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Abstract

This paper presents a novel approach for texture classification, generalizing the well-
known local binary patterns (LBP). In the proposed approach, two different and comple-
mentary types of features are extracted from local patches, based on pixel intensities and
differences. Inspired by the LBP approach, two intensity-based and two difference-based
descriptors are developed. All four descriptors have the same form as the conventional
LBP codes, thus they can be readily combined to form joint histograms to represent tex-
tured images. The proposed approach is computationally simple and is training-free:
there is no need to learn a texton dictionary and no tuning of parameters. Extensive ex-
perimental results on two challenging texture databases (Outex and KTHTIPS2b) show
that the proposed approach significantly outperforms the classical LBP approach and
other state-of-the-art methods with a nearest neighbor classifier.

1 Introduction
Texture classification is a fundamental issue in computer vision and image processing, play-
ing a significant role in a wide range of applications that includes medical image analysis, re-
mote sensing, object recognition, document analysis, environment modeling, content-based
image retrieval and many more [1].

Recently, the orderless Bag-of-Words (BoW) approach has proven extremely popular and
successful in texture classification tasks. Robust and discriminative local texture descriptors
and global statistical histogram characterization have supplied complementary components
toward the BoW feature extraction of texture images. It is generally agreed that the local
descriptors play a much important role, therefore have received considerable attention during
the last decade and numerous local descriptors have been proposed [2, 3, 5, 6, 7, 8, 9].

Due to its impressive computational efficiency and good texture discriminative property,
the dense LBP descriptor [5] has gained considerable attention since its publication [12], and
has already been used in many other applications [13, 14, 15].1 Despite the great success of

c⃝ 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1A bibliography of LBP-related research can be found at the Oulu University website: http://www.cse.
oulu.fi/MVG/LBP_Bibliography/
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Figure 1: A central pixel x0,0 and its p circularly and evenly spaced neighbors {xr,i}p−1
i=0 on

radius r.

LBP in computer vision and pattern recognition, the conventional LBP operator comes with
the following disadvantages and limitations: long histograms sensitive to image rotation, the
small spatial area of support, a loss of local textural information, and noise sensitivity.

To be sure, researchers have made efforts to address LBP limitations and have proposed
LBP variants. In terms of locality, [16] proposes to extract global features from the Gabor
filter responses as a complementary descriptor. To recover from the loss of information,
local image contrast has been introduced by Ojala et al. [5] as a complementary measure,
and better performance has been reported therein. Moreover, Guo et al. [17] include the
magnitudes of local differences and claim better performance.

With regards to noise robustness, Ojala et al. [5] introduce the concept of uniform and
rotation invariant patterns. Ahonen et al. introduce soft histograms [22]. Tan and Triggs [23]
propose local ternary patterns. In addition, very recently, Heikkilä et al. [18] exploit circular
symmetric LBP (CS-LBP) for local interest region description, and Chen et al. present a
WLD descriptor by including orientation information as a robust descriptor [19].

The LBP approach is based on the assumption that the local differences of the central
pixel and its neighbors are independent of the central pixel itself. In practice this indepen-
dence is not warranted, and the value of the central pixel may also be significant, leading to
the questions central to this paper: Is explicitly modeling the joint distribution of the cen-
tral pixel and its neighbors an advantage or disadvantage, and how to effectively include the
missing between-scale information so that better texture classification can be achieved?

Motivated by [3] and [5], in this paper we propose a simple, yet very powerful and novel
texture descriptor to generalize the conventional LBP approach. In the proposed approach,
the LBP coding strategy is applied to two different but complementary types of features:
pixel intensities and intensity differences. The common LBP coding strategy allows the
descriptors to be fused, and significantly improved classification results are achieved.

The paper is organized as follows. Section 2 starts with a review of the classical LBP ap-
proach and then details the derivation of the proposed descriptors and classification scheme.
In Section 3, we verify the proposed approach with extensive experiments on popular tex-
ture datasets and comparisons with various state-of-the-art texture classification techniques.
Section 4 provides concluding remarks and possible extensions.

2 Proposed Descriptors

2.1 A Brief Review of LBP

The LBP method was first proposed by Ojala et al. [5] to encode the pixel-wise information
in textured images. Images are probed locally by sampling greyscale values at a central point
x0,0 and p points xr,0, ...,xr,p−1 spaced equidistantly around a circle of radius r centered at
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x0,0, as shown in Fig. 1. Formally,

LBPp,r =
p−1

∑
n=0

s(xr,n − x0,0)2n, s(x) =
{

1,x ≥ 0
0,x < 0 (1)

The gray values of neighbors which do not lie precisely in a pixel location may be estimated
by interpolation.

Given an N×M image I, let LBPp,r(i, j) be the identified LBP pattern of each pixel (i, j),
then the whole texture image is represented by a histogram vector h of length K:

h(k) =
N

∑
i=1

M

∑
j=1

δ (LBPp,r(i, j)− k) (2)

where 0 ≤ k ≤ K − 1, and K = 2p is the number of all the LBP codes. Feature h has at-
tractive properties: gray-scale invariance, low complexity, few parameters, and satisfactory
discriminating power.

However, the basic LBP operator produces rather long histograms (2p distinct values),
and it becomes an intractable problem to estimate h due to the overwhelming dimensionality
of h with large p. Moreover, it is easy to realize that due to the way LBP numbers are created,
they are very sensitive to noise. One improvement suggested by Ojala et al. [5] is to consider
only the so-called “uniform” pattern LBPriu2

p,r , merging nonuniform patterns directly into one
pattern:

LBPriu2
p,r =

{
∑p−1

n=0 s(xr,n − x0,0), if U(LBPp,r)≤ 2
p+1, otherwise

(3)

where

U(LBPp,r) =
p−1

∑
n=0

|s(xr,n − x0,0)− s(xr,mod(n+1,p)− x0,0)| (4)

The superscript riu2 denotes the rotation invariant “uniform” patterns that have U values at
most 2. Therefore, mapping from LBPp,r to LBPriu2

p,r results in only p+2 distinct groups of
patterns, leading to a much shorter histogram representation.

2.2 Intensity-based Descriptors
Inspired by Markov Random Field (MRF) models, we propose to use only local neighbor-
hood distributions, similar to ideas of Varma and Zisserman [3]. In MRF modeling, the
probability of a central pixel I(xc) depends only on its neighborhood N (xc). In this paper
we explicitly model the joint distribution of a central pixel and its neighbors, in order to test
the significance of the conditional probability distribution for classification.

Inspired by the coding strategy of LBP, we define the following NI-LBPdescriptor (see
also Fig. 2):

NI −LBPp,r =
p−1

∑
n=0

s(xr,n −µ)2n, where µ =
1
p

p−1

∑
n=0

xr,n (5)

Similar to LBPriu2
p,r , the rotation invariant version of NI−LBP, denoted by NI−LBPriu2

p,r , can
also be defined to achieve rotation invariant classification.
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Figure 2: Overview of the proposed approach.

Next, the local contrast measure proposed by Ojala et al. [5] is defined as

VARp,r =
1
p

p−1

∑
n=0

(xr,n −µ)2, where µ =
1
p

p−1

∑
n=0

xr,n (6)

NI−LBPp,r and VARp,r capture similar types of texture information, with a few differences.
Clearly, NI − LBPp,r is independent of gray scale, whereas VARp,r is not. VARp,r is not
affected by rotation, but NI −LBPp,r is, by default. Finally, whereas NI −LBPp,r is discrete,
VARp,r produces continuous values which need to be quantized, which requiring training to
determine a threshold value, and there exist issues in setting the number of bins.

To maintain consistency with the standard binary coding strategy, the central pixels in-
tensity is discretized as CI −LBP = s(x0,0 −µI), relative to µI , the mean of image I.

2.3 Difference-based Descriptors
We propose two different descriptors, Radial Difference Local Binary Pattern and Angu-
lar Difference Local Binary Pattern (denoted as RD-LBP and AD-LBP respectively and as
illustrated in Fig. 2):

RD−LBPp,r,δ =
p−1

∑
n=0

s(∆Rad
δ ,n )2

n, AD−LBPp,r,δ =
p−1

∑
n=0

s(∆Ang
δ ,n )2

n (7)

where δ is an integer, and ∆Rad
δ ,n = xr,n − xr−δ ,n is the radial difference computed with given

radial displacement δ , and ∆Ang
δ ,n = xr,n−xr,mod(n+δ ,p) is the angular difference computed with
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Figure 3: Comparing the proportions (in %) of “Uniform” patterns for each texture in Outex
for three methods: LBP, RD-LBP and AD-LBP, with P = 16,R = 2.

given angular displacement δ (2π/p), and where xr,n and xr,mod(n+δ ,p) correspond to the gray
values of pairs of pixels of δ equally spaced pixels on a circular radius r. We can see that
when δ = p/2, our descriptor AD− LBPp,r,p/2 is equivalent to the the CS-LBP descriptor
proposed by Heikkilä [18] for local interesting region description.

The uniform patterns represent meaningful and fundamental characteristics of the local
texture structures; examining the proportions of the uniform patterns for LBP, RD-LBP and
AD-LBP clearly demonstrated that the proportions of the uniform patterns of AD-LBP were
too small and inadequate to provide a reliable and meaningful description of texture images,
as illustrated in Fig. 3. Consequently we focus on the RD-LBP descriptor.

Next, there are two ways to combine the NI-LBP and RD-LBP codes: the concatenation
of individual histograms, or jointly calculating a two dimensional histogram, represented as
NI-LBP / RD-LBP. In this paper, we prefer the latter approach, which has also been used by
Varma and Zisserman [3] and Guo et al. [17], and has been shown to produce better results.
Following [5], we use only joint distributions of operators that have the same (p,r) values,
although nothing would prevent us from using joint distributions of operators computed at
different neighborhoods.

2.4 MultiResolution Analysis and Classification

The proposed descriptors described above are extracted from single resolution with a circu-
larly symmetric neighbor set of p pixels placed on a circle of radius r (see Fig. 2). It is gener-
ally agreed that multiresolution analysis is beneficial for texture classification. Obviously, by
altering (p,r), we can realize operators for any quantization of the angular space and for any
spatial resolution. Motivated by the idea of [5], we conduct the multiresolution analysis by
combining the information provided by multiple descriptors of varying (p,r). The histogram
feature vector of multiresolusion analysis is obtained by concatenating the histograms from
multiple resolution analysis realized with different (p,r). To perform the texture classifica-
tion, nearest neighbor classifier (NNC) is used in this paper. The samples are then classified
according to their normalized histogram feature vectors hi and h j , using χ2 distance metric

χ2(hi,h j) =
1
2 ∑k

[hi(k)−h j(k)]
2

hi(k)+h j(k)
(the same distance metric used in [2, 3, 21, 24]).
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Table 1: Summary of texture datasets used in our experiments.
Experiment # 1

Texture
Dataset

Texture
Classes

Samples
per class

Sample
Size

Test
Suite

Training
or Testing

Number
of Angles

Illuminant
Used

Samples
in Total

Brodatz 16 8 180×180
Contrib_TC_00001
(Problem 000–009)

Training 1 “inca” 16 (16×1)
Testing 9 “inca” 1008 (16×7×9)

Outex 24 20 128×128

Outex_TC_00010
Training 1 “inca” 480 (24×20)
Testing 8 “inca” 3840 (24×20×8)

Outex_TC_00012
(Problem 000)

Training 1 “inca” 480 (24×20)
Testing 9 “tl84” 4320 (24×20×9)

Outex_TC_00012
(Problem 001)

Training 1 “inca” 480 (24×20)
Testing 9 “horizon” 4320 (24×20×9)

Experiment # 2
Texture
Dataset

Pose
Variation

In-Plane
Rotation

Controlled
Illumination

Scale
Variation

Texture
Classes

Sample
Size

Samples
per class

Samples
in Total

KTH-TIPS2b
√ √ √

11 200×200 432 4752 (432×11)

Table 2: Abbreviations for the notations of methods.
Name of Methods Abbreviation Name of Methods Abbreviation

LBPriu2
p,r LBP VARp,r VAR

LBPriu2
p,r /VARp,r LBP/VAR

NI −LBPriu2
p,r NI RD−LBPriu2

p,r RD
RD−LBPriu2

p,r /CI −LBP RD/CI NI −LBPriu2
p,r /CI −LBP NI/CI

NI −LBPriu2
p,r /RD−LBPriu2

p,r NI/RD NI −LBPriu2
p,r /RD−LBPriu2

p,r /CI NI/RD/CI

3 Experimental Evaluation

In this section, we demonstrate the performance of the proposed method with comprehensive
experiments on five texture datasets, summarized in Table 1, which are derived from three
popular publicly available texture databases: Brodatz [25], Outex [5], and KTHTIPS2b [21,
24].

Experimental #1, presented in Section 3.2, aims at investigating the proposed approach
for gray scale and rotation invariant texture classification, comparing our proposed descrip-
tors with the classical LBP and VAR descriptors proposed in the original work by Ojala et
al. [5] and other LBP based approaches [16, 17, 26]. Best scores achieved by our method
are then compared with those reported by other state-of-the-art methods.

Experiment #2, presented in Section 3.3, examines the classification performance of the
proposed approach for a more realistic and challenging texture classification task: mate-
rial categorization where each material consists of instances imaged from multiple different
physical samples under different viewpoint, illumination and imaging distance, using the
material database KTHTIPS2b [21, 24].

3.1 Methods In Comparison

To make the comparisons as meaningful as possible, we keep our experimental settings as
similar as possible to [5]. The abbreviations for the proposed descriptors are summarized in
Table 2. In all our experiments, each texture sample is normalized to be zero mean and unit
standard deviation.

We compare with joint LBPriu2
p,r /VARp,r, LBPriu2

p,r and VARp,r. We follow the experimen-
tal setup in [5] for these three descriptors. DLBP and NGF follow from [16]. CLBP [17] is
training free, representing a local texture patch by its center pixel and the signs and magni-
tudes of the differences between center and neighborhood. VZ-MR8 [2, 3] and VZ-Joint [3]
both require a time consuming universal texton dictionary learning stage.
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Table 3: Classification accuracies (%) on Contrib_TC_00001, where training is done at just
one rotation angle and the average accuracy over 10 angles. The results for LBP, VAR, and
LBP/VAR are quoted directly from the original paper by Ojala et al. [5].

Method (p, r) Bins
Rotation Angle for Train

Average0o 20o 30o 45o 60o 70o 90o 120o 135o 150o

LBP (16,2) 18 96.2 99.0 98.6 98.9 98.5 99.1 97.6 98.6 98.7 97.5 98.3
VAR (16,2) 128 89.9 84.5 86.2 90.5 87.3 85.6 91.0 89.8 90.8 88.5 88.4

LBP/VAR [5] (8,1)+(16,2)+(24,3) 864 100 99.7 99.5 99.8 99.6 99.7 99.8 99.6 99.8 99.9 99.7

NI
(8,1) 10 65.4 85.5 81.3 76.6 77.0 78.4 68.8 81.4 75.8 76.5 76.7
(16,2) 18 87.6 95.2 92.3 93.6 89.4 96.0 88.9 91.3 93.4 90.1 91.8
(24,3) 26 96.2 93.4 97.6 96.6 98.3 96.7 97.1 96.7 92.6 98.2 96.4

RD
(8,1) 10 68.8 86.4 84.4 76.0 84.9 84.4 70.2 84.1 76.1 84.7 80.0
(16,2) 18 89.2 92.9 96.7 97.8 96.1 92.6 88.4 94.7 96.7 97.3 94.3
(24,3) 26 87.6 90.6 98.2 90.8 96.5 93.8 89.5 98.6 89.5 94.2 92.9

RD/CI
(8,1) 20 87.1 94.7 94.3 88.6 95.9 95.1 85.8 94.8 90.3 95.0 92.2
(16,2) 36 92.7 94.6 96.8 97.3 98.4 95.6 91.8 99.4 96.7 98.6 96.2
(24,3) 52 96.9 95.8 95.6 92.8 96.5 94.3 96.9 99.1 95.3 95.9 95.9

NI/CI
(8,1) 20 74.8 90.4 86.4 80.3 82.5 85.2 74.4 86.2 80.6 82.2 82.3
(16,2) 36 95.6 99.2 98.8 98.0 98.2 99.4 93.8 98.3 96.9 97.4 97.6
(24,3) 52 99.1 98.7 99.4 99.4 100 100 99.7 97.5 97.3 99.1 99.1

NI/RD
(8,1) 100 70.2 88.9 87.0 80.0 85.2 85.5 71.9 87.1 81.6 84.9 82.2
(16,2) 324 100 100 100 100 100 100 100 100 100 100 100
(24,3) 676 98.2 100 100 100 100 100 99.6 99.9 99.9 100 99.8

NI/RD/CI
(8,1) 200 78.1 94.5 92.2 91.1 93.0 92.0 76.2 92.4 91.8 92.6 89.4
(16,2) 648 100 100 100 100 100 100 100 100 100 100 100
(24,3) 1352 98.8 100 100 100 100 100 99.8 100 99.8 100 99.8

Table 4: Classification accuracies (%) for all the three Outex test suites, where training was
done at 0 angle and testing used 9 angles. The mean accuracy is the average over the three
test suites. The results for LBP, VAR, and LBP/VAR are quoted directly from the original
paper by Ojala et al. [5].

Test Suite Outex_TC_00012 Outex_TC_00010
Mean Accuracy“tl84’, “horizon” “inca”

(p, r) (8, 1) (16, 2) (24, 3) (8, 1) (16, 2) (24, 3) (8, 1) (16, 2) (24, 3) (8, 1) (16, 2) (24, 3)

LBP [5] 67.5 81.2 84.0 62.7 74.1 80.5 85.1 88.5 94.6 71.8 81.3 86.4
VAR [5] 64.3 67.1 62.6 64.7 72.5 68.9 91.2 90.7 86.2 73.4 76.8 72.6

LBP/VAR [5] 78.8 86.1 86.6 76.7 84.8 87.2 95.4 97.2 97.8 83.6 89.4 90.5

NI 59.1 71.9 76.3 56.2 65.5 72.2 76.4 87.0 88.7 63.9 74.8 79.1
RD 67.0 77.4 76.8 63.1 72.3 72.1 81.0 86.6 89.7 70.4 78.8 79.5

NI/CI 76.5 88.6 88.9 77.4 89.4 84.6 89.9 96.4 95.7 81.3 91.5 89.7
RD/CI 87.9 91.9 86.1 88.3 91.5 82.3 95.2 95.9 93.7 90.7 93.1 87.4
NI/RD 79.0 96.2 95.2 80.8 95.2 92.2 88.9 98.7 98.8 82.9 96.7 95.4

NI/RD/CI 90.9 98.0 97.3 92.7 98.0 96.2 96.5 99.3 99.2 93.4 98.4 97.6

3.2 Experiment #1
Image Data and Experimental Setup. Test suite Contrib_TC_00001 was designated
for rotation invariant texture classification, consists of 16 texture classes from the Brodatz
database [25]. The experimental setup for this test suite is kept as same as [5].

Test suite Outex_TC_00010 contains 24 Outex texture classes with each class having
20 samples. The training and testing scheme for this test suite is the same as that for Con-
trib_TC_00001 but with nine different rotation angles.

Finally test suite Outex_TC_00012 was created by Ojalaet al. [5] for rotation and il-
lumination invariant texture classification. Due to variations in illuminants, some texture
samples have a large tactile dimension, which induce significant local gray-scale distortions,
therefore Outex_TC_00012 is more challenging than Outex_TC_00010.

Experimental Results. Table 3 presents the results for our proposed descriptors on Con-
trib_TC_00001, comparing with the state-of-the-art methods from [5]. It is evident that the
performance of the proposed NI−LBP/RD−LBP and NI−LBP/RD−LBP/CI−LBP de-
scriptors are superior to that of LBP/VAR. Note that here we only consider single resolution
for our descriptors; it may be argued that this test suite is too easy for texture classification,
nevertheless our 100% classification scores demonstrate a very strong performance.

Next, Table 4 presents results for our proposed descriptors and those proposed in [5] on
test suites Outex_TC_00010 and Outex_TC_00012. Our proposed descriptor NI−LBPriu2

16,2/RD−
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Table 5: Classification accuracy (%) of descriptor NI/RD/CI for the three Outex test suites:
training is done at just one rotation angle.

Test Suite (p, r) Rotation Angle for Train (“inca”) Average0o 5o 10o 15o 30o 45o 60o 75o 90o

Outex_TC_00012
(“tl84”)

(8,1) 90.9 91.6 92.1 93.0 91.3 90.8 88.9 89.0 84.3 90.2
(16,2) 98.0 98.3 99.1 98.6 98.4 98.6 98.6 97.7 96.8 98.3
(24,3) 97.3 98.3 98.5 98.7 97.2 96.4 93.4 94.2 94.1 96.5

(8,1)+(16,2) 97.4 98.0 98.4 98.5 98.3 98.3 97.8 97.1 95.6 97.7
(8,1)+(24,3) 97.7 98.3 98.7 98.7 98.5 97.9 96.4 96.6 96.4 97.7
(16,2)+(24,3) 98.3 99.0 99.3 99.2 98.9 98.9 98.3 98.1 98.1 98.7

(8,1)+(16,2)+(24,3) 98.5 98.9 99.1 99.1 99.0 98.9 98.4 98.2 98.1 98.7

Outex_TC_00012
(“horizon”)

(8,1) 92.7 92.8 93.3 93.6 92.7 91.6 90.3 91.1 86.6 91.6
(16,2) 98.0 98.0 98.3 98.4 97.7 97.9 98.2 98.3 98.1 98.1
(24,3) 96.2 97.0 97.0 97.3 95.5 95.1 92.7 93.7 94.1 95.4

(8,1)+(16,2) 98.2 97.8 98.3 97.9 97.1 97.8 98.2 97.8 97.0 97.8
(8,1)+(24,3) 97.8 97.5 97.7 97.7 96.2 96.1 95.1 95.2 95.1 96.3
(16,2)+(24,3) 97.8 98.3 98.2 98.3 97.3 97.5 96.9 97.0 97.7 97.7

(8,1)+(16,2)+(24,3) 97.8 98.4 98.4 98.2 97.4 97.7 97.5 97.1 97.6 97.8

Outex_TC_00010
(“inca”)

(8,1) 96.5 96.3 97.4 97.6 96.2 95.3 92.7 94.9 91.8 95.4
(16,2) 99.3 99.4 99.5 99.7 99.6 99.6 99.5 99.0 99.0 99.4
(24,3) 99.2 99.5 99.4 99.5 99.5 99.5 99.2 99.3 99.1 99.4

(8,1)+(16,2) 99.4 99.4 99.6 99.6 99.5 99.4 99.4 99.0 98.6 99.3
(8,1)+(24,3) 99.3 99.5 99.5 99.5 99.6 99.6 99.7 99.4 99.2 99.5
(16,2)+(24,3) 99.6 99.7 99.8 99.7 99.7 99.9 99.8 99.7 99.5 99.7

(8,1)+(16,2)+(24,3) 99.7 99.7 99.7 99.6 99.6 99.8 99.9 99.7 99.4 99.7

LBPriu2
16,2/CI − LBP produces consistently the best classification scores across all three test

suites: 99.3%, 98.0% and 98.0% for Outex_TC_00010, Outex_TC_00012 “tl84” and Ou-
tex_TC_00012 “horizon” respectively, which are a considerable improvement over the best
reported results of 97.9%, 90.2% and 87.2% on the corresponding test suite by Ojala et
al. [5], especially for Outex_TC_00012 “tl84” and “horizon”, where the improvement is
about 8% and 11% respectively.

Among individual descriptors, although NI − LBP and RD− LBP did not outperform
LBP or VAR, their combination significantly outperformed LBP/VAR. Consistent with the
analysis in Section 2 that the intensity based descriptor NI − LBP and the gradient based
descriptor RD−LBP are complementary, similar to the combination of RIFT and SIFT used
by Zhang et al. [8].

Finally, we can see that NI−LBPriu2
16,2/RD−LBPriu2

16,2 and NI−LBPriu2
16,2/RD−LBPriu2

16,2/CI−
LBP produce very robust classification performance in all three cases, in contrast to LBP/VAR,
the performance of which decreases considerably in gray scale and rotation invariant tex-
ture classification. The excellent classification results demonstrate that NI − LBP/RD −
LBP/CI−LBP is more stable for texture classification irrespective of imaging geometries of
the illuminants affecting the appearance of local distortions caused by the tactile dimension
of the textures.

Motivated by its excellent classification performance of NI−LBP/RD−LBP/CI−LBP,
Table 5 presents extensive experiments on the three Outex test suites by varying the training
angle. The results show robustness, especially for NI −LBPriu2

16,2/RD−LBPriu2
16,2/CI −LBP,

and the improvement of results for multiresolution analysis over single resolution.

Fig. 4 compares the best scores achieved by our proposed method and those reported by
competing state-of-the-art methods, which our approach outperforms. Whereas our proposed
approach is training-free and involves simple computations, VZ-MR8 and VZ-Joint require
a universal texton dictionary learning stage, followed by a histogram model learning stage.
Our 5%-7% improvement over VZ-MR8 and VZ-Joint a likely a function of the limited
training samples for learning the universal texton dictionary in VZ-MR8 and VZ-Joint.
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Figure 4: Comparing the best classification scores of our approach with various state-of-
the-art methods on all the three Outex test suites. All the results are as originally reported,
except for those of VZ-MR8 and VZ-Joint, which are obtained by us using the exact same
experimental setup as Varma and Zisserman did [2, 3]. For VZ-MR8 and VZ-Joint, 40
textons per class is used for building the universal texton dictionary.

Table 6: Left table: classification results (%) of the proposed descriptors and the LBP on
KTHTIPS2b. Right figure: Comparing the proposed approach with various state-of-the-art
methods on KTHTIPS2b.

(p,r) (8,1) (16,2) (24,3)
Ntrain 1 2 3 1 2 3 1 2 3

LBP 48.1 54.2 56.8 50.5 55.8 59.1 49.9 54.6 57.8

NI 46.1 48.7 52.3 37.6 41.2 44.4 39.0 42.6 45.4
RD 48.1 54.2 56.9 44.0 49.4 52.1 38.5 42.7 45.2

RD/CI 52.6 57.8 61.2 49.9 56.2 59.8 48.0 53.5 56.3
NI/CI 47.1 53.1 56.4 46.5 50.5 53.0 44.8 48.8 51.6
NI/RD 53.5 60.0 63.1 54.0 59.0 61.6 49.5 55.2 59.1

NI/RD/CI 56.6 61.9 64.8 57.7 62.5 65.1 52.4 57.5 61.7
(p, r) (8, 1)+(16, 2) (16, 2)+(24,3) (8, 1)+(16, 2)+(24,3)

Ntrain 1 2 3 1 2 3 1 2 3
NI/RD/CI 58.1 62.9 66.0 55.9 61.0 64.2 56.7 61.7 65.0
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3.3 Experiment #2

Image Data and Experimental Setup. The KTHTIPS2b database contains 11 different ma-
terials, each material with 4 different physical material samples, totaling 44 physical sam-
ples. The acquisition procedure for KTHTIPS2b has been described in more detail in [27].

For the experiments on KTHTIPS2b, we follow the similar training and testing scheme
used in [21]. Each set of physical sample (108 images) can represent a testing or training set.
We first perform experiments where only a single sample is available during training. All
images of that sample are placed in the training set, and testing is subsequently performed
on all images of all remaining samples. We also perform similar experiments with two and
then three samples in the training set. Testing is always conducted only on unseen samples.
All possible combinations of training sets are considered.

Experimental Results. As shown in Table 6, we compare our method with state-of-
the-art methods on the material categorization task of KTHTIPS2b textures. Note that all
results from other methods are quoted directly from [21]. Likewise, one can find in the right
side of Table 6 that our approach performs the best. It again confirms that our descriptor
NI −LBP/RD−LBP/CI −LBP extracts powerful discriminating features. We should bear
in mind that the classification results of all the methods are obtained with a 1NN classifier,
since we are focusing our attention on the effectiveness of the descriptors rather than on
the capabilities of the classifier. However, using the more advanced support vector machine



10 LIU ET AL.: GENERALIZED LOCAL BINARY PATTERNS

(SVM) classifier proposed by Caputo et al. [21] might improve the performance significantly.

4 Conclusions
This paper proposes a novel local texture descriptor, generalizing LBP. The proposed ap-
proach is computationally simple, training-free, and data-independent. Extensive experi-
mental results show that the joint distribution of CI-LBP, NI-LBP and RD-LBP significantly
outperform the conventional LBP approach and other state-of-the-art methods on Outex test
suites. Results on KTHTIPS2b database also demonstrate the superior performance of the
proposed approach in comparison with several state-of-the-art methods.
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