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Abstract

A novel superresolution method for enhancing the reso-
lution of mammogram images based on statistical moment
analysis (SMA) has been designed and implemented. The
proposed SMA method enables high resolution mammo-
gram images to be produced at lower levels of radiation
exposure to the patient. The SMA method takes advantage
of the statistical characteristics of the underlying breast tis-
sues being imaged to produce high resolution mammogram
images with enhanced fine tissue details such that the pres-
ence of masses and microcalcifications can be more easily
identified. In the SMA method, the superresolution problem
is formulated as a constrained optimization problem using
an adaptive third-order Markov prior model, and solved ef-
ficiently using a conjugate gradient approach. The priors
are adapted based on the inter-pixel likelihoods of the first
moment about zero (mean), second central moment (vari-
ance), and third and fourth standardized moments (skew-
ness and kurtosis) from the low resolution images. Exper-
imental results demonstrate the effectiveness of the SMA
method at enhancing fine tissue details when compared to
existing resolution enhancement methods.

1 Introduction

According to the World Health Organization Interna-
tional Agency for Research on Cancer, breast cancer is the
most frequent form of cancer in women worldwide, with
an estimated 636,000 incidents in developed countries and
514,000 incidents in developing countries during 2002 [1].
Furthermore, breast cancer is also the leading cause of
cancer-related deaths in women in many countries, with
an estimated 519,000 deaths worldwide in 2004 [2]. Fi-
nally, according to the American Cancer Society, women
with breast cancer have an increased risk of developing a
second primary cancer [3]. One of the most effective ap-
proaches to reducing the risk of death due to breast cancer
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is early breast examination and screening of asymptomatic
women. The most widely used technology for breast exami-
nation is mammography, where X-ray images of the breasts
are acquired and analyzed to identify possible signs of ab-
normality such as the masses and microcalcifications. By
detecting preclinical cancer before it is palpable and causes
symptoms, breast cancer can be treated at an early stage to
significantly improve survival rate as well as reduced com-
plications associated with intensive treatment required for
late-stage breast cancer [4].

Despite the effectiveness of mammography in early
breast cancer detection, asymptomatic women are often
hesitate to perform the procedure due to the potential harm
caused by mammography. Besides patient anxiety and dis-
comfort, the main cause of potential harm during the mam-
mography procedure is patient exposure to harmful ionizing
radiation. Therefore, minimizing patient exposure to harm-
ful ionizing radiation is important to reduce the potential
harm caused by mammography. However, a reduction in
radiation dosage can result in a decrease of signal-to-noise
ratio (SNR), which reduces image quality and affects the
visibility of suspicious cancer-related abnormalities such as
masses and microcalcifications. While SNR can be signifi-
cantly improved at lower radiation dosages through the use
of larger detector pixel dimensions, this comes at the ex-
pense of image resolution.

A technological solution showing great potential for
achieving high SNR at lower radiation dosages without
compromising image resolution is multi-source superreso-
lution, where multiple low radiation images are combined to
form a high-resolution image. In the multi-source superres-
olution approach proposed by Robinson et al. [5], a series
of spatially shifted low radiation images were acquired of
the object of interest, and combined into a high resolution
image based on their relative alignments. In operational sit-
uations, these spatial shifts can be achieved through X-ray
tube rotations, moving the object of interest with respect to
the X-ray source, or using sensor arrays that are spatially
shifted by a known displacement [6]. Robinson et al. [5]

IEEE
computer
® psouety



showed that mammogram images with similar image qual-
ity as a single image acquired at a normal radiation dosage
of 226 mAs, can be produced by combining multiple low ra-
diation images at a significantly reduced combined dosage
of 169.5 mAs. Hence, superresolution techniques allows for
the construction of mammogram images with higher image
quality than can be achieved by the physical radiographic
hardware in a single image at a given dosage, thus reducing
potential harm to the patient while enhancing the visibility
of suspicious cancer-related abnormalities for clinical diag-
nosis.

Given the benefits of multi-source image superresolu-
tion, several methods have been proposed for the purpose
of enhancing medical images. Peeters et al. [7] proposed
to employ a maximum a posteriori (MAP) estimation ap-
proach to combine functional magnetic resonance imaging
(fMRI) data to produce high resolution data with reduced
slice thickness, where the posterior probability distribution
of the superresolution problem is maximized. Robinson et
al. [5] also employed a MAP estimation approach to com-
bine spatially-shifted low radiation X-ray images into a high
resolution X-ray image. Peled and Yeshurun [8], Greenspan
etal. [9], and Kennedy et al. [10, 11] utilized a variant of the
iterative back-projection (IBP) method proposed by Irani et
al. [12] to construct high resolution diffusion tensor mag-
netic resonance (DTMR), fast-spin echo (FSE) MR, and
positron emission tomography (PET) images, respectively,
from spatially-shifted images, where the high resolution im-
age estimate is refined based on the error between its de-
rived low resolution images and the actual low resolution
images. Hsu et al. [13] proposed to construct high reso-
lution cardiovascular images from low resolution imagery
using a Projection on Convex Sets (POCS) [14] approach,
where a high-resolution image estimate is projected onto
each constraint within the convex constraint set until the de-
sired condition is satisfied.

The main limitation of these multi-source superresolu-
tion approaches for enhancing mammogram images is that
they do not take into account the underlying tissue char-
acteristics of the breast region being imaged in the high
resolution image construction process. As such, an alter-
native approach to multi-source superresolution that takes
advantage of the underlying tissue characteristics can po-
tentially yield great benefits for enhancing the visibility of
suspicious tissue anomalies such as masses and microcal-
cifications, which is critical for early clinicial diagnosis of
breast cancer.

The main contribution of this paper is SMA, a novel su-
perresolution method for constructing high resolution mam-
mogram images from a set of low resolution mammogram
images. The high resolution image is adaptively generated
for improved visibility of tissue detail based on the under-
lying tissue statistical characteristics of the low resolution

images. The mammogram image superresolution problem
is formulated in Section 2. The proposed SMA method is
described in Section 3. Experimental results are presented
and discussed in Section 4. Finally, conclusions are drawn
in Section 5.

2 Problem Formulation

It is important to first define and formulate the mammo-
gram image superresolution problem. Suppose that a set
of n spatially shifted low resolution mammogram images
f1, fa, -y fn of size M x N were acquired of the same
breast region using a dedicated mammography machine.
From a theoretical perspective, each low resolution mam-
mogram image can be alternatively viewed as a single high
resolution mammogram image g of size RM x RN that has
been spatially shifted, degraded (e.g., blurred), and down-
sampled by a factor of R. Given that each low resolution
mammogram image is subject to different shifts and degra-
dations, a particular low resolution mammogram image f;
can be represented in matrix-vector form as

(L) = H; (ﬂ): + 1y, (1)

where, ( L) is an [M N x 1] vector representing a low

resolution mammogram image f; in lexicographic order-
ing, (g) is an [R2MN x 1] vector representing the high
resolution mammogram image g in lexicographic ordering,
H; is an [M N x R?M N] matrix representing the observa-
tion model for a low resolution mammogram image, and n;
is an [M'N x 1] vector representing noise in a low resolu-
tion mammogram image in lexicographic ordering. The ob-
servation model H consists of multiple degradations (e.g.,
spatial shift and blur) and can be formulated based on the
intrinsic properties of the dedicated mammographic device.

Given Eq. (1), the relationship between the high resolu-
tion mammogram image g and the set of n spatially shifted
low resolution mammogram images fi, fo,..., f, can be
formulated as

_ (il>: _ H; n,
(ff): e N7 Rl S
()] ™

Alternatively, Eq. (2) can be expressed in a simplified form,
f=H(g) +m (3)

where E is a vector of stacked low resolution mammogram
image vectors f X f g o LL, and H is a matrix of stacked



observation matrices Hy, Hs, ..., H,,. Given Eq. (3), the
mammogram image superresolution problem is essentially
an inverse problem, where the high resolution mammogram
image ¢ is estimated based on the observation models H
and the low resolution mammogram images f1, fo, ..., fn.
In practice, only a few acquisitions can be made to limit
potential harm to the patient. Therefore, only partial in-
formation about the high resolution mammogram images
is gained from the low resolution mammogram images.
Hence, the mammogram image superresolution problem is
underdetermined and there are no unique solutions.

3 Proposed SMA Mammogram Image Su-
perresolution Method

The proposed SMA mammogram image superresolution
method can be summarized as follows. First, local tissue
distributions in the low resolution mammogram images are
modeled using sets of statistical moments. Second, the
mammogram image superresolution problem is formulated
as a constrained optimization problem using third-order
Markov prior constraints that are adapted on a per-pixel
level based on the inter-pixel likelihoods between the lo-
cal tissue distributions. This constrained optimization prob-
lem is then solved efficiently using a conjugate gradient ap-
proach.

3.1 Local Tissue Distribution Modeling
using Statistical Moments

The underlying goal of the SMA method is to construct
high resolution mammogram images that better capture fine
tissue details such that the visibility of suspicious cancer-
related abnormalities such as masses and microcalcifica-
tions is improved. Therefore, intuitively, the SMA method
should take into account the underlying tissue characteris-
tics of the breast region captured in the low resolution mam-
mogram images. As an initial step towards this goal, we
propose to first model the local tissue distributions in the
low resolution mammogram images. The motivation be-
hind modeling the local tissue distributions is that pixels in
the low resolution mammogram images with similar local
tissue distributions are more likely to have similar tissue
characteristics. Therefore, by taking advantage of pixels
with similar tissue characteristics during the superresolu-
tion process, fine tissue details can be better preserved in
the resulting high resolution mammogram image.

To capture the local tissue characteristics of the low reso-
lution mammogram images, we propose to model the local
tissue distribution Y of each pixel z = (x,y) from a low
resolution mammogram image using the first moment about
Zero ms,
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where IN represents the local neighborhood around z, and
Z is the number of pixels within IN.

The four statistical moments chosen to model the local
tissue distribution, while simple to compute, provide impor-
tant insights about the underlying tissue distribution of the
local neighborhood around z. The first moment about zero
m characterizes the central tendency of the tissue charac-
teristics and provides a good indication of the overall type
of tissue within the local neighborhood. The second central
moment mo characterizes the spread of tissue characteris-
tics and provides a good indication of tissue changes within
the local neighborhood. The third and fourth standardized
moments mg and my characterizes the skewness and kur-
tosis of the tissue characteristics within a local neighbor-
hood and allows for better discrimination between local tis-
sue distributions, which is important since we wish to em-
phasize the importance of pixels with similar tissue char-
acteristics in the superresolution process to better capture
fine tissue detail in the constructed high resolution mam-
mogram image. The local distribution models used are ob-
tained based on 7 x 7 neighborhoods from the low resolution
mammogram images, averaged and up-sampled to the same
resolution as the high resolution mammogram image.

3.2 Constrained Optimization using
Adaptive Moment-Guided Priors

Given the local tissue distribution models derived from
the low resolution mammogram images
YT(z) = {mi(x),ma(z), ms(z), ms(x)}, we seek to take
advantage of the statistical characteristics of the underly-
ing breast tissues being imaged to produce high resolution
mammogram images with enhanced fine tissue details such
that the presence of masses and microcalcifications can be



more easily identified. The mammogram image superreso-
lution problem posed in Section 2 can be formulated as an
optimization problem,

=1l ®)

where (). is a vector representing the estimated high reso-
lution mammogram image § in lexicographic ordering.

As stated in Section 2, the mammogram image superres-
olution problem is in general underdetermined, and there-
fore ill-posed, due to the fact that only a few acquisitions
can be made in practice to limit potential harm to the pa-
tient. To obtain a unique solution to the mammogram im-
age superresolution problem, one must impose a set of prior
constraints to regularize the problem,

(g) = arg min (HH

= [+ )

0D

where I' represents the prior constraints. Given the con-
strained optimization problem in Eq. (9), the goal is to de-
termine a set of prior constraints that produce a consistent,
unbiased estimate of the high resolution mammogram im-
age based on the set of low resolution mammogram images
that well captures fine tissue detail in the breast region being
imaged.

Using a third-order Markov model [15], a common ap-
proach to regularizing a constrained optimization problem
such as that posed in Eq. (9) is to impose first-order and
second-order continuity constraints on each point z
(z,), which minimizes an approximate slope and curva-
ture [16], respectively, and can be expressed as

(g) = arg min (HH

IT(9)|l = E1(g) + E2(9),

where F; denote the first-order constraints,
dg

I @

and F5 denote the second-order constraints,
> ] dxdy.

E2(9)=// [(32%;)2”( = >2+< (12)

0xdy
Based on discrete approximations of partial derivatives, the
prior constraints ) = I'T'T at each pixel z can be expressed
in matrix form as

(10)

62
82

00 1 0 0
0 2 -9 2 0
Qz)=|1 -9 24 -9 1 (13)
0 2 -9 2 0
00 1 0 0

where the central element of ()(x) represents the pixel at x.
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A major limitation to using the continuity constraints de-
fined in Eq. (13) is that it imposes stationary constraints
on the entire mammogram image, regardless of the under-
lying tissue characteristics of the breast region being im-
aged. To take advantage of the tissue characteristics of
the breast region being imaged to produce high resolution
mammogram images with enhanced fine tissue details, we
propose to adapt the prior constraints based on the local tis-
sue statistics captured by the local tissue distribution mod-
els derived from the low resolution mammogram images
YT(z) = {mi(z), ma(z),ms(z), ms(z)}. In doing so, we
are imposing prior constraints in a nonstationary and non-
linear fashion such that fine tissue details are better captured
in the constructed high resolution mammogram image.

Rather than using the stationary first-order and second-
order constraints defined in Eq. (13), we propose to in-
stead impose nonstationary and nonlinear prior constraints
on each point z based on the likelihoods of its neighboring
pixels {; € IN} belonging to the same tissue distribution
as z, which we will denote as £ = {L(z,z;)|z; € IN}.
This approach is motivated by the intuition that fine tissue
details and structures, such as those representing suspicious
cancer-related abnormalities (e.g., masses and microcalci-
fications), are formed in a mammogram image by pixels
with similar tissue characteristics. Therefore, adapting the
level of approximation at each point in the image such that
stronger constraints are imposed on pixels with strong tis-
sue distribution similarities not only better preserves fine
tissue detail, but also suppresses acquisition noise and arti-
facts since they have different statistical characteristics than
the underlying tissue in the breast region being imaged.

Based on the aforementioned motivations, the adaptive
moment-guided prior constraints (),,, at each pixel  can be
expressed in matrix form as

0 0 L3 0 0
1 0 2L~ —9Lg 2Lg 0
Qm@):? Li1 —9L12 24Lis —9Lu Lis |,
0 2L17 —9L15 2L19 0
0 0 Lo3 0 0
(14)

where £, = L(z;|z) represents the likelihood that z, be-
longs to the same tissue distribution as x, and K is a nor-
malization term such that the sum of all constraint terms in
Q. is zero.

Since the local distribution of each pixel z is modeled
using a set of statistical moments
T() = {mi(z), ma(z), ms(z), m(z)}, we propose a
Gibbs inter-pixel likelihood function £(z;|z) based on the
weighted deviations between Y (z;) and Y(x),

HGXP( aj (mj(z;) — mj(g))2), 15)



where a; = 0.25 is the weight assigned to the statistical
moment m;. Based on Eq. (15), the greater the deviation
in statistical moments between Y'(z,) and Y (z), the lower
the likelihood of z; belonging to the same distribution as
z. Therefore, the likelihood functions £(z;|z) in Eq. (14)
act as weighting factors that emphasize pixels with similar
local tissue distributions in the prior constraints.

What the proposed nonstationary moment-guided prior
constraints described in Eq. (14) allow for is adaptive per-
pixel refinement of information contribution from the low
resolution mammogram images to the generation of the
high resolution mammogram image, where fine tissue de-
tail formed by pixels with similar breast tissue character-
istics are emphasized for improved visualization of suspi-
cious abnormalities such as masses and microcalcifications.

Given the nonstationary moment-guided prior con-
straints described in Eq. (14), the solution of the constrained
optimization problem can be defined based on the Tikonov
regularization equation [21],

(§): = (HTE+ Qm) ' HYf. (16)

Eq. (16) can be rearranged in the form of A(g). = b, where

S, -1 _
A= (HTH + Qm) and b = H” f. The high resolu-

tion mammogram image (§). is constructed by computing
the estimated solution to the constrained optimization prob-
lem (Eq. (16)) based on the moment-guided priors using an
efficient conjugate gradient approach [19].

4 Experimental Results

The proposed SMA superresolution method was per-
formed using real mammogram images obtained from
the Mammographic Image Analysis Society (MIAS)
database [20] to investigate its effectiveness at enhancing
tissue detail for better visualization. The dedicated mam-
mography machine used to acquire the mammogram images
was a Joyce-Loebl microdensitometer SCANDIG-3, with a
linear response in the optical density range 0 — 3.2. Each set
of tested mammogram images consists of six 8-bit grayscale
images with a pixel resolution of 200pm x 200um and a
25um shift interval. The tested data-sets can be described
as follows:

1. M1: MIA database mammogram 001, Background
tissue: fatty-glandular, Class of abnormality: well-
defined/circumscribed masses, Severity of abnormal-
ity: benign.

2. M2: MIA database mammogram 015, Background
tissue: fatty-glandular, Class of abnormality: well-
defined/circumscribed masses, Severity of abnormal-
ity: benign.

3. M3: MIA database mammogram 181, Background tis-
sue: fatty-glandular, Class of abnormality: spiculated
masses, Severity of abnormality: malignant.

4. M4: MIA database mammogram 206, Background tis-
sue: fatty, Class of abnormality: spiculated masses,
Severity of abnormality: malignant.

5. MS5: MIA database mammogram 209, Background tis-
sue: fatty-glandular, Class of abnormality: calcifica-
tion, Severity of abnormality: malignant.

6. M6: MIA database mammogram 211, Background tis-
sue: fatty-glandular, Class of abnormality: calcifica-
tion, Severity of abnormality: malignant.

To test the effectiveness of the SMA method, the low
resolution mammogram images in each tested data-set were
combined using the SMA method to produce a high resolu-
tion mammogram image with a pixel resolution of 50um X
50pm. Bicubic interpolation and the method proposed by
Kennedy et al. [10]. To empirically evaluate the effective-
ness of the proposed method at high resolution mammo-
gram image reconstruction, the Peak-Signal-to-Noise Ratio
(PSNR) was calculated between the generated high resolu-
tion image and the corresponding reference image for each
of the tested methods.

The PSNR results for all tested data-sets are shown
in Table 1. The SMA method noticeably outperform the
other tested methods in terms of PSNR for all tested data-
sets. This improvement in PSNR demonstrates the SMA
method’s ability to generate accurate high resolution mam-
mogram image reconstructions compared to existing ap-
proaches.

For visual comparisons, regions of interests were ex-
tracted from the breast region in the reconstructed high res-
olution mammogram images for each of the tested data-sets
(Figs. 1-4). Contrast enhancement using intensity normal-
ization was performed on the mammogram images shown
to improve the visibility of tissue details in the figures pro-
vided. On visual inspection, the high resolution mammo-
gram images generated using the SMA method provides no-
ticeably better visibility of fine tissue detail when compared
to the other tested methods.

In Fig. 1, the shape and boundaries of the circumscribed
and spiculated masses are noticeably better defined in the
high resolution mammogram images generated using the
SMA method when compared to the other tested methods.
In Fig. 2, the nodule boundaries are poorly defined in the
high resolution mammogram images generated using bicu-
bic interpolation and the Kennedy method. On the other
hand, the nodule boundaries are clearly defined with high
structural contrast in the high resolution mammogram im-
age generated using the SMA method, which is important
for visualizations during the clinical screening process.



In Figs. 3-4, there are calcifications embedded behind
dense tissues, which are very difficult, even impossible in
the case of Fig. 3, to identify in the high resolution mam-
mogram image generated using bicubic interpolation. The
Kennedy method generates high resolution mammogram
images that provide noticeably better calcification defini-
tion than bicubic interpolation, but the overall shape and
boundaries of the calcifications remain difficult to inter-
pret. In both cases, the SMA method generated high res-
olution mammogram images with noticeably better calci-
fication shape and boundary definition when compared to
the other tested methods, making it easier to identify and
interpret the calcifications embedded between the dense tis-
sues during the clinical screening process. These tests show
that the SMA method is capable of generating high resolu-
tion mammogram images with improved fine tissue detail
definition that allows for greater visibility of suspicious ab-
normalities in the breast region such as masses and micro-
calcifications.

Table 1. PSNR for Tested Data-sets

PSNR (dB)
Data-set Bicubic [10] SMA

Interpolation Method
M1 39.0111 45.2684 | 48.6317
M2 38.2615 44.0657 | 47.2658
M3 36.8680 42.8792 | 46.9089
M4 37.6002 42,9916 | 46.7166
M5 37.4122 43.5773 | 47.4197
M6 37.8646 43.6795 | 47.3050

5 Conclusions

In this paper, a novel superresolution method designed
to enhance mammogram images for clinical mammogram
screening is proposed. Based on local tissue distributions
modeled using statistical moments, the proposed method
adapts to the underlying tissue characteristics of the breast
region being imaged to better capture fine tissue detail,
thus enhancing the visibility of suspicious cancer-related
abnormalities such as masses and microcalcifications. Ex-
perimental results using real mammographic images show
that the proposed SMA method is capable of achieving im-
proved tissue detail preservation when compared to exist-
ing methods. Future work include integrating additional
adaptive prior constraints into the SMA method to simul-
taneously enhance tissue detail and correct for signal non-
uniformities in the acquired mammogram images, as well
as investigate the effectiveness of the SMA method for en-
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hancing medical images acquired using different imaging
technologies, such as MR and ultrasound imagery.
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