nature of texture images, our approach outperforms tradi-
tional feature extraction methods which involve careful design and com-
plex steps. We report extensive experiments comparing the proposed
method to the state-of-the-art in texture classification on four databases:
CUReT, Brodatz, UIUC and KTH-TIPS. Our approach leads to signif-
icant improvements in classification accuracy and reductions in feature
dimensionality, exceeding the best reported results on CUReT, Brodatz
and KTH-TIPS.

1 Introduction

The classification of texture is a key problem in computer vision and pattern
recognition, especially for real-world texture images with great intra-class vari-
ability due to illumination variations, rotations, viewpoint changes and nonrigid
deformations.

By extracting features from a local patch, most feature extraction meth-
ods focus on local texture information, characterized by the gray level patterns
surrounding a given pixel; however texture is also characterized by its global
appearance, representing the repetition of and the relationship among local pat-
terns. Recently, a bag-of-words (BoW) model, borrowed from the text literature,
has opened up new prospects for texture classification [1][2][3][4][5][6]. The BoW
model encodes both the local texture information, by using features from lo-
cal patches to form textons, and the global texture appearance, by statistically
computing an orderless histogram.

Very popular is the use of large support filter banks to extract texture features
at multiple scales and orientations [1][2][3]. However, more recently, in [4] the
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Table 1. Summary of texture datasets used in the experiments. Example textures are
provided in the supplemental material.

Texture
Dataset

Dataset
Notation

Image

Rotation
Controlled
Illumination

Scale
Variation

Texture
Classes

Sample

Size

Samples

per Class

Samples

in Total

CUReT DCUReT √ √
61 200× 200 92 5612

UIUC DUIUC √ √
25 640× 480 40 1000

BrodatzFull DBFull 111 215× 215 9 999

Brodatz90 DB90 90 128× 128 25 2250

KTH-TIPS DKT √ √
10 200× 200 81 810

authors challenge the dominant role that filter banks have been playing in texture
classification, claiming that classification based on textons directly learned from
the raw image patches outperforms textons based on filter bank responses.

The key parameter in patch-based classification is patch size. Small sizes
cannot capture large-scale structures that may be the dominant features of some
textures, and are highly sensitive to noise and other variations, whereas large
patch sizes lead to high storage and computational complexity. Therefore, it is
natural to ask whether high-dimensional patch vectors can be projected into a
lower dimensional subspace without suffering great information loss.

The compressed sensing (CS) approach [7][8], which has been the motiva-
tion for this research, is therefore appealing because of its surprising result that
high-dimensional sparse data can be accurately reconstructed from just a few
nonadaptive linear random projections. When applying CS to texture classifica-
tion, the key question is therefore how much information about high-dimensional
sparse texture signals in local image patches can be preserved by random pro-
jections, and whether this leads to any advantages in classification.

The proposed method is computationally simple, yet very powerful. Instead
of performing texture classification in the original high-dimensional patch space
or making efforts to figure out a suitable feature extraction method, by using
random projections of local patches we perform texture classification in a much
lower-dimensional compressed patch space. The theory of CS implies that the
precise choice of the number of features is no longer critical: a small number of
random features, above some threshold, contains enough information to preserve
the underlying local texture structure.

Finally, since textures often appear on undulating real world surfaces, the
invariances to illumination, rotation, viewpoint, and scale must also necessarily
be local rather than global [9]. To avoid the complexity of local invariance in
[5] [6], in this paper, we develop simple, yet very powerful rotation-invariant
descriptors by sorting local patches.

Section 2 reviews the CS background. With the development of the CS ap-
proach in Section 3 and the rotation invariance descriptors in Section 4, Section
5 provides extensive experimental results for the CS and sorted CS classifiers
and comparative evaluation with the current state-of-the-art on the databases
listed in Table 1.
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Fig. 1. Compressed Sensing measurement process

2 CS Background

The theory of compressed sensing has recently been brought to the forefront by
the work of Candès and Tao [7] and Donoho [8], who have shown the advantages
of random projections for capturing information about sparse or compressible
signals. The premise of CS is that a small number of nonadaptive linear mea-
surements of a compressible signal or image contain enough information for near
perfect reconstruction and processing. This emerging theory has generated enor-
mous amounts of research with applications to high-dimensional geometry [10],
image reconstruction [11], and machine learning [12] etc.

CS exploits the fact that many signal classes have a low-dimensional structure
compared to the high-dimensional ambient space. Therefore, a small number of
nonadaptive measurements in the form of randomized projections can capture
most of the salient information in a signal and can approximate the signal well
and allow it to be reconstructed.

� The key assumption in CS is that of sparsity or compressibility. Let x ∈ Rn×1

be an unknown signal of length n and Ψ = [ψ
1
... ψ

n
] an orthonormal basis,

where ψ
i
∈ Rn×1, such that

x =
n∑

i=1

θiψi
= Ψθ (1)

where θ = [θ1 ... θn]
T denotes the vector of coefficients that represents x

in the basis Ψ , as illustrated in Fig. 1. Signal x is said to be sparse or
compressible if most of the coefficients in θ are zero or can be discarded
without much loss of information.

� Let Φ be an m× n sampling matrix, with m ≪ n, such that

y = Φx = ΦΨθ (2)

where y is an m× 1 vector of measurements. The sampling matrix Φ must
allow the reconstruction of length-n signal x from m measurements in y .
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Since the transformation from x to y is a dimensionality reduction, in general
there is an information loss, however the measurement matrix Φ can be
shown to preserve the information in sparse and compressible signals if it
satisfies the so-called restricted isometry property (RIP) [13]. Intriguingly, a
large class of random matrices have the RIP with high probability [7][8][13].

� Signal reconstruction takes the m measurements in y , the random measure-
ment matrix Φ, and the basis Ψ to reconstruct θ. A large number of ap-
proaches have been proposed to solve the reconstruction problem, however
the algorithms tend to be computationally burdensome.

CS theory has been used for classification in the SRC algorithm [12] for face
recognition. In contrast to the texture problem, however, the SRC algorithm is
based on global features, whereas texture classification almost certainly depends
on the relationship between a pixel and its neighborhood. Furthermore SRC is
reconstruction based, explicitly reconstructing the sparse θ, a computationally
intensive step we wish to avoid.

3 The CS Classifier

Let us begin by formulating a basic CS classifier, with a robust extension de-
velopment in Section 4. The premise underlying CS is one of signal sparsity
or compressibility, and the compressibility of textures is certainly well estab-
lished. Certainly most natural images are compressible, as extensive experience
with the wavelet transform has demonstrated. Textures, being roughly station-
ary/periodic, are all the more sparse. Furthermore from the large literature on
texture classification via feature extraction, the degrees of freedom underlying a
texture are clearly few in number.

The local patch vector x ∈ Rn×1 is embedded into a lower-dimensional space
y ∈ Rm×1:

y = Φx (3)

ideally where m ≪ n. Clearly Φ ∈ Rm×n, m < n loses information in general,
since Φ has a null space, implying the indistinguishability between x and x + z ,
for z ∈ N (Φ). The challenge in identifying an effective feature extractor Φ is to
have the null-space of Φ orthogonal to the low-dimensional subspace of sparse
signal x .

Ideally, we wish to ensure that Φ is information-preserving, by which we
mean that Φ provides a stable embedding that approximately preserves distances
between all pairs of signals, such that for any two patches, x 1 and x 2

1− ϵ ≤ ∥Φ(x 1 − x 2)∥2
∥x 1 − x 2∥2

≤ 1 + ϵ (4)

for small ϵ > 0. One of the key results in [13] from CS theory is the Restricted
Isometry Property, which states that (4) is indeed satisfied by certain random
matrices, including a Gaussian random matrix Φ. It is on this basis that we
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Fig. 2. Classification results on DCUReT as a function of feature dimensionality (Ex-
cept for LBP, whose results are shown as a function of patch size). The bracketed
values denote the number of textons K per class. “Patch-VZ” and “MR8-VZ” results
are quoted directly from the paper of Varma and Zisserman [4]. Classification rates
obtained based on the same patch size are shown in the same color.

propose to use the emerging theory of compressed sensing to rethink texture
classification.

We wish to preserve both local texture information, contained in a local
image patch, and global texture appearance, representing the repetition of the
local textures and the relationship among them. We choose a texton-based ap-
proach, an effective local-global representation [1][2][3][4], trained by adaptively
partitioning the feature space into clusters using K -means. For an input data
set Y = {y

1
, ...,y |Y|}, y i

∈ Rd×1, and an output texton set W = {w1, ...,wK},
w i ∈ Rd×1, the quality of a clustering solution is measured by the average quan-
tization error

Q(Y,W) =
1

|Y|

|Y|∑
j=1

min
1≤k≤K

∥y
j
−wk∥22 (5)

However, Q(Y,W) goes as K−2/d for large K [14], a problem when d is large,
since K is then required to be extremely large to obtain satisfactory cluster
centers, with computational and storage complexity consequences. On the other
hand, Varma and Zisserman [4] have shown that image patches contain suf-
ficient information for texture classification, arguing that the inherent loss of
information in the dimensionality reduction of feature extraction leads to in-
ferior classification performance. CS addresses the dilemma between these two
perspectives very neatly. The high-dimensional texture patch space has an in-
trinsic dimensionality that is much lower, therefore CS is able to perform feature
extraction without information loss. On the basis of the above analysis, we claim
that the CS and BoW approaches are complementary, and will together lead to
superior performance for texture classification.
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Table 2. Experimental results for the CS classifier on DB90, 13 samples per class for
training and 12 for testing. Means and standard deviations have been computed over
20 runs. Ten textons used per class.

Patch Size
Method 3× 3 5× 5 7× 7

Dim 5 10 25
CS 94.3%± 0.30% 95.4%± 0.39% 95.0%± 0.34%

Dim 9 25 49
Patch 94.0%± 0.11% 94.7%± 0.21% 94.8%± 0.30%

Scale 1 2 3
LBPriu2 87.7%± 0.63% 93.6%± 0.34% 94.8%± 0.37%

Table 3. Comparison of highest classification performance on DCUReT with a common
experimental setup, except for Zhang [6] who used EMD/SVM classifier.

Method LBP MR8 Patch Patch-MRF Zhang et al. CS

Accuracy 95.72% 97.43% 97.17% 98.03% 95.5% 98.43%

The actual classification algorithm is the texton-based method of [4] except
that instead of using image patch vector x , the compressed sensing measurements
y = Φx derived from x are used as features, where we choose Φ to be a Gaussian
random matrix, i.e., the entries of Φ are independent zero-mean, unit-variance
normal.

Figure 2 plots the classification accuracy for the CUReT dataset DCUReT

(see Table 1), using the same subset of images and the same experimental setup
as Varma and Zisserman [3] [4]. Figure 2 (b), in particular, presents a comparison
of CS, Patch, MR8, and LBP, with the results averaged over tens of random
partitions of training and testing sets. The CS method significantly outperforms
all other methods, a clear indication that the CS matrix preserves the salient
information contained in the local patch (as predicted by CS theory) and that
performing classification in the compressed patch space is not a disadvantage.
In contrast to the Patch method, not only does CS offer higher classification
accuracy, but also at a much lower-dimensional feature space, reducing storage
requirements and computation time, and allowing more textons per class.

Table 2 shows the classification accuracy on Brodatz90 dataset DB90. Due
to the impressive diversity and perceptual similarity of some textures in the
Brodatz database, some of which essentially belong to the same class but at
different scales, while others are so inhomogeneous that a human observer would
arguably be unable to group their samples correctly, 90 texture classes from the
Brodatz album were kept. The proposed method performs better than the Patch
method, although by a relatively small margin. The example demonstrates that
the proposed CS method can successfully classify 90 texture classes from the
Brodatz dataset, despite the large number of classes contained in DB which can
cause a high risk of mis-classification.
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Fig. 3. Sorting schemes on an example patch of size 5 × 5-pixels: sorting pixels (a, b,
c) or sorting pixel differences (d, e). The pixels may be taken natively on a square grid
(a, b) or interpolated to lie on rings of constant radius (c, d, e).

Table 3 presents the overall best classification performance achieved for any
parameter setting. The proposed CS method gives the highest classification ac-
curacy of 98.43%, even higher than the best of Patch-MRF in [4], despite the
fact that the model dimensionality of the Patch-MRF method is far larger than
that of the CS.

4 The SCS Classifiers

Motivated by the striking classification results in Figure 2 and Table 3, we would
like to further capitalize on the CS approach by proposing a robust variant. Ex-
isting schemes to achieve rotation invariance in the patch vector representation
include estimating the dominant gradient orientation of the local patch [3] [4],
marginalizing the intensities weighted by the orientation distribution over an-
gle, and adding rotated patches to the training set. The dominant orientation
estimates tend to be unreliable, especially for blob regions which lack strong
edges at the center, and finding the dominant orientation for each local patch
is computationally expensive. To avoid the ambiguity of identifying a dominant
direction, and the clustering challenge with learning over all rotated patches,
instead we just use

y = Φ sort(x ) (6)

where we sort over all (or parts) of x . Since sorting ignores the ordering of
elements in x , the sort(x ) is clearly rotation invariant (excepting the effects of
pixellation). Classification using (6) will be referred to as Sorted CS (SCS).

4.1 Sorted Pixel Values

For example, suppose we reorder the patch vector by taking the center pixel
value x0,0 of the patch of size (2a + 1) × (2a + 1) as its first entry and simply
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Fig. 4. Comparison of the simplest sorted CS against basic CS: classification accuracy
as a function of number of textons per class on DUIUC with 20 samples per class for
training, using a patch of size 9 × 9 and a dimensionality of 30. Results are averaged
over tens of random partitionings of the training and testing set.

sort the other n− 1 pixels:

xGlob = [x0,0, sort([x1,0, ..., x1,p1−1, ..., xa,0, ..., xa,pa−1])]
T (7)

where xr,i, 0 ≤ i < pr refers to the rth concentric square of pixels (see Figure
3 (a)) and pr = 8r, 1 ≤ r ≤ a. Since sorting deletes all location information,
clearly xGlob is invariant to rotation. The advantages of our sorting approach
include simplicity and noise robustness.

Figure 4 motivates this idea, showing a jump (from below 80% to above 90%)
in classification performance, compared to basic CS in classifying the challenging
UIUC database. This surprising experimental result, despite the quality of the
basic CS classifier in Table 3, confirms the effectiveness of the sorting strategy.

Clearly, global sorting provides a poor discriminative ability, since crude sort-
ing over the whole patch (the center pixel excluded) leads to an ambiguity of the
relationship among pixels from different scales. A natural extension of global
sorting is to sort pixels of the same scale. We propose two kinds of sorting
schemes, illustrated in Figure 3 (b) and (c). Our schemes follow a strategy sim-
ilar to some recently developed descriptors like SIFT [15], SPIN and RIFT [5]:
They subdivide the region of support, and instead of sorting, they adopt his-
togramming strategy and compute a histogram of appearance attributes (pixel
values or gradient orientations) inside each subregion.

In our proposed approach, sorting provides stability against rotation, while
sorting at each scale individually preserves some spatial information. In this
way, a compromise is achieved between the conflicting requirements of greater
geometric invariance on the one hand and greater discriminative power on the
other. As can be seen from Figure 5, sorting over concentric squares or circular
rings both offer an improvement over global sorting.
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Fig. 5. Like Figure 4, but comparing all sorting schemes with basic CS.

4.2 Sorted Pixel Differences

Sorting each ring of pixels loses any sense of spatial coupling, whereas textures
clearly possess a great many spatial relationships. Therefore we propose sorting
radial or angular differences, illustrated in Figure 3 (d) and (e). It is worth
noting that gray-level differences have been successfully used in a large number
of texture analysis studies [16][17][18][19].

We propose pixel differences in radial and angular directions on a circular
grid, different from the traditional pixel differences which are computed in hor-
izontal and vertical directions on a regular grid. In particular, radial differences
encode the inter-ring structure, thus sorted radial differences can achieve rota-
tion invariance while preserving the relationship between pixels of different rings,
which has not been explored by many rotation invariant methods such as LBP.
The sorted radial and angular difference descriptors are computed as:

∆Rad = [sort(∆Rad
1,0 , ..., ∆Rad

1,p1−1), ... sort(∆
Rad
a,0 , ...,∆Rad

a,pa−1)]
T

∆Ang = [sort(∆Ang
1,0 , ...,∆Ang

1,p1−1), ... sort(∆
Ang
a,0 , ..., ∆Ang

a,pa−1)]
T

(8)

where

∆Rad
r,i = xδrr,i − xδrr−1,i, δr = 2π/pr

∆Ang
r,i = xr,i − xr,i−1

(9)

Figure 5 plots the classification results of CS and sorted CS on DUIUC. The
results show that all sorted CS classifiers perform significantly better than the
CS classifier, where sorted radial differences performed the best, and the sorted
interpolated-circular the best among the pixel-value methods. In general, the
performance increases with an increasing number of textons used per class.



10 Li Liu, Paul Fieguth and Gangyao Kuang

Table 4. Experimental results for DBFull and DUIUC: all results for our proposed
approach are obtained by number of textons used per class K = 10 for DBFull and
K = 40 for DUIUC, except SCS Radial-Diff (Best), which are the best obtained by
varying K up to 40 for DBFull and K up to 80 for DUIUC. Results of Lazebnik et al.
and Zhang et al. are quoted directly from [5] and [6].

DBFull DUIUC

Patch Size Patch Size

Method 5× 5 9× 9 11× 11 15× 15 5× 5 9× 9 13× 13

Dimensionality 10 30 40 60 10 30 50

CS 89.1% 90.8% 89.2% 88.4% 79.6% 77.5% 76.3%

SCS Global 83.6% 81.9% 82.0% 79.8% 90.3% 90.4% 89.1%

SCS Square 84.0% 87.2% 85.8% 86.8% 90.8% 91.8% 91.2%

SCS Circular 86.7% 88.4% 87.4% 85.7% 90.8% 93.3% 92.1%

SCS Radial-Diff 93.1% 94.7% 95.1% 94.7% 91.4% 94.3% 95.4%

SCS Radial-Diff (Best) 94.7% 96.2% 95.8% 95.5% 91.5% 95.2% 96.3%

SCS Angular-Diff 88.9% 89.8% 92.4% 90.5% 77.1% 84.2% 86.5%

Scale 2 3 4 5 2 3 5

LBP 87.5% 88.9% 89.7% 89.9% 75.6% 81.5% 86.1%

Lazebnik Best [5] 88.2% 96.1%

Best from Zhang [6] 95.9% 98.7%

5 Experimental Evaluation

5.1 Image Data and Experimental setup

Since near-perfect overall performance has been shown in Section 3 for the
CUReT database, for our comprehensive experimental evaluation we have used
another three datasets, summarized in Table 1, derived from the three most
commonly used texture sources: the UIUC database [5], the Brodatz database
[20] and the KTH-TIPS [21] database.

The UIUC dataset DUIUC [5] has been designed to require local invariance.
Textures are acquired under significant scale and viewpoint changes, and un-
controlled illumination conditions. Furthermore, the database includes textures
with varying local affine deformations, and nonrigid deformation of the imaged
texture surfaces. This makes the database very challenging for classification. For
our classification experiments on UIUC, we replicate as closely as possible the
experiments described by Lazebnik et al [5].

The Brodatz database [20] is perhaps the best known benchmark for evalu-
ating texture classification algorithms. For the BrodatzFull dataset DBFull, we
keep all 111 classes. To the best of our knowledge, there are relatively few pub-
lications actually reporting classification results on the whole Brodatz database.
Performing classification on the entire database is challenging due to the rela-
tively large number of texture classes, the small number of examples for each
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Fig. 6. Classification accuracy as a function of patch size: (a) Results on DUIUC. The
SCS Radial-Diff Best curve shows the best results obtained by varying K up to 80.
Similarly, SCS Circular Best curve is obtained by varying K up to 60. (b) Results on
DBFull. The SCS Radial-Diff Best curve is obtained in the same way as in (a), but
with K up to 40 being tried. In both (a) and (b), the results for Lazebnik Best are the
highest classification accuracies, directly quoted from the original paper [5].

class, and the lack of intra-class variation. In order to obtain results comparable
with Lazebnik et al.[5] and Zhang et al. [6], we used the same dataset as them,
dividing each texture image into nine non-overlapping subimages.

The KTH-TIPS dataset DKT [21] contains 10 texture classes with each
class having 81 images, captured at 9 lighting and rotation setups and 9 different
scales.

Implementation details: Each sample is intensity normalized to have zero
mean and unit standard deviation. All results are reported over tens of random
partitions of training and testing sets. Each extracted CS vector is normalized via
Weber’s law. Histograms/χ2 and nearest neighbor (NN) classifier are used. Half
of the samples per class are randomly selected for training and the remaining
half for testing, except for DBFull, where three samples are randomly selected as
training and the remaining six as testing.

5.2 Experimental Results and Performance Analysis

The results for datasets DBFull and DUIUC, the same datasets used by Lazebnik
et al. [5] and Zhang et al. [6], are shown in Table 4 and Figure 6. As expected,
among the CS methods, SCS Radial-Diff performs best on both of these two
datasets. The radial-difference method significantly outperforms LBP, outper-
forms the method of Lazebnik et al. [5] for both BrodatzFull and UIUC, and
outperforms the method of Zhang et al. [6] on BrodatzFull. This latter result
should be interpreted in light of the fact that Zhang et al. use scale invariant
and affine invariant channels and a more advanced classifer (EMD/SVM), which
is important for DUIUC where some textures have significant scale changes and
affine variations.
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Table 5. Comparison results for DB90: all results for our proposed approach are ob-
tained by K = 10 except SCS Radial-Diff (Best), which are the best obtained by
varying K = 10, 20, 30, 40.

Patch Size

Method 5× 5 7× 7 9× 9 11× 11

Dim 10 25 30 40

CS 95.4% 95.0% 94.5% 93.6%

SCS Radial-Diff 97.2% 97.6% 97.5% 97.4%

SCS Radial-Diff (Best) 97.5% 98.2% 98.1% 97.6%

Dim 25 49 81 121

Patch 94.7% 94.8% 94.0% 93.2%

Scale 2 3 4 5

LBPriu2 93.6% 94.8% 95.1% 94.7%

Table 6. Comparisons of classification results of the Basic CS and the SCS Radial-Diff
on DCUReT with K = 10.

Patch Size CS SCS Radial-Diff

7× 7 96.80% 96.33%

9× 9 96.91% 96.61%

Motivated by the strong performance of SCS Radial-Diff, we return to the
comparison of Section 3. Table 5 shows the classification results on DB90 with
homogeneous or near homogeneous textures, in comparison to the state-of-the-
art. We can see that near perfect performance can be achieved by the proposed
SCS Radial-Diff approach. In terms of DCUReT, [4] showed that the incorporating
of rotation invariance is not so helpful, nevertheless the performance penalty in
Table 6 for incorporating rotation invariance is very modest.

Finally, Table 7 lists the results for the KTH-TIPS database DKT. Note that
DKT has controlled imaging and a small number of texture classes. Textures
in this dataset have no obvious rotation, though they do have controlled scale
variations. From Table 7, we can see that SCS Radial-Diff again performs the
best, outperforming all methods in the extensive comparative survey of Zhang
et al. [6].

6 Conclusions

In this paper, we have described a classification method based on represent-
ing textures as a small set of compressed sensing measurements of local texture
patches. We have shown that CS measurements of local patches can be effectively
used in texture classification. The proposed method has been shown to match or
surpass the state-of-the-art in texture classification, but with significant reduc-
tions in time and storage complexity. The main contributions of our paper are
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Table 7. Experimental results for DKT : all results for our proposed approach are
obtained by K = 20 except SCS Radial-Diff (Best), which are the best obtained by
varying K = 10, 20, 30, 40. Results of Zhang et al are quoted directly from [6].

Patch Size

Method 7× 7 9× 9 11× 11 13× 13 15× 15

CS 95.6% 95.2% 94.6% 94.1% 94.2%

SCS Global 94.0% 93.3% 93.7% 92.6% 92.0%

SCS Square 96.1% 94.7% 95.4% 95.5% 95.6%

SCS Circular 95.1% 95.4% 95.1% 94.7% 94.0%

SCS Radial-Diff 96.0% 96.6% 96.8% 96.9% 97.1%

SCS Radial-Diff (Best) 96.5% 97.2% 97.3% 97.4% 97.4%

SCS Angular-Diff 91.0% 91.1% 90.9% N/A N/A

Best from Zhang [6] 96.1%

the proposed CS classifier, and the novel sorting scheme for rotation invariant
texture classification. Among the sorted descriptors evaluated in this paper, the
sorted radial difference descriptor is simple, yet it yields excellent performance
across all databases.

The proposed CS approach outperform all known classifiers on the CUReT
databases, and the proposed SCS Radial Difference approach outperforms all
known classifiers on the Brodatz90, BrodatzFull, and KTH-TIPS databases.
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